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2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Heinrich Günther Grassmann published his book Die Lineale Ausdehnungslehre
in 1842. The book contained and exposition of n–dimensional linear algebra, an
alternating product, inner products and a duality operator, among many other
things. The style of the book was roughly comparable to the more abstract
writings of the 1930’s and was perceived in its own day as being so wildly ab-
stract as to be incomprehensible. The book was not well received, although it
has always been admired by a limited number of enthusiasts.

Many of Grassmann’s ideas have been subsequently rediscovered, but gen-
erally in piecemeal fashion, and Grassmann’s imposing edifice has never received
the recognition it deserves. In addition, mathematicians are generally unaware
of how much of modern mathematics traces back to Grassmann’s ideas.

The purpose of this book is to lay out some of Grassmann’s major ideas in
a modern formulation and notation. The most serious departure from Grass-
mann’s own presentation is the recognition of the complementary roles of the
vector space V and its dual space V ∗, perhaps the only part of modern linear
algebra with no antecedents in Grassmann’s work.

Certain technical details, such as the use of increasing permutations or the
explicit use of determinants also do not occur in Grassmann’s original formula-
tion. I have, with some reluctance, used the modern ∧ instead of Grassmann’s
notation, although in some circumstances I revert to Grassmann’s notation when
it is clearly more convenient for calculation.

Another departure from Grassmann is the primacy given to vectors over
points in the present exposition. In chapter eight I show that this is merely
cosmetic; the same abstract structure admits two apparently different geomet-
ric interpretations. I there show how the two interpretations are related and
how to move back and forth between them. The motivation for departing from
Grassmann’s point–based system and using vectors is the desire to introduce
Grassmann’s ideas in the most familiar possible setting. The vector interpre-
tation is more useful for applications in differential geometry and the point
interpretation is more suited for projective geometry.

One of the goals of this book is to lay out a consistent notation for Grass-
mann algebra that encompasses the majority of possible consumers. Thus we
develop the theory for indefinite (but non degenerate) inner products and com-
plex scalars. The additional effort for this level of generality over real scalars
and positive definite inner products is very modest and the way is cleared for
the use of the material in modern physics and the lower forms of algebraic ge-
ometry. We simply must be a little careful with factors of (−1)s and conjugate
bars. I have, with reluctance, not developed the theory over commutative rings,
because that level of generality might obscure Grassmann’s ideas.

While it is not possible to eliminate bases altogether from the development,
I have made a great effort to use them as little as possible and to make the proofs
as invariant as I could manage. In particular, I have given here an invariant
treatment of the ∗ duality operator which allows the algorithmic computation of
∗◦∗ without use of bases, and this has a lot of methodological advantages. I have
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also found ways to express ∗ algebraically so that it seems a lot more pleasant
and natural than is generally the impression. Also, I never prove anything
with orthonormal bases, which I consider a great source of confusion however
convenient they sometimes prove. The algorithmic treatment given here also
helps to avoid errors of the lost-minus-sign type.

I have adopted a modular methodology of introducing the Grassmann prod-
uct. In chapter two we introduce tensor products, define Grassmann products in
terms of them, and prove certain fundamental laws about Grassmann products.
These fundamental laws then are used as Axioms in chapter three to develop the
fundamental theory of the Grassmann product. Thus a person satisfied to go
from the axioms can skip chapter two and go directly to chapter three. Chapter
two is used again only very late in the book, in a sketch of differential geometry.

For much of the foundational material the plan is to develop the theory
invariantly, then introduce a basis and see how the theory produces objects
related to the basis, and finally to discuss the effect of changing the basis.
Naturally some of this material is a trifle dull, and the reader should feel free
to skip it and return when motivated to learn more about it.

None of the material in this book is deep in a mathematical sense. Nev-
ertheless, I have included a vast amount of detail so that (I hope) the book is
easy to read. Feel free to skim through computations if you find them dull. I
have always erred on the side of including more rather than less detail, so the
book would be easy to read for the less experienced. My apologies to the more
experienced, who must be prepared to skip. One of the reasons for including
vast numbers of explicit formulas is for the convenience of persons who may
wish to implement one aspect or another on computers.

One further point: while none of the material in this book is deep, it is
possible to make a horrible hash of it by incorrect technique. I try to provide
the reader with suitable tools with which he can make computations easily and
happily. In particular, the ∗–operator is often underutilized because the more
generally known formulas for it are often infelicitous, and one of the purposes
of this book is to remedy this defect.

I have tried to make the pace of the book leisurely. In order to make
the book easily readable for persons who just dip in anywhere, I have often
repeated calculations rather than referring to previous occurrences. Another
reason for doing this is to familiarize the reader with certain tricks and devices,
so these are sometimes repeated rather than referring the reader back to previous
occurrences.

In the latter part of the book which deals with applications certain com-
promises had to be made to keep the size of the book within bounds. These
consist of intuitive descriptions of the manifold concept and some of the analytic
apparatus. To do otherwise would have meant including entire textbooks on
manifolds and analysis, which was not practical. I have tried to give the reader
a good intuitive description of what is going on in areas where great detail was
clearly inappropriate, for example the use of Sobolev spaces in the section on
harmonic forms. I apologize in advance to the cognoscenti in these areas for the
omission of favorite technical devices. The desire always was to make the book
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as accessible as possible to persons with more elementary backgrounds.
With regard to motivation, the book is perhaps not optimally organized.

One always has to choose between systematic exposition in which things are
logically organized and fully developed and then applied versus a style which
mixes applications in with theory so that the motivation for each development
is clear. I have gone with the first alternative in order to lay out the theory
more systematically.

No single critical feature in the exposition is my own invention. The two
most important technical tools are the increasing permutations and the duality
∗ : Λr(V ) → Λn−r(V ∗). The first was developed by Professor Alvin Swimmer
of Arizona State University. I do not know the ultimate origin of the second
item but I encountered it in the book [Sternberg]. It is my pleasure to express a
vast debt to Professor Swimmer for introducing me to Grassmann algebra and
allowing me the use of his own unpublished manuscript on the subject.
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2.1 Introduction

2.1 Introduction

In this chapter we wish to sketch the development of linear algebra. To do
this in detail would of course take a whole book. We expect that the reader has
some experience with linear algebra and we will use this chapter to remind her
of the basic definitions and theorems, and to explain the notation we will be
using. We will use standard tensor notation with superscripts and subscripts
and we will explain the rules for this.

We are greatly interested in the correlation between the objects like vectors
and the columns of numbers that represent the vector in a given basis. We are
also interested in formulas for change of basis. In order to give this chapter
at least some interest, we will lay out an interesting way of quickly deriving
these formulas, even though it is perhaps mathematically odd and may offend
the squeamish. I have noticed others using this notation in the last couple of
decades, and I do not lay any claim to novelty.
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2.2 Vector Spaces

2.2 Vector spaces

A vector space is a mathematical system involving two kinds of entities, the
scalars and the vectors. The scalars are to be thought of as numbers, and the
mathematical way of expressing this is to say that they form a field. A field is a
mathematical system with two operations + (Addition) and · (Multiplication,
generally omitted; α ·β = αβ) in which every element α has an additive inverse
−α and in which every non-zero element α has an additive inverse α−1 and in
which there is an additive identity 0 and a multiplicative identity 1 6= 0 and
which satisfies the following laws.

A1 α+ (β + γ) = (α+ β) + γ Associative law
A2 α+ 0 = 0 + α = α Identity law
A3 α+ (−α) = (−α) + α = 0 Inverse law
A4 α+ β = β + α Commutative law

M1 α(βγ) = (αβ)γ Associative law
M2 α · 1 = 1 · α = α Identity law
M3 If α 6= 0 then αα−1 = α−1α = 1 Inverse law
M4 αβ = βα Commutative law

D1 α(β + γ) = αβ + αγ Left Distributive law
D2 (β + γ)α = βα+ γα Right Distributive law

These laws are not all independent; for example D2 can be proved from
D1 and M4. They are chosen as they are for symmetry and certain other
considerations.

It is easy to prove from these laws that 0 and 1 are the unique identities
and that each element has a unique additive inverse and each x 6= 0 has a unique
multiplicative inverse.

We will generally think of the scalars as being the real or the complex
numbers in this book, but much of what we do will work of any field that is
not of characteristic 2, that is fields in which we do not have 1 + 1 = 0. Places
where difficulties may occur are noted in passing.

In using the complex numbers is often necessary to deal with the conjugate
z of z. This too can be generalized; the properties of conjugate we require are

x+ y = x+ y

x · y = x · y
x = x

xx > 0 for x 6= 0

For this to make sense, xx must be in a subset of the field which has a linear
ordering on it, just as in the complex numbers.
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Practically speaking, I suggest the reader think in terms of the fields of real
and complex numbers, and ignore the conjugate bar in the case of real numbers
or other fields of scalars.

Now we can define a Vector Space . A vector space is a mathematical
system with two sorts of objects, the field of scalars and the vectors. We will
use Greek letters α, β, γ, . . . for the scalars and Latin letters u, v, w, . . . for the
vectors. The vectors may be added u + v and vectors may be multiplied by
scalars αv. (It would be methodologically more correct to write the scalars to
the right of the vectors vα, but such is not the common usage.) There is an
additive identity 0 which is distinct from the 0 of the field of scalars but is
customarily written with the same symbol. There is an additive inverse −v for
each vector v. The addition and scalar multiplication satisfy the following laws.

V1 u+ (v + w) = (u + v) + w Associative law
V2 v + 0 = 0 + v Identity law
V3 v + (−v) = (−v) + v = 0 Inverse law
V4 v + w = w + v Commutative law

D1 α(v + w) = αv + αw Distributive law (scalars over vectors)
D2 (α+ β)v = αv + βv Distributive law (vectors over scalars)
U1 1 · v = v Unitary law

The Unitary law U1 has the job of preventing αv = 0 for all α and v, a
pathology not prevented by the other laws.

We define v−w = v+(−w). From the above basic laws for a vector space,
the following may easily be derived.

0 · v = 0 first 0 is scalar 0, second 0 is vector 0
α · 0 = 0
(−1) · v = −v
If αv = 0 then α = 0 or v = 0

It is also easy to prove that there is a unique additive identity 0 and it is the
solution w of v + w = v for any v. Also there is a unique additive inverse −v
for each v and it is the solution w of v + w = 0, and is unique.
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2.3 Bases in a Vector Space

2.3 Bases in a Vector Space

In this section we study the concepts of span, linear independence, basis,
representation in a basis, and what happens to the representation when we
change the basis. We begin with some critical definitions.

Def If v1, v2, . . . vr is a set of vectors in a vector space V , then a linear
combination of the vi is any expression of the form

λ1v1 + λ2v2 + . . .+ λrvr

Here the λi are scalars, and the indices i that look like exponents are really
just labels, like subscripts. They are called superscripts. There is a sense to
whether the labels are superscripts or subscripts, and we will eventually explain
how the position is meaningful. For the moment we want to note that in almost
all cases a sum will consist of a summation index written twice, once up, once
down. The above expression could be written

r∑

i=1

λivi

Albert Einstein discovered that one could conveniently leave off the sum sign
as long as the range of the summation, 1 to r, stays the same for the various
computations, which is normally the case. Hence Einstein suggested leaving the
summation sign off and writing just

λivi

where the summation is indicated by the presence of the same index i written
once in an up position and once in a down position. This is called the Einstein
summation convention and it is extremely convenient. We will use it throughout
the book. However, it will turn out that summing from 1 to r is a special case of
summing over a certain kind of permutation, and we will extend the summation
convention in chapter three to cover this also.

Next we want to define

Def The span of a set of vectors v1, v2, . . . , vr is the set of all linear combina-
tions

λivi

of the vi where the λi run through all elements of the field of scalars. The span

of any (nonempty) set of vectors is a subspace of the vector space V . We denote
it by [v1, v2, . . . , vr] in this chapter. We then have

Def A set of vectors {v1, v2, . . . , vr} is linearly independent if it satisfies the
following condition. If λ1, . . . , λr are scalars and

r∑

i=1

λivi = 0
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then

λ1 = λ2 = . . . = λr = 0 .
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This is the most difficult concept of elementary vector space theory to
understand, so we will talk a little about the concept. Suppose we are in R3

and suppose we have
2v1 + 3v2 − 5v3 = 0 .

Then we can solve this equation for and of the vi, for example v3 to get

v3 =
2

5
v1 +

3

5
v2 .

If we think of the way vectors are added in R3 we see that this means v3 is in
the plane determined by v1 and v2. Similarly, in R5 the equation

2v1 + 3v2 − 5v3 + 0v4 + 2v5 = 0

means that

v2 = −2

3
v1 +

5

3
v3 −

2

3
v5

so that v2 is in the space spanned by v1, v3, v5. (Notice that from this equation
we can say nothing about v4.) Conversely, if some vi is a linear combination of
vectors v1, . . . , vi−1, vi+1, . . . , vr then we will have an equation of type

λivi = 0 SUMMATION CONVENTION IN FORCE!

in which not all the λi are 0. Thus linear independence is a condition that
requires that no vi in the set {v1, . . . , vr} is a linear combination of the remaining
ones, and so each vi is not in the span of the remaining ones. Geometrically
speaking, each vi “sticks out” of the linear subspace generated by the remaining
ones.

Now we can define

Def A set of vectors {e1, . . . , en} is a basis of the vector space V if it is

1. Linearly independent and
2. Spans the space V

A vector space is said to be finite dimensional if it has a basis with a finite
number n of vectors. We have the

Theorem The number of a vectors in a basis of a finite dimensional vector
space V is the same no matter which basis is chosen.

Def The dimension of a finite dimensional vector space V is the number of
vectors in any basis of the V .

In this section the dimension of V will always be n. We now want to
consider the representation of an element of a vector space in terms of a basis.
First we have

Theorem the representation v = ξiei of v ∈ V in terms of a basis is unique.
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Proof First, v has a representation in terms of a basis since the set e1, . . . , en
spans the space V . Suppose now that it has two such representations

v = ξiei

v = ηiei

Then

0 = (ξi − ηi)ei .

Since the ei are linearly independent, ξi − ηi = 0 so ξi = ηi

We will often find it convenient to place the ξi in a column, that is an n × 1
matrix, with entries







ξ1

ξ2

...
ξn







in the field of scalars. There is always a danger of confusing this column with
the vector itself, which is analogous to confusing a shoe size, which measures a
shoe, with the shoe itself. The column vector measures the vector, where the
ei are somewhat analogous to units of measure. (This analogy should not be
pushed too far.)

Now just as we can change measuring units from inches to centimeters, we
can change the basis in a vector space.. Suppose {e1, . . . , en} are the original
basis vectors, which we will call the old basis, and that {ẽ1, . . . , ẽn} is another
basis, which we will call the new basis. then the vector v ∈ V can be written in
either basis:

v = ξiei

v = ξ̃iei

and we would like the connection between the new coordinates and {ξ̃1, . . . , ξ̃n}
the old coordinates {ξ1, . . . , ξn}. For this, we express the new basis {ẽ1, . . . , ẽn}
in terms of the old basis {e1, . . . , en}. We have

ẽ1 = α1
1e1 + α2

1e2 + . . .+ αn
1 en

ẽ2 = α1
2e1 + α2

2e2 + . . .+ αn
2 en

...

ẽn = α1
ne1 + α2

ne2 + . . .+ αn
nen

This can be nicely digested as

ẽi = αj
iej
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We can then put the (αj
i ) into a matrix as follows

C = (αj
i ) =






α1
1 α1

2 . . . α1
n

α2
1 α2

2 . . . α2
n

. . . . . . . . . . . .
αn
1 αn

2 . . . αn
n






NOTE TRANSPOSITION
FROM ABOVE ARRAY!

The matrix elements do not come in the order they do in ẽi = αj
iej ; rows there

have changed to columns in the matrix.
Some inconvenience of this sort will always occur no matter how things are

arranged, and the way we have done it is a quite common (but not universal)
convention. The matrix C will be referred to as the change of basis matrix. It
will now be easy to find the relationship between ξi and ξ̃i:

ξjej = v = ξ̃iẽi = ξ̃iαj
i ej .

Since representation in terms of a basis is unique we have

ξj = αj
i ξ̃

i

which can be written in matrix form as





ξ1

...
ξn




 = (αj

i )






ξ̃1

...
ξ̃n




 = C






ξ̃1

...
ξ̃n




 .

Notice that this is not the same as for the basis vectors. One must remember
this! Generally speaking, there are just two ways things change when bases are
changed; either like the ei (called covariant change) or like the ξj called con-
travariant change). The indices are placed up or down according to the way the
object changes. (Historically, “covariant” means “varies like the basis vectors”
and “contravariant” means “varies the other way.” It has been (repeatedly) sug-
gested that the terminology is opposite to the way it should be. However if the
terminology were opposite it would probably generate the identical suggestion.)

We now want to exploit matrix multiplication to derive the basis change
rule in a new way. We are using matrices here as a formal convenience and some
readers will find it uncomfortable. Fortunately, it will never be necessary to use
this technique of one does not like it.

First, recall that if A, B and C are matrices with the following dimensions

A = (αi
j) m× n

B = (βi
j) n× p

C = (γi
j) n× p

and C = AB, then we have

γi
k = αi

jβ
j
k SUMMATION CONVENTION IN FORCE!
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which we can also write out explicitly as a matrix equation

(γi
k) = (αi

j)(β
j
k) .

Now, using matrix multiplication we can write

v = ejξ
j = (e1, . . . , en)






ξ1

...
ξn




 .

(Here is the source of the discomfort; the first matrix has vectors for entries. If
this upsets you, remember it is only for mnemonic convenience; one can always
default back to v = ξiei.)

The change of basis in terms of the old basis {e1, . . . , en}. We have

ẽ1 = α1
1e1 + α2

1e2 + . . .+ αn
1 en

ẽ2 = α1
2e1 + α2

2e2 + . . .+ αn
2 en

...
ẽn = α1

ne1 + α2
ne2 + . . .+ αn

nen

can now be written as

(ẽ1, ẽ2, . . . , ẽn) = (e1, e2, . . . , en)








α1
1 . . . α1

n

α2
1 . . . α2

n

...
...

...
αn
1 . . . αn

n








= (e1, e2, . . . , en) C

We then have

(e1, . . . , en)






ξ1

...
ξn




 = v = (ẽ1, . . . , ẽn)






ξ̃1

...
ξ̃n




 = (e1, . . . , en) C






ξ̃1

...
ξ̃n






so that (since representation in a basis is unique)






ξ1

...
ξn




 = C






ξ̃1

...
ξ̃n




 .

This kind of shorthand is very convenient for quick derivations once one gets
used to it. It is also fairly clear that it could be made rigorous with a little
additional effort.
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2.4 The Dual Space V ∗ of V

2.4 The Dual Space V ∗ of V

We will now define the space V ∗ of linear functionals on the vector space
V , show how to represent them with a basis and calculate what happens when
the basis changes. Let F be the field of scalars of our vector space. A linear
functional on the vector space V is a function f : V → F satisfying the property

Def For all u, v ∈ V, α, β ∈ F

f(αu+ βv) = αf(u) + βf(v) .

this is equivalent to the two properties

f(u+ v) = f(u) + f(v)

f(αu) = αf(u)

The property is called linearity and f is said to be linear on V .
The set of linear functionals on V is itself a vector space, denoted by V ∗.

Addition is defined by
(
f + g

)
(v) = f(v) + g(v)

and scalar multiplication by

(
αf
)
(v) = α ·

(
f(v)

)
.

Since V ∗ is a vector space we naturally want to find a basis. Define a linear
functional ei by the rule, for v = ξjej ∈ V ,

ei(v) = ei(ξjej) = ei(ξ1e1 + . . . ξi−1ei−1 + ξiei + ξi+1ei+ 1 + . . .+ ξnen

= ξi .

It is trivial to verify that ei is a linear functional and that

ei(ej) =

{
1 if i = j
0 if i 6= j

.

This situation occurs so frequently that it is useful to have a notation for it:

Def δij =

{
1 if i = j
0 if i 6= j

.

This δij is called the Kronecker delta, after the German mathematician Leopold
Kronecker (1823-1891), and we may now write

ei(ej) = δij for ej ∈ V, ei ∈ V ∗ .
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We claim the set {e1, . . . en} is a basis of V ∗. Indeed, suppose f ∈ V ∗ and
f(ej) = λj . Then

λje
j(v) = λje

j(ξiei) = λjξ
iej(ei) = λjξ

iδij

= λjξ
j = f(ej)ξ

j = f(ξjej)

= f(v) .

Thus λje
j and f have the same value on any vector v ∈ V , and thus λje

j = f .
Hence the set {e1, . . . , en} spans V ∗. Now suppose λje

j = 0. The for any v ∈ V ,
λje

j(v) = 0. Hence we have

λje
j(ei) = 0 i = 1, . . . , n

λjδ
j
i = 0

λi = 0

Thus {e1, . . . , en} is a linearly independent set and therefore is a basis of V ∗. The
basis {e1, . . . , en} of V ∗ has a very special relationship with the basis {e1, . . . , en}
of V given by ei(ej) = δij . We define

Def The set of linear functionals {e1, . . . , en} defined above and satisfying

ei(ej) = δij

is called the dual basis of V ∗.

It will play a supremely important role in our work.

As we saw above, any f ∈ v∗ can be represented in the dual basis as

f = λje
j where λj = f(ej) .

We will represent f by the 1× n matrix

(λ1, λ2, . . . , λn) .

The value of f(v) can now be found from the representatives of f and v (in the
dual basis of V ∗ and V ) by matrix multiplication:

f(v) = (λie
j)(ξjej) = λiξ

jej(ej)

= λiξ
jδji = λiξ

i

= (λ1, . . . , λn)






ξ1

...
ξn






In tensor theory λiξ
i(summing over a repeated index) is called contraction.

Naturally we want to know how (λ1, . . . , λn) changes when we change the
basis. The productive way to approach this is via the question: when the basis
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{e1, . . . , en} is changed to {ẽ1, . . . , ẽn}, how do {e1, . . . , en} and (λ1, . . . , λn)
change? We have

λ̃i = f(ẽi) = f(αj
iej) = αj

if(ej) = αj
iλj

which shows how the (λ1, . . . , λn) changes:

(λ̃1, . . . , λ̃n) = (λ1, . . . , λn)(α
j
i ) = (λ1, . . . , λn)(α

j
i ) C

so that the representation of a linear functional changes exactly like the basis
vectors, that is, covariantly.

To find the formula for the change in the dual basis, recall that if f(ẽi) = λ̃i

then f = λ̃iẽ
i. Now

ej(ẽi = ej(αk
i ek) = αk

i e
j(ek)

= αk
i δ

j
k = αj

i

so
ej = αj

i ẽ
i

and the dual basis vectors change contravariantly. We can write this in matrix
form as 



e1
...
en



 = (αj
i )





ẽ1
...
ẽn



 = C





ẽ1
...
ẽn





which is a contravariant change.
The reader will by now have noted that when the indices are high they

count by the row, and when low they count by column. For example

first row −→
second row −→

...
...

nth row −→







e1

e2
...
en







An object with a single high index will then be written as a column and an
object with a single low index will be written as a row.

We will now introduce a method of obtaining the change of basis equations
by matrix methods. To do this we introduce an action of the linear functional
f ∈ V ∗ on a row matrix of vectors

f(v1, . . . , vr) =
(
f(v1), . . . , f(vr)

)
.

Then we have

(λ̃1, . . . , λ̃n) =
(
f(ẽ1), . . . , f(ẽn)

)
= f(ẽ1, . . . , ẽn)

= f(e1, . . . , en) C =
(
f(e1), . . . , f(en)

)
C

= (λ1, . . . , λn) C .
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This is the same result we previously obtained. Note the quiet use here of the
associativity of matrix multiplication which corresponds to the use of linearity
in the original derivation.

From this we can easily derive the the change for the ei with this method;
for f ∈ V ∗

(λ1, . . . , λn)





e1
...
en



 = f = (λ̃1, . . . , λ̃n)





ẽ1
...
ẽn



 = (λ1, . . . , λn) C





e1
...
en





and since this is true for all λ1, . . . , λn we must have





e1
...
en



 = C





ẽ1
...
ẽn



 .
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2.5 Inner Products on V

2.5 Inner Products on V

This section is a little more complex than the last two because we wish to
simultaneously accommodate the symmetric and Hermitian inner products. To
do this we require conjugation on the base field F. Conjugation commutes with
addition and multiplication

α+ β = α+ β

αβ = αβ

and we assume it to involutive
α = α

and we also assume it is one to one and onto, which has as a consequence that

α 6= 0⇒ αα 6= 0 .

The obvious example is conjugation for complex numbers; another example is
in the field of rational numbers with

√
3 adjoined, called Q[

√
3] where

α+ β
√
3 = α− β

√
3 α, β ∈ Q .

This example is important in number theory. The most important example
which is not the complex numbers is the case of an arbitrary field F where
conjugation does not have any effect; α = α. For example, this is the natural
definition for the real numbers F = R and and the rational numbers F = Q

With conjugation under control we proceed to the definition of the inner
product

Def An inner product on a vector space V is a function ( , ) : V × V → F

satisfying

1. (u, v + w) = (u, v) + (u,w)
(u+ v, w) = (u,w) + (v, w)

2. (u, αv) = α(u, v)
(αu, v) = α(u, v)

3. (v, u) = (u, v)

4. if (v, u) = 0 for all u ∈ V then v = 0 .

If conjugation does nothing, (α = α), then numbers 1 and 2 are called bilinearity.
They are also sometimes called bilinearity when conjugation has an effect, and
sometimes by a similar name like semi–linearity or Hermitian linearity. Number
3 is called symmetric when α = α and the Hermitian property when conjugation
has an effect. Number 4 is called non–degeneracy.

A slight variant of the above definition where number two is replaced by



20 CHAPTER 2. LINEAR ALGEBRA

1. (u, v + w) = (u, v) + (u,w)

2′. (u, αv) = α(u, v)

3. (αu, v) = α(u, v)

is also called an inner product. The difference is cosmetic but we must be
careful about it because one way of “exporting” an inner product on V to an
inner product on V ∗ gives 2′ on V ∗.

A special case of an inner product is one that replaces number 4 by

1. (u, v + w) = (u, v) + (u,w)

4′. u 6= 0⇒ (u, u) > 0 Positive Definite

Clearly for 4′ to function the subset {(u, u)|u ∈ V } ⊆ F must have an order
relation < on it. This is the case when F = R or when F = C and conjugation
is ordinary complex conjugation. Clearly 4′ ⇒ 4 so that this is indeed a special
case. We say when 4′ holds that we have a positive definite inner product.
(Definite here means that if u 6= 0 then (u, u) cannot be 0, so the word is a bit
redundant in this context, but customary.)

Inner products are often used to introduce a concept with some of the
properties of length into a vector space. If the inner product is positive definite
and the field has square roots of positive elements then this length has the
properties we expect of length, and it is defined by

||u|| =
√

(u, u) .

If the inner product is not positive definite but the field F is C and the inner
product has the property that (u, u) is real then we may define “length” by

||u|| =
√

|(u, u)| .

This “length” is used in the theory of relativity and though it has some unusual
properties (there are non-zero vectors whose “lengths” are 0) it is still quite
useful. However, we will not make extensive use of this length concept in this
book.

We now wish to represent the inner product in terms of matrices. We first
introduce the operation ∗ matrices:







α11 α12 · · · α1n

α21 α22 · · · α2n
...

... · · ·
...

αm1 αm2 · · · αmn







∗

=







α11 α21 · · · αm1

α12 α22 · · · αm2
...

... · · ·
...

α1n α2n · · · αmn







so that ∗ results in both the transposing and conjugation of the elements of the
matrix. (If α = α then ∗ is merely the transpose.) It is easy to check that

(AB)∗ = B∗A∗
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We now define

Def A is Hermitian ⇐⇒ A∗ = A

We remind the reader that if conjugation does nothing (α = α) then Hermitian
means simply symmetric (AT = A). We now form the matrix

(gij) =







g11 g12 · · · g1n
g21 g22 · · · g2n
...

... · · ·
...

gn1 gn2 · · · gnn







of the inner product with respect to the basis {e1, · · · , en} of V by

gij = (ei, ej) .

Note that

gji = (ej , ei) = (ei, ej) = gij

so that (gij) is a Hermitian (or symmetric) matrix. Note also that our former
convention whereby the row of a matrix is counted by an upper index is here
not applicable. For the matrix (gij) the first index counts the row and the
second index counts the column.

Let now v = ξiei and w = ηjej . We then have

(v, w) = (ξiei, η
jej)

= ξiηj(ei, ej)

= gijξiη
j

which gives the inner product (v, w) in terms of the coefficients ξi and ηj of the
vectors v and w in the basis representation and the matrix representation (gij)
of the inner product in the same basis. This will be most important for the
entire book. In matrix form we can write this as

(u, v) = ( ξ1, · · · , ξn ) (gij)






η1

...
ηn




 .

If we wish, we can compress this further by setting

G = (gij) ξ =






ξ1

...
ξn




 η =






η1

...
ηn






and then

(u, v) = η∗Gξ .
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To find what happens to (gij) under change of basis we recall

ẽi = αj
iej

so that

g̃ij = (ẽi, ẽj) = (αk
i ek, α

ℓ
jeℓ)

= αk
i α

ℓ
j(ek, eℓ) = αk

i α
ℓ
jgkl .

When the field is R and α = α this looks like a covariant index change but when
the field is C things are perturbed slightly and the first index has a conjugation.
We can write this in matrix form as

(g̃ij) = C∗(gij)C .

The transpose is necessary because in C∗ the summing index k counts rows in
(gkl) and rows in αk

i , so for the matrix multiplication to function correctly the
rows of C must be switched to columns. More explicitly we need







g̃11 g̃12 · · · g̃1n
g̃21 g̃22 · · · g̃2n
...

... · · ·
...

g̃n1 g̃n2 · · · g̃nn







=

=







α1
1 α2

1 · · · αn
1

α1
2 α2

2 · · · αn
2

...
... · · ·

...
α1
n α2

n · · · αn
n













g11 g12 · · · g1n
g21 g22 · · · g2n
...

... · · ·
...

gn1 gn2 · · · gnn













α1
1 α1

2 · · · α1
n

α2
1 α2

2 · · · α2
n

...
... · · ·

...
αn
1 α2

n · · · αn
n







We can get this basis change formula more simply by matrix methods. If v =
ξiei = ξ̃kẽk and w = ηjej = η̃ℓẽℓ then

ξ̃
∗
(g̃kl)η̃ = (v, w) = ξ∗(gij)η (2.1)

= (Cξ̃)∗(gij)(Cη̃) (2.2)

= ξ̃
∗
(C∗(gij)C)η̃ (2.3)

and since this much be true for all ξ̃ and η̃, we must have

(g̃kl) = C∗(gij)C .

Next we must investigate certain facts about the matrix (gij) of the inner
product. We use here certain facts from the theory of determinants. We will
develop these facts systematically and in detail in Chapter 2 which is indepen-
dent of the inner product concept, but probably most readers are familiar with
them already.
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The most important property of (gij) is

det(gij) 6= 0 ,

which means that it (gij) has an inverse, (which we will denote by (gkl) ). To
prove det(gij) 6= 0, let us assume det(gij) = 0. This means, as we show in
chapter 2, that the columns of (gij) are linearly dependent: ∃ξ1, . . . , ξn not all
0 for which







g11
g21
...

gn1







ξ1 +







g12
g22
...

gn2







ξ2 + · · ·







g1n
g2n
...

gnn







ξn =







0
0
...
0







or

(gij)







ξ1

ξ2

...
ξn







=







0
0
...
0







.

Now let v = ξiei and u = ηjej be any vector in V . We have

(u, v) = η∗(gij)ξ = η∗







0
0
...
0







= 0

Thus (u, v) = 0 for all u and a non-zero v, which contradicts number 4 in the
definition of an inner product.

We can extract a little more out of this result. Suppose {v1, . . . , vr} is a
set of vectors in V . Consider the determinant of the matrix of (vi, vj):

det






(v1, v1) · · · (v1, vr)
... · · ·

...
(vr , v1) · · · (vr, vr)




 .

If the vi are linearly dependent, then for some ξi not all 0 we have ξivi = 0.
This will force a linear dependence

ξ1






(v1, v1)
...

(vr, v1)




+ ξ2






(v1, v2)
...

(vr, v2)




+ · · ·+ ξr






(v1, vr)
...

(vr, vr)




 =





0
...
0





and hence the determinant is 0. If, however, {v1, . . . , vr} are linearly indepen-
dent, then W = (spanof{v1, . . . , vr}) is a subspace of V and it inherits the inner
product. However, sadly, number 4 (nondegeneracy) in the definition of inner
product may fail on W . However, if the inner product remains nondegenerate
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on W , as must happen for example if it is positive definite, then {v1, . . . , vr} is
a basis for W and by our previous result

det((vi, vj)) 6= 0 .

This determinant is called the Grassmanian of {v1, . . . , vr}. Digesting, we have

Theorem If the inner product restricted to span[v1, . . . , vr] is non-degenerate
then

{v1, . . . , vr} is linearly independent ⇐⇒ det((vi, vj)) 6= 0 .

A basic theorem in the theory of inner product spaces is the following:

Theorem Let f : V → F be a linear functional on V . Then there is a unique
u ∈ V for which, for all v ∈ V ,

f(v) = (u, v) .

Proof We will prove this using coordinates. A coordinate free proof can be
found in section 5.1. Let f = λie

i ∈ V ∗ and set ξj = gjiλi where (g
kl) = (gij)

−1.
Then setting u = ξjej we have, with v = ηjej,

(u, v) = gjkξjη
k

= gjkgjiλi η
k

= gjkgjiλiη
k

= gijgjkλiη
k

= δikλiη
k

= λkη
k

= f(v)

Thus the required u exists. If there were two such u we would have

(u1, v) = f(v) = (u2, v)

for all v ∈ V , and then

(u1 − u2, v) = 0 for all v ∈ V .

Thus u1 − u2 = 0 by non-degeneracy, and u1 = u2.

Corollary The mapping Φ(u) = f using the u and f of the last theorem is an
anti-isomorphism from V to V ∗. (Anti-isomorphism means Φ(αu) = αΦ(u).)

Thus, an inner product sets up a canonical anti-isomorphism (canonical
means it does not depend upon the basis) between V and V ∗. We can see it is
canonical because it is fully specified by the equation

(u, v) = [Φ(u)](v) .

Conversely, some persons like to define an inner product by starting with such
a canonical anti-isomorphism and defining an inner product by this formula.
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2.6 Linear Transformations

2.6 Linear Transformations

Let V and W be vector spaces with dim(V ) = n and dim(W ) = m. A
Linear Transformation or Linear Operator is a function from V to W satisfying

T (αu+ βv) = αT (u) + βT (v)

There is a huge amount of theory about linear operators in finite dimensional
spaces and we are going to present only some elementary results, and some
results without proofs. For more details the reader should consult any good
linear algebra book, for example, [Gelfand]

The Range

R[T ] = {w ∈W |(∃u ∈ V )w = T (v) ⊆W

of the linear operator is a subspace of W and we denote its dimension by

r(t) = dimR[T ] .

We define the nullspace or kernel of T as the set

N(T ) = {v ∈ V |Tv = 0} .

N(T ) is a subspace of V and we denote its dimension by

n(T ) = dimN(T ) .

The operator T̃ defined on the factor space v/N(T ) onto R[T ] is an isomorphism
and is defined by

T̃ (v +N(T ))) = T (v) .

Counting dimensions we have

n(T ) + r(T ) = dim(V ) .

Next we define theMatrix of T . Let e1, . . . , en be a basis in V and f1, . . . , fn
be a basis in W . Then there exits unique scalars τ ij so that

Tej = τ ijfi

or, more explicitly,

Te1 = τ11 f1 + τ21 f2 + · · · + τm1 fm
Te2 = τ12 f1 + τ22 f2 + · · · + τm2 fm
...

...
...

...
...

Ten = τ1nf1 + τ2nf2 + · · · + τmn fm .
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Then the matrix of T in the bases e1, . . . , en of V and f1, . . . , fn of W is

(τ ij ) =







τ11 τ12 · · · τ1n
τ21 τ22 · · · τ2n
...

...
...

...
τm1 τm2 · · · τmn







Carefully note that the matrix of T is the transpose of the array of coefficients
in Tej = τ ijfi. Much of the theory of linear operators and matrices consists in

finding bases in which (τ ij ) has some desirable form, for example upper triangular
or diagonal. This amounts to basis change in V and W . Suppose ẽ1, . . . ẽn is a
new basis in V and f̃1, . . . f̃m is a new basis in W , so that

ẽi = γj
i ej , C = (γj

i )

f̃k = ∂j
i ej , D = (∂j

i )

These basis change matrices are invertible, so let

D−1 = (ζij) .

We now have
T ẽj = τ̃ ij f̃i new bases

and we want the relationship between (τ ij) and (τ̃ ij). This is easily computed:

T (ẽk) = τ̃ ℓk f̃ℓ

T (γj
kej) = τ̃ ℓk∂

i
ℓfi

γj
kT (ej) =

γj
kτ

i
jfi =

Since representation in the basis {f1 . . . fm} is unique,

τ ijγ
j
k = ∂i

ℓτ̃
ℓ
k

which can be written in matrix form as

(τ ij )C = D(τ̃ ℓk)

so
D−1(τ ij )C = (τ̃ ℓk)

As an application of this, the Gauss reduction process gives a process whereby

(τ ij)→ Gauss Reduction→ (τ̃ ij ) in reduced row eschelon form.

Since each action in the Gauss reduction process can be accomplished by mul-
tiplication on the left by an invertible elementary matrix Ei we have

ErEr−1 · · · E2E1(τ ij ) = (τ̃ ij)
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and setting
D = (ξr . . . ξ1)

−1 = ξ−1
1 . . . ξ−1

r = (∂j
i )

we have
D−1(τ ij) = (τ̃ ij ) .

Thus there is a new basis f̃1 . . . f̃m in W where

f̃i = ∂j
i fj

relative to which T has a matrix in row echelon form. If w ∈ W is expressed in
this basis it is trivial to solve Tv = w, if it is solvable.

Example In the ei and fj bases T is represented by




1 −2 −1
−1 −1 3
5 −1 −11



 , v by





ξ1

ξ2

ξ3



 , and w by





η1

η2

η3





Then Tv = w becomes

ξ1 −2ξ2 −ξ3 = η1

−ξ1 −ξ2 +3ξ3 = η2

5ξ1 −ξ2 −11ξ3 = η3

Following the Gauss Reduction process we find D−1 to be

D−1 =





1 −2 0
−1/3 −1/3 0
−2 3 1





and

D−1





1 2 −1
−1 −1 3
5 −1 −11



 =





1 0 −7/3
0 1 −2/3
0 0 0



 .

Thus with the new basis for W and the old basis (no change) for V we have




1 0 −7/3
0 1 −2/3
0 0 0









ξ1

ξ2

ξ3



 = D−1





η1

η2

η3



 =





η̃1

η̃2

η̃3



 .

This is solvable if and only if η̃3 = −2η1 + 3η2 + 1η3 = 0 and the solution is
then 



ξ1

ξ2

ξ3



 =





η̃1

η̃2

0



+ ξ3





7/3
2/3
1





An important special case is an operator that goes from V to itself. In this
case, there is (usually) only one basis change involved, from old ei to new ẽj , so
that D = C and the basis change rule has the form

(τ̃kl ) = C−1(τ ij)C .
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It is much more difficult to arrange a ”nice” matrix by selecting the new ẽj
under these circumstances. The standard method is to use eigenvalues and
eigenvectors, and we will now give a sketch of this process and its various pitfalls.

Def An eigenvalue and eigenvector of T are a pair λ ∈ F and v ∈ V so that

Tv = λv .

Def The eigenspace of λ is N(T − λI).

This is the space of eigenvectors for the eigenvalue λ
The eigenvalues are solutions of det(T − λI) = 0. This is a polynomial

equation with coefficients in F and so the solutions may not be in F. However,
assume they are in F, which is the case for example when F = C, the complex
numbers. In this case we have n not necessarily distinct eigenvalues. Eigen-
vectors belonging to distinct eigenvalues are linearly independent, so if we do
happen to have n distinct eigenvalues then the corresponding eigenvectors form
a basis for the space.

If the eigenvalues are not distinct then the eigenvectors span the space
(that is there are still n linearly independent eigenvectors) if and only if, for
each multiple eigenvalue, we have

N((T − λI)2) = N((T − λI) .

(This condition is automatically satisfied for those λ which are not repeated,
that is λ is a simple root of det(T − λI) = 0.)

Suppose the condition to be fulfilled, and {v1, . . . , vn} to be a basis of
eigenvectors with Tvi = λivi, then with

vi = γj
i ej and C = (γj

i )

we have

C−1(τ ij ) C =







λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn







,

a diagonal matrix. This is the optimal situation. Under suboptimal conditions
where we have all the roots λ1, . . . , λn of det(T − λI) = 0 in F but not enough
eigenvectors, we may find ”generalized eigenvectors” which are in N(T − λI)k

and arrange a (τ̃ ij) consisting of blocks











λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · λ
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with ones above the diagonal. This is the Jordan Canonical Form. If the
roots λ1, . . . , λn are not in the field of scalars F then more complex blocks are
necessary. We refer the reader to advanced books on linear algebra, for example
[Malcev] for the details, which are extremely interesting.

To complete this section we would like to show how to get the change
of basis equations by matrix methods. To do this it is necessary to introduce
matrices whose elements are themselves vectors. For example, for a set of vectors
v1, . . . , vr we may create the row ”matrix” (in an extended sense of the word
matrix)

(v1, v2, . . . vr)

and it would be possible to create a column of vectors also, though not natural
to do so in the present context. We now define an ”action” of the linear operator
T on the row of vectors by

T (v1, v2, . . . vr) = (Tv1, T v2, . . . T vr) .

We then have, for the change of bases in V and W ,

(ẽ1, . . . , ẽn) = (e1, . . . , en) C
(f̃1, . . . , f̃m) = (f1, . . . , fm)D

and then

T (e1, . . . , en) = (Te1, . . . , T en)

= (τ j1fj , . . . , τ
j
nfj)

= (f1, . . . , fm)(τ ji )

and similarly

T (ẽ1, . . . , ẽn) = (f̃1, . . . , f̃m)(τ̃ lk) .

Next we put these together

T (ẽ1, . . . , ẽn) = (f̃1, . . . , f̃m)(τ̃ lk)

T (e1, . . . , en) C = (f1, . . . , fm)D (τ̃ lk)

(f1, . . . , fm)(τ ji ) C = (f1, . . . , fm)D (τ̃ lk) .

Since the f1, . . . , fm are linearly independent, we must have

(τ ji ) C = D (τ̃ lk)

and thus

D−1(τ ji ) C = (τ̃ lk) .

We now turn to the conjugate operator. Our treatment is not quite stan-
dard because we will write the matrices representing linear functionals as row
matrices.
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We also want to write f(v) in a new way to emphasize the symmetry
between V and V ∗. Henceforth, we will often write

< f, v > instead of f(v) .

If T : V →W is a linear operator, then there is a dual operator T ∗ : W ∗ → V ∗

defined by the equation

< T ∗g, v >=< g, T v > .

Let now e1, . . . en be a basis in V and e1 . . . en be the dual basis in V ∗. Notice
that, for f ∈ V ∗ and f = λje

j

< f, ei >=< λje
j, ei >= λj < ej , ei >= λjδ

j
i = λi

so that the coefficient λi of e
i in f = λje

j may be found by taking f ’s value on
ei. Now let f1, . . . fm be a basis of W and f1, . . . fm the dual basis in W ∗. We
have

T ∗f j = ρjie
i

for some coefficients ρji and we would like the relationship between the matrix

ρji ) and the matrix (τ ji ) of T in the bases e1, . . . en of V and f1, . . . fm of W .
We have

ρji = ρjkδ
k
i = ρjk < ek, ek >=< ρjke

k, ek >

= < T ∗f j, ei >=< f j, T ei >

= < f j, τki fk >= τki < f j, fk >= τki δ
j
k = τ ji .

Thus T ∗ and T have matrices which are conjugates of one another. (If one
writes the matrices representing linear functionals as columns, then there would
also be a transpose of the matrix of T involved, but this is not convenient for
us.)

We can now represent the action of T ∗ on an element of g ∈ W ∗ in the
usual way; if g = λjf

j
i and T ∗g = µke

k ∈ V , we have

µke
k = T ∗g = T ∗(λjf

j) = λjT
∗(f j) = λjτ

j
ke

k

so
µk = λjτ

j
k

or in matrix form
(µ1, . . . , µn) = (λ1, . . . , λm)(τ jk ) .

Once again, no transpose is involved because we are representing the elements
of the dual spaces W ∗ and V ∗ as row matrices. If we were to use columns for
this representation, then the above would be written






µ1
...
µn




 = (τ jk )

⊤





λ1
...

λm
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Notice that if we have v = ξiei ∈ V and g = λjf
j ∈ W ∗ then we calculate

< g, T v >= g(Tv) using matrix representatives by

(λ1, . . . , λm)(τ jk )






ξ1

...
ξn






and this is exactly what one would use to calculate < T ∗g, v >= [T ∗(g)](v);

(λ1, . . . , λm)(τ jk )






ξ1

...
ξn




 .

(P.A.M. Dirac used a notation
<g|T |v>

for < g, T v > and < T ∗g, v >, removing the need to distinguish T ∗ and T ; Tv
is then written as T |v> and T ∗g as <g|T thus indicating the proper one of T ∗

and T by the symbolism.)
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3.1 Introduction

Tensor products are not at all necessary for the understanding or use of Grass-
mann Algebra. As we shall show, it is possible to build Grassmann Algebra
using tensor products as a tool, but this is by no means necessary. If follows
that the reader may completely skip this chapter if he has no interest in tensor
products.

Then why do we include this chapter? There are several reasons which we
discuss in the following paragraphs.

First, many people, especially in differential geometry, like to build Grass-
mann Algebra from tensor products. This is, after all, a matter of taste, and
we want persons of this persuasion to feel at home in this book.

Second, for purposes of generalization in algebra, for example to modules
over a commutative ring, the method has advantages, in that tensor products
are well understood in that context.

Third, in differential geometry there are many contexts in which tensor
products are the natural mode of expression. In such a context it is natural
to want to know how tensor products and Grassmann products interact. If
Grassmann products are defined as certain combinations of tensor products,
the interaction becomes clear.

There is a mild use of permutations and their signs sgn(π) in this chapter.
Readers completely unfamiliar with permutations might profitably read a por-
tion of section 4.3 on permutations (up to increasing permutations). Section
4.3 is independent of other material and may be read at any time.
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3.2 Multilinear Forms and the Tensor Product

One way to build the Grassmann Algebra is by use of the tensor product, whose
theory we develop in this section. We will also need some of the theory of
multilinear algebra, which we construct simultaneously.

There are several ways to construct the tensor product. The one we use
here is the usual method in commutative algebra.

Let Vi, i = 1, . . . , r be vector spaces. We construct V1⊗, V2⊗, . . . ,⊗Vr, the
tensor product of the vector spaces, as follows. We form the (very large) vector
space V (V1, . . . , Vr) with basis the elements of V1×, V2×, . . . ,×Vr. Elements of
this space may be represented by

l∑

i=1

αi(v1i, v2i, . . . , vri)

where vji ∈ Vj . This space is an infinite dimensional space. We will now form
a subspace V0(V1, . . . , Vr) generated by all elements of the form

(v1, . . . , vi−1, αvi, vi+1, . . . , vr)− α(v1, . . . , vr)

(v1, .., vi−1, u+ w, vi+1, .., vr)− (v1, .., vi−1, u, vi+1, .., vr)− (v1, .., vi−1, w, vi+1, .., vr)

If one prefers a single type of generator one could define V0(V1, . . . , Vr) to be
generated by elements of the form

(v1, .., vi−1, αu+βw, vi+1, .., vr)−α(v1, .., vi−1, u, vi+1, .., vr)−β(v1, .., vi−1, w, vi+1, .., vr)

The image of (v1, . . . , vr) in the space V (V1, . . . , Vr)/V0(V1, . . . , Vr) will be
denoted by v1⊗, v2⊗, . . . ,⊗vr, and

r⊗

i=1

Vi = V1⊗, V2⊗, . . . ,⊗Vr = V (V1, . . . , Vr)/V0(V1, . . . , Vr)

will denote the Factor Space. Because of the form of the generators of V0(V1, . . . , Vr)
we will have

v1 ⊗ . . .⊗ vi−1 ⊗ αvi ⊗ vi+1 ⊗ . . .⊗, vr = α(v1 ⊗ . . .⊗ vr)

(since the first type of generator is sent to 0 by the factoring process). Also, we
will have

(v1 ⊗ . . .⊗ vi−1 ⊗ (u + w)⊗ vi+1 ⊗ . . .⊗ vr) = (v1 ⊗ . . .⊗ vi−1 ⊗ u⊗ vi+1 ⊗ . . .⊗ vr)

+ (v1 ⊗ . . .⊗ vi−1 ⊗ v ⊗ vi+1 ⊗ . . .⊗ vr)

because of the second type of generator.
The fundamental abstract principle underlying tensor products concerns

their interaction with multilinear functionals, which we now define. Let V1, . . . , Vr,W
be vector spaces over a given field F. Then
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Def Let F : V1 × . . . × Vr → W . F is multilinear if and only if it has the
following two properties:

F (v1, . . . , vi−1, αvi, vi+1, . . . , vr) = αF (v1, . . . , vr)

F (v1, . . . , vi−1, u+ w, vi+1, . . . , vr) = F (v1, . . . , vi−1, u, vi+1, . . . , vr)

+ F (v1, . . . , vi−1, w, vi+1, . . . , vr)

The connection between multilinear functionals and tensor products is
through the following basic theorem.

Theorem Given a multilinear functional F : V1 × . . . × Vr → W there exists
a UNIQUE mapping F̃ : V1 ⊗ . . . ⊗ Vr → W so that the following diagram
commutes:

V1 × . . .× Vr −→ W
ց ր

V1 ⊗ . . .⊗ Vr

Proof The elements (v1, . . . , vr) are a basis of V (V1, . . . , Vr) and the multilinear
functional F extends to a linear functional F1 : V (V1, . . . , Vr)→W by defining
F1( (v1, . . . , vr) ) = F (v1, . . . , vr) and extending by linearity. We further note
the F1 is identically 0 on V0(V1, . . . , Vr). For example,

F1( (v1, . . . αvi, . . . , vr)− α(v1, . . . , vr) ) = F1( (v1, . . . αvi, . . . , vr) )− αF1( (v1, . . . , vr) )

= F (v1, . . . αvi, . . . , vr)− αF (v1, . . . , vr)

= αF (v1, . . . vi, . . . , vr)− αF (v1, . . . , vr)

= 0

and the same for the other type of generator.
By the fundamental theorem on factor spaces we know that there is a

mapping
F̃ : V (V1 . . . Vr)/V0(V1 . . . Vr)→W

defined by
F̃ (v1 ⊗ . . .⊗ vr) = F (v1 . . . vr)

as desired.
The mapping is clearly unique, because elements of the form v1 ⊗ . . .⊗ vr

generate V1 ⊗ . . .⊗ Vr and the previous equation determines the value of F̃ on
these elements.

We will now, in s somewhat mystical manner, explain the significance of the
last theorem. This paragraph is not part of the logical development and may be
skipped with no loss of continuity. It is intended for psychological orientation
only. The purpose of the tensor product is to give a product of vectors subject
only to the bilinear restrictions

v1 ⊗ . . .⊗ αvi ⊗ . . .⊗, vr = α(v1 ⊗ . . .⊗ vr)

v1 ⊗ . . .⊗ (u+ w) ⊗ . . .⊗ vr = v1 ⊗ . . .⊗ u⊗ . . .⊗ vr

+ v1 ⊗ . . .⊗ w ⊗ . . .⊗ vr.



3.2. MULTILINEAR FORMS AND THE TENSOR PRODUCT 37

These restrictions are essential for a meaningful product of vectors, and we want
no other algebraic rules than these. For example, we do not want v1⊗. . .⊗vr = 0
unless some vi = 0. If such a thing were to happen (as indeed it may when the
vector spaces are generalized to modules, we might say we have “collapse” of
the product. But we want no collapse except that which occurs through the
action of the above two laws (which means none whatever for vector spaces.)
The theorem is supposed to guarantee this lack of collapse; if an element is 0,
then no multilinear functional applied to it is non–zero. This insures that the
tensor product is “big enough” to accommodate the action of it all multilinear
functionals. We say then that the tensor product has a universal property with
respect to multilinear functionals. In situations like vector spaces this whole
matter can be simply controlled by finding a basis, but in the relatively simple
generalization to modules the basis method is generally not available, and the
universal construction is the best tool we have. Naturally we will show the
equivalence of the two approaches in our case of vector spaces. We return now
to the systematic development.

Since V1 ⊗ . . . ⊗ Vr is a vector space we will eventually have to deal with
its dual space. Here we will define an interaction between V1 ⊗ . . . ⊗ Vr and
V ∗
1 ⊗ . . .⊗ V ∗

r which will eventually be used to show that one is the dual of the
other. We begin with an action of V (V ∗

1 . . . V ∗
r ) on V (V1 . . . Vr) defined on basis

elements (f1, . . . , f r), f i ∈ V ∗
i and (v1, . . . , vr), vi ∈ Vi by

Def (f1, . . . , f r)(v1, . . . , vr) = f1(v1)f
2(v2) . . . f

r(vr).

The action is extended from the basis elements to both spaces by linearity:

(
∑

i

αi(f1
i , . . . , f

r
i )(
∑

j

βj(v
j
1, . . . , v

j
r) =

∑

ij

αiβj(f
1
i , . . . , f

r
i )(v

j
1, . . . , v

j
r)

=
∑

ij

αiβjf
1
i (v

j
1) . . . f

r
i (v

j
r)

we now notice that the action of any element of V (V ∗
1 . . . V ∗

r ) is multilinear on
V (V1 . . . Vr). It suffices to check this on a basis:

(
∑

i

αi(f1
i , . . . , f

r
i )(
∑

j

βj(v
j
1, . . . , v

j
r) =

∑

ij

αiβj(f
1
i , . . . , f

r
i )(v

j
1, . . . , v

j
r)

=
∑

ij

αiβjf
1
i (v

j
1) . . . f

r
i (v

j
r)

Thus there is a mapping, again denoted by (f1, . . . , f r) from V1 ⊗ . . . ⊗ Vr to
the field given by

(f1, . . . , f r)(v1 ⊗ . . .⊗ vr) = f1(v1) . . . f
r(vr).

Next, we note that the mapping

Fv1⊗...⊗vr(f
1 ⊗ . . .⊗ f r)
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is bilinear; the proof being repeat of the previous one, so that there is a mapping,
again denoted by Fv1⊗...⊗vr , of V

∗
1 ⊗ . . .⊗ V ∗

r to the field given by

Fv1⊗...⊗vr (f
1 ⊗ . . .⊗ f r) = f1(v1) . . . f

r(vr).

We now regard this as a pairing between elements of a vector space and its dual.
That is, we regard Fv1⊗...⊗vr to be an element of (V ∗

1 ⊗ . . .⊗ V ∗
r )

∗, and define
the interaction by

Def (f1 ⊗ . . .⊗ f r)(v1 ⊗ . . .⊗ vr) = f1(v1) . . . f
r(vr)

which the above analysis shows is well defined.
We now ask the natural question, since V1⊗. . .⊗Vr is a vector space what is

its dimension and what is a basis for it? First, it is clear that v1⊗. . .⊗vr, vi ∈ Vi

generate V1⊗ . . .⊗Vr, and the, since vi = αj
i eij (where ei1, ei2, . . . , eini

is a basis
for Vi,) we have e1,j1⊗ . . .⊗er,jr , 1 ≤ ji ≤ ni = dimVi is also a set of generators
for V1⊗ . . .⊗Vr. So everything turns on the linear independence of all elements
of the form

e1,j1 ⊗ . . .⊗ er,jr

{
ei1, ei2, . . . , eini

basis of Vi

1 ≤ ji ≤ ni

To establish this we assume a linear dependence
∑

j1,j2...jr

αj1,j2...jre1,j1 ⊗ . . .⊗ er,jr = 0

and show the coefficients are 0. To this end, we consider the multilinear func-
tional F defined by

F (v1 . . . vr) = e1i1(v1)e
2i2(v2) . . . e

rir(vr)

where ejij is selected from the dual basis ej1, ej1, . . . , ejnj of V ∗
j . By the basic

theorem there is an
F̃ ;V1 ⊗ . . .⊗ Vr → Field

satisfying
F̃ (v1 ⊗ . . .⊗ vr) = F (v1, . . . , vr) for all vi ∈ Vi.

Applying the linear transformation F̃ to the above supposed linear dependence,
we have

∑

j1,j2...jr

αj1,j2...jr F̃ (e1j1 ⊗ . . .⊗ erjr ) = 0

∑

j1,j2...jr

αj1,j2...jre1i1(e1j1)e
2i2(e2j2) . . . e

ri1(erj1) = 0

αi1,i2...ir = 0

because in the penultimate equation all terms will be 0 except the single term
in which j1 = i1, j2 = i2, . . . jr = ir, by the definition of the dual basis. This
proves the linear independence of the indicated terms.
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From this it is clear that

dim(V1 ⊗ . . .⊗ Vr) = dim(V1) · dim(V2) · · · dim(Vr)

and that the elements
e1j1 ⊗ . . .⊗ erjr

form a basis of V1 ⊗ . . .⊗ Vr.
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3.3 Grassmann Products from Tensor Products

The intent of this section is to derive the basic laws of Grassmann algebra from
the definition of Grassmann products in terms of tensor products. We start
with a vector space V and form the rth tensor power

V r = V ⊗ . . .⊗ V
︸ ︷︷ ︸

r terms

We will now define a projection operator Π : V r → V r by the formula

Π(v1 ⊗ . . .⊗ vr) =
1

r!

∑

π∈Sr

sgn(π) vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(r)

Here, Sr is the symmetric group of all permutations of r letters and sgn(π) =
+1 or − 1 according to whether π is an even or odd permutations. (Readers
unfamiliar with these concepts may read the initial part of section 3.2 where
the exposition has been crafted to be readable at this point. Read up to the
beginning of increasing permutations and then return to this point.)

We now give some examples

Π(v1 ⊗ v2) = 1
2 (v1 ⊗ v2 − v2 ⊗ v1)

Π(v2 ⊗ v1) = 1
2 (v2 ⊗ v1 − v1 ⊗ v2) = −Π(v1 ⊗ v2)

ΠΠ(v1 ⊗ v2) = 1
2Π(v1 ⊗ v2)− 1

2Π(v2 ⊗ v1)

= 1
2Π(v1 ⊗ v2) +

1
2Π(v1 ⊗ v2) = Π(v1 ⊗ v2)

(This property, Π2 = Π, is the reason Π was referred to as a projection). Con-
tinuing now with products of three vectors

Π(v1 ⊗ v2 ⊗ v3) = 1
6 (v1 ⊗ v2 ⊗ v3 − v1 ⊗ v3 ⊗ v2 − v2 ⊗ v1 ⊗ v3
+ v2 ⊗ v3 ⊗ v1 − v3 ⊗ v2 ⊗ v1 + v3 ⊗ v1 ⊗ v2)

Π(v2 ⊗ v3 ⊗ v5) = 1
6 (v2 ⊗ v3 ⊗ v5 − v2 ⊗ v5 ⊗ v3 − v3 ⊗ v2 ⊗ v5
+ v3 ⊗ v5 ⊗ v2 − v5 ⊗ v3 ⊗ v2 + v5 ⊗ v2 ⊗ v3)

This last example has been included to make an important point; the permuta-
tions act on the slot index (the position of the element in the row of tensored
vectors) and not the index to the element that happens to be in the slot. Thus,
for a σ ∈ S3, we have

Π(vσ(1) ⊗ vσ(2) ⊗ vσ(3)) = 1
6 ( vσ(1) ⊗ vσ(2) ⊗ vσ(3) − vσ(1) ⊗ vσ(3) ⊗ vσ(2)

− vσ(2) ⊗ vσ(1) ⊗ vσ(3) + vσ(2) ⊗ vσ(3) ⊗ vσ(1)

− vσ(3) ⊗ vσ(2) ⊗ vσ(1) + vσ(3) ⊗ vσ(1) ⊗ vσ(2))

= 1
6

∑

π∈S3

sgn(π) vσ(π(1)) ⊗ vσ(π(2)) ⊗ vσ(π(3))

where is the last line π ∈ S3. Note the order of the permutations in the indices.
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We are now in a position to prove that in general Π2 = Π, so that Π is
a projection. Recall that if σ, π ∈ Sr then sgn(σπ) = sgn(σ) · sgn(π) and that
sgn(σ) = ± so [sgn(σ)]2 = +1. Also note that, since Sr is a group, if σ is a
fixed element of Sr and π runs through all the elements of Sr once each, then
σπ runs through all the elements of Sr once each. Keeping all this in mind, we
first have, for σ, π ∈ Sr

Π(vσ(1) ⊗ . . .⊗ vσ(r)) = 1
r!

∑

π

sgn(π) vσπ(1) ⊗ . . .⊗ vσπ(r)

= 1
r! [sgn(σ)]

2
∑

π

sgn(π) vσπ(1) ⊗ . . .⊗ vσπ(r)

= sgn(σ) 1
r!

∑

π

sgn(σπ) vσπ(1) ⊗ . . .⊗ vσπ(r)

= sgn(σ)Π(v1 ⊗ . . .⊗ vr).

Next we see Π2 = Π, for

ΠΠ(v1 ⊗ . . .⊗ vr) = Π( 1
r!

∑

σ∈Sr

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(r))

= 1
r!

∑

σ

sgn(σ)Π(vσ(1) ⊗ . . .⊗ vσ(r))

= 1
r!

∑

σ

[sgn(σ)]2Π(v1 ⊗ . . .⊗ vr)

= Π(v1 ⊗ . . .⊗ vr)

We now define Λr(V ), the rth exterior power of V .

Def Λr(V ) =
{
A ∈

r⊗

i=1

V | ΠA = A
}

In fact, this is simply the range of Π, since Π is a projection.
Since Λr(V ) is the image of

⊗r
i=1 V under Π, Λr(V ) is generated by ele-

ments of the form Π(v1 ⊗ . . . ⊗ vr). However, before we can go on a technical
consideration intrudes.

It is most important for us that we be able to treat the Grassmann Alge-
bras, which we are about to define, on a vector space and it’s dual space in a
wholly symmetric manner. In general, this is not completely possible, because
it requires the introduction of

√

1/r! into the formulas at this point and this
quantity may not exist in the base field being used. For most of the book we are
going to insist that the base field contain this quantity, but for the rest of this
section we are going to compromise in order to define the Grassmann Algebra
over any field. Thus we introduce a function S(α) where S : F → F from the
field into itself satisfying

S(α) · S(β) = S(αβ)

The two most common choices for S are

S(α) = α



42 CHAPTER 3. TENSOR PRODUCTS OF VECTOR SPACES

or

S(α) =
√
α

and after the end of this section we will definitely settle on the second alternative.
The first alternative is useful because it is applicable to any field, but as we
mentioned it makes it impossible to maintain a complete symmetry between a
vector space and its dual.

Having, in any specific circumstance, chosen an S-function, we can now
proceed to define the wedge or exterior product.

Def

v1 ∧ . . . ∧ vr = S(r!)Π(v1 ⊗ . . .⊗ vr)

=
S(r!)

r!

∑

σ∈Sr

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(r)

These elements clearly generate Λr(V ).
It is worth noting at this point that if the number of elements in the product

v1 ∧ . . . ∧ vr exceeds the characteristic of the field, the exterior product will be
0 for most choices of S.

Next note that

vσ(1) ∧ . . . ∧ vσ(r) = S(r!)Π(vσ(1) ⊗ . . .⊗ vσ(r))

= sgn(σ)S(r!)Π(v1 ⊗ . . .⊗ vr)

= sgn(σ)v1 ∧ . . . ∧ vr

We now wish to define a product

∧ : Λr(V )× Λs(V )→ Λr+s(V ).

We do this as follows

Def For f ∈ Λr(V ) and g ∈ Λs(V )

f ∧ g =
S((r + s)!)

S(r!s!)
Π(f ⊗ g)

To clarify this definition, we prove first that for f ∈ ⊗r
i=1(V ) and g ∈

⊗s
i=1(V ) we have

Π(f ⊗ g) = Π(Πf ⊗ g) = Π(f ⊗Πg) = Π(Πf ⊗Πg).

It suffices to prove the first equality where f and g are generators. Let f =
v1 ⊗ . . .⊗ vr, g = vr+1 ⊗ . . .⊗ vr+s. Then

Π(Πf ⊗ g) = 1
r!Π
[
(
∑

π∈Sr

vπ(1) ⊗ . . .⊗ vπ(r))⊗ vπ(r+1) ⊗ . . .⊗ vπ(r+s)

]
.
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Now define π̃ ∈ Sr+s for π ∈ Sr by the equations

π̃(i) =

{

π(i) if i = 1, . . . , r
i if i = r + 1, . . . , r + s

Then, clearly, sgn π̃ = sgnπ, and

Π(Πf ⊗ g) = 1
r!Π
{∑

π∈Sr

sgn(π̃) vπ̃(1) ⊗ . . .⊗ vπ̃(r) ⊗ vπ̃(r+1) ⊗ . . .⊗ vπ̃(r+s)

}

= 1
r!

1
(r+s)!

∑

π∈Sr

∑

σ∈Sr+s

sgn(σ)sgn(π̃) vπ̃σ(1) ⊗ . . .⊗ vπ̃σ(r) ⊗ . . .⊗ vπ̃σ(r+s)

= 1
r!

1
(r+s)!

∑

π∈Sr

∑

σ∈Sr+s

sgn(π̃σ)vπ̃σ(1) ⊗ . . .⊗ vπ̃σ(r+s)

= 1
r!

∑

π∈Sr

Π(v1 ⊗ . . .⊗ vr+s)

= Π(v1 ⊗ . . .⊗ vr+s)

= Π(f ⊗ g)

The equality Π(f ⊗ g) = Π(f ⊗ Πg) is proved in the same way and the last
equality follows from the first two.

We may now compute f ∧ g when f and g are generators of Λr(V ) and
Λs(V ). For we have

f = v1 ∧ . . . ∧ vr = S(r!)Π(v1 ⊗ . . .⊗ vr)

g = vr+1 ∧ . . . ∧ vr+s = s(s!)Π(v1+1 ⊗ . . .⊗ vr+s)

and thus

f ∧ g =
S((r + s)!)

S(r!) · S(s!)Π(S(r!)Π(v1 ⊗ . . .⊗ vr)⊗ S(s!)Π(vr+1 ⊗ . . .⊗ vr+s)

= S((r + s)!)Π((v1 ⊗ . . .⊗ vr)⊗ (vr+1 ⊗ . . .⊗ vr+s)

= S((r + s)!)Π(v1 ⊗ . . .⊗ vr ⊗ vr+1 ⊗ . . .⊗ vr+s)

= v1 ∧ . . . ∧ vr ∧ vr+1 ∧ . . . ∧ vr+s

From the above we separate out specifically

Corollary For elements v1 ∧ . . . ∧ vr ∈ Λr(V ) and vr+1 ∧ . . . ∧ vr+s ∈ Λs(V )

(v1 ∧ . . . ∧ vr) ∧ (vr+1 ∧ . . . ∧ vr+s) = v1 ∧ . . . ∧ vr ∧ vr+1 ∧ . . . ∧ vr+s

Based on the above, we are now in a position to prove the basic Axioms of
Grassmann Algebra. We refer to these results as Axioms because they can be
used to build the remainder of the theory of Grassmann Algebra on an axiomatic
basis with no further use of the tensor product. This is more elegant than falling
back on the tensor definition from time to time.

Axiom 1 The Grassmann product is associative.
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Proof Let f = v1 ∧ . . . ∧ vr ∈ Λr(V ), g = vr+1 ∧ . . . ∧ vr+s ∈ Λs(V ) and
h = vr+s+1 ∧ . . . ∧ vr+s+t ∈ Λt(V ). Then, utilizing the previous equation,

(f ∧ g) ∧ h =
[
(v1 ∧ . . . ∧ vr) ∧ (vr+1 ∧ . . . ∧ vr+s)

]
∧
[
vr+s+1 ∧ . . . ∧ vr+s+t

]

=
[
v1 ∧ . . . ∧ vr ∧ vr+1 ∧ . . . ∧ vr+s

]
∧
[
vr+s+1 ∧ . . . ∧ vr+s+t

]

= v1 ∧ . . . ∧ vr ∧ vr+1 ∧ . . . ∧ vr+s ∧ vr+s+1 ∧ . . . ∧ vr+s+t

and clearly we will also have f ∧ (g ∧ h) equal to the same value, so that

(f ∧ g) ∧ h = f ∧ g(∧h)

and the Grassmann Algebra is associative on its generators, and hence associa-
tive.

Axiom 2 The Grassmann Product is multilinear:

v1∧. . .∧(α1u1+α2u2∧. . .∧vr = α1(v1∧. . .∧u1∧. . .∧)+α2(v2∧. . .∧u2∧. . .∧)

Proof This is trivially true because the tensor product is multilinear and Π is
a linear transformation.

Axiom 3 For any v ∈ V , v ∧ v = 0

Proof

v1 ∧ v2 = S(2!)Π(v1 ⊗ v2)

=
S(2!)

2!

∑

π∈S2

sgn(π)vπ(1) ⊗ vπ(1)

=
S(2!)

2!
(v1 ⊗ v2 − v2 ⊗ v1)

Hence, substituting v1 = v2 = v,

v ∧ v =
S(2!)

2!
(v ⊗ v − v ⊗ v)

= 0

We next formulate Axiom 4a. Axiom 4 comes in two equivalent forms, and
in this section we introduce only 4a. We will discuss the equivalent form 4b
later.

To formulate Axiom 4a, we must introduce the concept of an alternating
multilinear functional, which is a multilinear functional satisfying one additional
property.

Def A multilinear functional is alternating if and only if

F (v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vr) = −F (v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vr)

for i = 1, . . . , r − 1.
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Note The condition for a multilinear functional to be alternating is that inter-
changing two adjacent arguments changes the sign of the functional. In fact, it
is easily proved that interchanging any two arguments, adjacent or not, changes
the sign of the functional. Since we go into this matter in detail in section 4.3
we will not discuss it further here, but the reader is urged to try a couple of
examples to see how it works.

Axiom 4a Given an alternating multilinear functional F (v1, . . . , vr), there ex-
ists a linear functional F̃ : Λr(V )→W so that the following diagram commutes:

V1 × . . .× Vr
F
−→ W

Πց ր F̃
Λr(V )

which is to say that F̃ (v1 ∧ . . . ∧ vr) = F (v1, . . . , vr) for every v1, . . . , vr ∈ V .

Proof This is easy. Since F is multilinear there is a multilinear functional
F1:V ⊗ . . .⊗V → W satisfying F1(v1⊗ . . .⊗vr) = F (v1, . . . , vr). Since Λ

r(V ) ⊆
V ⊗. . .⊗V , there is a restriction of F1 to F̃ : Λr(V )→W which naturally remains
linear. The reader will easily convince himself that for any permutation the
alternating property implies that

F (vσ(1), . . . , vσ(r)) = sgn(σ)F (v1, . . . , vr)

since sgn(σ) is equal to −1 raised to a power equal to the number of adjacent in-
terchanges necessary to restore the sequence σ(1), σ(2), . . . , σ(r) to the sequence
1, . . . , r (This is handled more exhaustively in section 3.2) Hence

F̃ (v1 ∧ . . . ∧ vr) = F1(v1 ⊗ . . .⊗ vr)

= F1

(
1
r!

∑

σ∈Fr

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(r)
)

= 1
r!

∑

σ∈Fr

sgn(σ)F1(vσ(1) ⊗ . . .⊗ vσ(r))

= 1
r!

∑

σ∈Fr

sgn(σ)F (vσ(1), . . . , vσ(r))

= 1
r!

∑

σ∈Fr

sgn(σ)sgn(σ)F (v1, . . . , vr)

= 1
r!

∑

σ∈Fr

F (v1, . . . , vr)

= F (v1, . . . , vr)

as desired.
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4.1 Introduction

In this chapter we develop the elementary theory of Grassmann Algebra on an
axiomatic basis. The axioms we will use were proved as theorems in Chapter 2
on the basis of the tensor product, but we do not wish tensor products to play a
role in the systematic development of Grassmann Algebra in this chapter, and
therefore base our development on the axioms. This has the effect of breaking
the theory into modular units.

As we will see, determinants appear naturally as the coefficients in Grass-
mann Algebra, and this accounts for the tendency of determinants to appear
sporadically throughout mathematics. As a general rule, the presence of a de-
terminant signals an underlying Grassmann Algebra which is seldom exploited
to its full potential.

There is an alternate way of realizing the Grassmann Algebra by building it
on Cartesian products in analogy to the way tensor products are built as factor
spaces of the vector space generated by V1, . . . , Vr. There are some cumbersome
features to this method but many people like to do it this way and it is important
that it can be done, so we will lay out this construction in detail in the last
section of this chapter. This may be read immediately after section 4.2 .
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4.2 Axioms

Let V be a vector space over a field F. The Grassmann algebra of V , denoted
by Λ(V ) or ΛV , is the linear span (over F) of products

v1 ∧ v2 ∧ . . . ∧ vr

where vi ∈ V . Each term in a member of ΛV has a degree, which is the number
of vectors in the product: deg(v1∧v2∧ . . .∧vr) = r We agree that, by definition,
the elements of the field F will have degree equal to 0. We subject the product
to the following laws or Axioms.

Axiom 1 The product is associative: for 1 < r < s < t
(
(v1 ∧ . . . ∧ vr) ∧ (vr+1 ∧ . . . ∧ vs)

)
∧ (vs+1 ∧ . . . ∧ vt)

= (v1 ∧ . . . ∧ vr) ∧
(
(vr+1 ∧ . . . ∧ vs) ∧ (vs+1 ∧ . . . ∧ vt)

)

so that each of the above terms may be written

v1 ∧ . . . ∧ vr ∧ vr+1 ∧ . . . ∧ vs ∧ vs+1 ∧ . . . ∧ vt.

Axiom 2 The product is bilinear:

v1 ∧ . . . ∧ vr−1 ∧ (α1u1 + α2u2) ∧ vr+1 ∧ . . . ∧ vs
= α1(v1 ∧ . . . ∧ vr−1 ∧ u1 ∧ vr+1 ∧ . . . ∧ vs)
+α2(v1 ∧ . . . ∧ vr−1 ∧ u2 ∧ vr+1 ∧ . . . ∧ vs)

for any r, s with 1 < r < s.

Axiom 3 The product is very nilpotent:

v ∧ v = 0 for all v ∈ V

As a consequence of Axiom 3 and bilinearity, we have

(v + w) ∧ (v + w) = v ∧ v + v ∧ w + w ∧ v + w ∧ w

0 = 0 + w ∧w + w ∧ v + 0

so that
v ∧ w = −w ∧ v for all v, w ∈ V .

We will refer to this as the anti-commutativity property.
We remark that Axiom 3 is preferable to the equation v∧w = −w∧v as an

axiom because, for a field of characteristic 2, the axiom implies the equation but
not conversely. For any characteristic other than 2, the axiom and the equation
v ∧ w = −w ∧ v are equivalent.

The terms of the Grassmann Algebra can always be rewritten into sums of
terms of homogeneous degree; for example

v1 + 2v1 ∧ v2 + v2 ∧ v3 + v4 − 3v1 ∧ v3 ∧ v4 + 7
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can be rewritten as

7 + (v1 + v4) + (2v1 ∧ v2 + v2 ∧ v3) + (−3v1 ∧ v3 ∧ v4)

with terms of degree 0,1,2 and 3. The Grassmann Algebra is a vector space and
the set of products of degree r form a subspace Λr(V ).

Up to now, there has been nothing to prevent the complete or partial
“collapse” of the Grassmann Algebra; for example the axioms would all be true if
v∧w = 0 for all v, w ∈ V , or this might be true for some v, w and not others. We
wish this phenomenon to be reduced to a minimum. There are two equivalent
ways to do this. The first form of Axiom 4 is methodologically preferable because
it does not involve a basis, whereas the second form is psychologically preferable
because the content is clear. We will eventually prove the two are equivalent.

To formulate Axiom 4 in a basis free way, we define the concept of an
alternating multilinear functional. (We did this in chapter 2 also, but we want
to keep this chapter independent of chapter 2.)

Def Let V and W be vector spaces. A function

G : V ⊗ V ⊗ . . .⊗ V
︸ ︷︷ ︸

s factors

→W

is an alternating multilinear functional if and only if

G(v1, . . . , vr−1(α
1u1 + α2u2), vr+1, . . . , vs) = α1G(v1, . . . , vr−1, u1, vr+1, . . . , vs)

+ α2G(v1, . . . , vr−1, u2, vr+1, . . . , vs)

G(v1, . . . , vr, vr+1, . . . , vs) = −G(v1, . . . , vr+1, vr, . . . , vs).

We may now formulate Axiom 4 quite simply.

Axiom 4a Let G(v1, . . . , vr) be an alternating multilinear function from V ⊗
. . .⊗ V to W . Let Φ be the map Φ : V ⊗ . . .⊗ V → Λr(V ) given by

Φ(v1, . . . , vr) = v1 ∧ . . . ∧ vr

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G̃: Λr(V )→W so that the following diagram commutes:

V1 × . . .× Vn
G−→ W

Φց րG̃

Λr(V )

The commutativity of the the diagram says that G = G̃ ◦ Φ.
In section 3.2 we explained how a similar condition forced tensor products

to be ”as large as possible.” Axiom 4 insured the the Grassmann Algebras is as
large as possible, consistent with Axioms 1,2,3. This same end can be achieved
more simply but less elegantly by introducing a basis into V. Let e1, . . . , en be
a basis for V . Then we may achieve the same end by the axiom



4.2. AXIOMS 51

Axiom 4b The set of all products

ei1 ∧ . . . ∧ eir

{
1 ≤ r ≤ n
i1 < i2 . . . < ir

is linearly independent.

The equivalence of Axioms 4a and 4b is not immediately obvious but will
be demonstrated in due course.

We now address the point that the expressions of Axiom 4b form a basis for
Λ(V ). The question of involves only the spanning property of a basis; line inde-
pendence is guaranteed by Axiom 4b. It is sufficient to show that expressions
of the form

ei1 ∧ . . . ∧ eir r fixed, i1 < i2 . . . < ir

span Λr(V ). To see this, let v1, . . . , vr be given in terms of the basis by

vj = αi
jei

Then by Axioms 1–3,

v1 ∧ . . . ∧ vr = αi1
1 αi2

2 . . . αir
r ei1 ∧ . . . ∧ eir .

The product on the right hand side may be rearranged by the anticommutative
property so that the indices increase in each term (with possible sign changes).
This shows that v1∧ . . .∧vr is a linear combination of the terms of the specified
form, proving that these terms span Λr(V )

By taking the direct sum of the vector spaces Λr(V ) we get an algebra. If
A ∈ Λr(V ) and B ∈ Λs(V ) then A ·B ∈ Λr+s(V ). To complete the Grassmann
Algebra, however, we must put in the basement. We define Λ0(V ) to be the
Field of constants, and we define for α ∈ Λ0(V ) and A ∈ Λr(V ), the Grassmann
product α ∧ A to be be simply scalar multiplicaton αA.

The reader may be bothered by the fact that multiplication α∧β for α, β ∈
Λ0(V ) = F is not anticommutative. This gives us an opportunity to point out
that while multiplication of elements of V is anticommutative, v2∧v1 = −v1∧v2,
this does not hold in general for the Grassmann Algebra. Indeed, consider in
a four dimensional space the element A = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(V ). Then we
have

A ∧ A = (e1 ∧ e2 + e3 ∧ e4) ∧ (e1 ∧ e2 + e3 ∧ e4)

= (e1 ∧ e2) ∧ (e1 ∧ e2) + (e1 ∧ e2) ∧ (e3 ∧ e4)

+ (e3 ∧ e4) ∧ (e1 ∧ e2) + (e3 ∧ e4) ∧ (e3 ∧ e4)

= 0 + (e1 ∧ e2) ∧ (e3 ∧ e4) + (e3 ∧ e4) ∧ (e1 ∧ e2) + 0

= e1 ∧ e2 ∧ e3 ∧ e4 + e3 ∧ e4 ∧ e1 ∧ e2

= e1 ∧ e2 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e3 ∧ e4

= 2 e1 ∧ e2 ∧ e3 ∧ e4

where we have used e3 ∧ e4 ∧ e1 ∧ e2 = −e3 ∧ e1 ∧ e4 ∧ e2 = +e1 ∧ e3 ∧ e4 ∧ e2 =
−e1∧e3∧e2∧e4 = +e1∧e2∧e3∧e4. Thus, while it is true that if A = v1∧. . .∧vr
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then A ∧ A = 0, this need not be true when A is not a pure product, or when
A ∈ Λ0(V ).
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4.3 Permutations and Increasing Permutations

For efficient computations in the Grassmann Algebra and for use in the theory
of determinants we must develop some efficient notations for permutations. We
regard a permutation as a one to one onto function from the set 1, . . . , r onto
itself. We can diagram this by a symbol that puts the ordered pairs of the
permutation function in vertical columns:

σ =

(
1 2 3 4 5
5 3 2 1 4

)

When the top row of the matrix (the domain) is arranged in increasing order
it is clearly redundant. However, omitting it would clash with another popular
way of writing permutations, (cycle notation, which we will not use,) and this
way of writing may also have slight benefits in clarity. Also we have the option
of rearranging the upper row, for example,

σ =

(
4 3 2 5 1
1 2 3 4 5

)

which can occasionally be useful. In either case, the symbol represents the
function σ whose values are:

σ(1) = 5 σ(2) = 3 σ(3) = 2
σ(4) = 1 σ(5) = 4

All the permutations of n letters (called permutations of order n) form a
group, the symmetric group Sn. If we use the σ above and introduce here:

τ =

(
1 2 3 4 5
2 1 4 5 3

)

we can then form the permutation

στ =

(
1 2 3 4 5
5 3 2 1 4

)(
1 2 3 4 5
2 1 4 5 3

)

=

(
1 2 3 4 5
3 5 1 4 2

)

The permutations are here composed as functions would be; first τ and then σ.
Thus we have στ(4) = σ(5) = 4. It is most important to understand the order
used here, especially since some people use the opposite order.

It is easy to see that the permutations form a group. Since they compose
like functions and function composition is associative, we know the composition
is associative. The identity is clearly

(
1 2 3 4 5
1 2 3 4 5

)

and the inverse of σ can be found by rearranging σ:

σ =

(
1 2 3 4 5
5 3 2 1 4

)

=

(
4 3 2 5 1
1 2 3 4 5

)
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and then ”swapping the rows”:

σ−1 =

(
1 2 3 4 5
4 3 2 5 1

)

.

The order of the group Sn is clearly n!, for there are n choices for σ(1), and
then n − 1 choices for σ(2), n − 2 choices for σ(3), . . ., and finally 1 choice for
σ(1), giving a total of n · (n− 1) · (n− 2) . . . 1 = n! choices in total.

The next concept we introduce is the sign of a permutation which is abso-
lutely critical in all that follows. Let f(x1, . . . , xn) be given by

f(x1, . . . , xn) =
∏

1≤i<j≤r

(xj − xi)

Then define σf , for σ ∈ Sn, by

Def (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

and then define sgn(σ) by

Def (σf)(x1, . . . , xn) = sgn(σ) · f(x1, . . . , xn).

This makes sense, and sgn(σ) = ±1, because

(σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

=
∏

1≤i<j≤n

(xσ(j) − xσ(i))

= sgn(σ) · f(x1, . . . , xn)

and the product in the second line contains the same entries (xj − xi) as the
product for f except for possible reversals of order. Each reversal of order
contributes a (−1) to the product, so the final result is the same as the original
product except possibly for sign.

We are now going to look at an example so there will be no confusion about
the way products of permutations act on f . We regard σ as acting on f to give
σf , and τ as acting similarly on σf to give τ(σf) which ideally should be (τσ)f .
To be concrete, let

σ =

(
1 2 3 4
2 3 4 1

)

and τ =

(
1 2 3 4
2 1 3 4

)

so that

τσ =

(
1 2 3 4
1 3 4 2

)

Now the action of σ on the arguments of f is for all arguments except the first
to march forward in the line, and for the last to go to the end of the line:

(σf)(x1, x2, x3, x4) = f(xσ(1), xσ(1), xσ(4), . . . , xσ(4)) = f(x2, x3, x4, x1)
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and similarly τ reverses the first two arguments of f :

(τf)(x1, x2, x3, x4) = f(x2, x1, x3, x4).

From this we can see that

(τ(σf))(w, x, y, z) = (σf)(x,w, y, z) = f(w, y, z, x).

On the other hand,

((τσ)f)(x1, x2, x3, x4) = f(xτσ(1), xτσ(1), xτσ(4), . . . , xτσ(4)) = f(x1, x3, x4, x2)

so that, making the substitution,

((τσ)f)(w, x, y, z) = f(w, y, z, x)

which coincides with what we found above for (τ(σf))(w, x, y, z). Hence we have
shown that indeed we have τ(σf) = (τσ)f as we desired. We have gone into
this in such detail because experience shows the likelihood of confusion here.

To return to the general case then, we have

(τ(σf)(x1 , . . . , xn) = (σf)(xτ(1), . . . , xτ(n))

= f(xτ(σ(1)), . . . , xτ(σ(n)))

= f(x(τσ)(1), . . . , x(τσ)(n))

= ((τσ)f)(x1 , . . . , xn).

The surprising thing here is the way the σ jumps inside the τ(·) in the second
line, but this is the way it must work, because σ rearranges the arguments
according to their slot, not according to what is in them. Hence σ must operate
on the slot argument inside the τ(·). If the reader finds this confusing, he should
compare the general calculation with the example above.

With these details under control, we now have, using τ(σf) = (τσ)f ,

[sgn(τσ)]f = (τσ)f

= τ(σf)

= τ(sgn(σ)f)

= sgn(σ) · (τf)
= sgn(σ) · sgn(τ) · f

so we have
sgn(τσ) = sgn(τ) · sgn(σ)

and sgn is a homomorphism of Sn onto {1,−1} regarded as a multiplicative
group.

Next note that since σ · σ−1 = identity, we have sgn(σ) · sgn(σ−1) =
sgn(identity) = 1. Thus we have

sgn(σ−1) = sgn(σ)
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While the foregoing definition of sgn(σ) is elegant and useful for theory,
we will need a more convenient method for the calculation of sgn(σ) for actual
cases. To this end we first note that a permutation that has the form

σr =

(
1 2 3 . . . r − 1 r r + 1 r + 2 . . . n
1 2 3 . . . r − 1 r + 1 r r + 2 . . . n

)

has sgn(σr) = −1. Indeed, in the function f used to define sgn(σ), the terms
(xi−xr) and (xi−xr+1) will be exchanged into one another by σr for r+2 ≤ i ≤ n
and similarly for the terms (xr − xi), (xr+1 − xi), 1 ≤ i ≤ r − 1. The only real
effect will be through the term xr+1−xr which will be transformed into xr−xr+1,
and this one sign reversal gives sgn(σr) = −1.

Next we are concerned with the permutation

σij =

(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
1 . . . i− 1 j i+ 1 . . . j − 1 i j + 1 . . . n

)

which exchanges the ith and jth entries. The permutations σi, σi+1, . . . , σj−1

will successively move i to positions i+1, i+2, . . . , j forcing j into position i−1.
Then permutation σj−2, σj−3, . . . , σi will back up j to positions j−2, j−3, . . . , i,
completing the exchange of i and j. The permutations strung out in the proper
order are

σij = σi . . . σj−3σj−2
︸ ︷︷ ︸

j−i−1 terms

·σj−1 . . . σi+1σi
︸ ︷︷ ︸

j−i terms

so that

sgn(σij) = sgn(σi) . . . sgn(σj−3) sgn(σj−2) · sgn(σj−1 . . . sgn(σi+1) sgn(σi)

= (−1)j−i−1 · (−1)j−i = −12(j−i)−1 = −1.

Finally, for any permutation σ

σ′ = σσij =

(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n

σ(1) . . . σ(i − 1) σ(i) σ(i + 1) . . . σ(j − 1) σ(j) σ(j + 1) . . . σ(n)

)

×
(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
1 . . . i− 1 j i+ 1 . . . j − 1 i j + 1 . . . n

)

=

(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n

σ(1) . . . σ(i− 1) σ(j) σ(i + 1) . . . σ(j − 1) σ(i) σ(j + 1) . . . σ(n)

)

so that σ′ is almost σ but the ith and jth entries are interchanged. Thus

sgn(σ′) = sgn(σ) · sgn(σij)

sgn(σ′) = −sgn(σ)

Thus, if any two elements of a permutation are interchanged, it reverses the
sign of the permutation. Now any permutation can, by means of interchanges
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(of adjacent elements if you like), be brought back to the identity permutation,
whose sign is +1. Hence, the sign of the permutation is equal to the number of
interchanges which return it to the identity. Here are some examples.

σ =

(
1 2 3 4 5
2 5 4 3 1

)

→
(
1 2 3 4 5
2 1 4 3 5

)

→
(
1 2 3 4 5
1 2 4 3 5

)

→

→
(
1 2 3 4 5
1 2 3 4 5

)

or, using only adjacent interchanges, which takes longer

σ =

(
1 2 3 4 5
2 5 4 3 1

)

→
(
1 2 3 4 5
2 4 5 3 1

)

→
(
1 2 3 4 5
2 4 3 5 1

)

→

→
(
1 2 3 4 5
2 4 3 1 5

)

→
(
1 2 3 4 5
2 4 1 3 5

)

→
(
1 2 3 4 5
2 1 4 3 5

)

→

→
(
1 2 3 4 5
1 2 4 3 5

)

→
(
1 2 3 4 5
1 2 3 4 5

)

so that
sgn(σ) = (−1)3 = (−1)7.

Thus we can find the sign of a permutation by counting the number of (possibly
but not necessarily) adjacent interchanges necessary to return the permutation
to the identity and raising (−1) to that power. The various ways of doing the
interchanges will always produce the same final result.

Having dealt with these preliminary general considerations, we turn our
attention to the increasing permutations. The reason for our interest in these
will appear shortly.

Def Let

σ =

(
1 2 3 . . . r r + 1 . . . n

σ(1) σ(2) σ(3) . . . σ(r) σ(r + 1) . . . σ(n)

)

Then σ is an increasing r−permutation if and only if

σ(1) < σ(2) < σ(3) < . . . < σ(r)

and
σ(r + 1) < σ(r + 2) < . . . < σ(n).

We will denote the set of all increasing r−permutations by Sn,r and we will use
the notation

(
1 2 3 . . . r

σ(1) σ(2) σ(3) . . . σ(r)

∣
∣
∣
∣

r + 1 . . . n
σ(r + 1) . . . σ(n)

)

Here are some examples:
(
1 2
3 5

∣
∣
∣
∣

3 4 5
1 2 4

) (
1 2 3
1 2 4

∣
∣
∣
∣

4 5
3 5

) (
1 2 3
2 4 6

∣
∣
∣
∣

4 5 6
1 3 5

)
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(
1
3

∣
∣
∣
∣

2 3 4 5
1 2 4 5

) (
1 2 3 4
1 2 4 5

∣
∣
∣
∣

1
3

)

Our interest in increasing permutations is due to their role acting as the
indices for the basis elements in the Grassmann Algebra.

For example, the basis elements for Λ3(V ) where V is a vector space of
dimension 5 with basis {e1, e2, e3, e4, e5} are

e1 ∧ e2 ∧ e3 e1 ∧ e2 ∧ e4 e1 ∧ e2 ∧ e5 e1 ∧ e3 ∧ e4

e1 ∧ e3 ∧ e5 e1 ∧ e4 ∧ e5 e2 ∧ e3 ∧ e4 e2 ∧ e3 ∧ e5

e2 ∧ e4 ∧ e5 e3 ∧ e4 ∧ e5

and we will write these as

eσ = eσ(1) ∧ eσ(2) ∧ eσ(3)

where σ ∈ S5,3. The corresponding σ are given by:

(
1 2 3
1 2 3

∣
∣
∣
∣

4 5
4 5

) (
1 2 3
1 2 4

∣
∣
∣
∣

4 5
3 5

) (
1 2 3
1 2 5

∣
∣
∣
∣

4 5
3 4

) (
1 2 3
1 3 4

∣
∣
∣
∣

4 5
2 5

)

(
1 2 3
1 3 5

∣
∣
∣
∣

4 5
2 4

) (
1 2 3
1 4 5

∣
∣
∣
∣

4 5
2 3

) (
1 2 3
2 3 4

∣
∣
∣
∣

4 5
1 5

) (
1 2 3
2 3 5

∣
∣
∣
∣

4 5
1 4

)

(
1 2 3
2 4 5

∣
∣
∣
∣

4 5
1 3

) (
1 2 3
3 4 5

∣
∣
∣
∣

4 5
1 2

)

This is the method we will use to index basis elements of the Grassmann
Algebra for the remainder of the book. Although it may look cumbersome at
first, it is in fact quite efficient and elegant in practise. The indexing problem
has always caused difficulty in the use of Grassmann Algebra and this method
essentially removes the difficulty. It has been known for a long time, but the
knowledge has not been widely disseminated, and it is greatly superior to the
many horribly messy systems used when people invent an indexing system on
site, so to speak.

We note in passing that an alternate way of forming the basis of Λr(V )
which has certain advantages is to use

sgn(σ) eσ(1) ∧ . . . ∧ eσ(r) instead of eσ(1) ∧ . . . ∧ eσ(r)

However, we will not do this in this book except in certain special circumstances.
Note that when σ(1), . . . , σ(r) are known for σ ∈ Sn,r, then σ(r+1), . . . , σ(n)

are uniquely determined. Since there are n elements to choose from and r are
chosen to form σ, we see that Sn,r contains

(
n
r

)
= n!

r!(n−r)! elements. Thus

The dimension of Λr(V ) is

(
n

r

)
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We note that the scalers Λ0 are one-dimensional; dimΛ0 = 1. Thus the total
dimension of the entire Grassmann Algebra is

n∑

r=0

dimΛr(V ) = 1 +

(
n

1

)

+

(
n

2

)

+ . . .

(
n

n− 1

)

+

(
n

n

)

= (1 + 1)n

= 2n

Our next project is determining the sign of an increasing permutation which
is considerably easier than determining the sign of an arbitrary permutation.
First it is clear that σ(j) ≥ j for j ≤ r, because in

(
1 2 3 . . . r

σ(1) σ(2) σ(3) . . . σ(r)

∣
∣
∣
∣

r + 1 . . . n
σ(r + 1) . . . σ(n)

)

we have σ(1) ≥ 1 and σ(1) < σ(2) < . . . < σ(r). Consider now σ(r). It is in
position r, and we would like it returned to position σ(r). This requires σ(r)−r
adjacent interchanges. Moreover, the elements σ(r + 1), . . . , σ(n), whatever
their positions, retain their increasing order. Now repeat the process with σ(r−
1), σ(r − 2), . . . , σ(1). These elements having returned to their positions in the
identity permutation, and σ(r+1), . . . , σ(n) having remained in increasing order,
the final result must be the identity. The total number of interchanges is

r∑

j=1

(σ(j) − j) =

r∑

j=1

σ(j)−
r∑

j=1

j =

r∑

j=1

σ(j) − Tr

where Tr =
∑r

j=1 j =
r(r+1)

2 is the rth triangular number. Thus we have

if σ ∈ Sn,r then sgn(σ) = (−1)
∑

r
j=1 σ(j)−Tr .

Examples:

σ =

(
1 2 3
2 4 5

∣
∣
∣
∣

4 5 6
1 3 6

)

sgn(σ) = (−1)2+4+5−T3 = (−1)11−6 = (−1)5 = −1

σ =

(
1 2
3 6

∣
∣
∣
∣

3 4 5 6
1 2 4 5

)

sgn(σ) = (−1)3+6−T2 = (−1)9−3 = (−1)6 = +1

σ =

(
1
4

∣
∣
∣
∣

2 3 4 5 6
1 2 3 5 6

)

sgn(σ) = (−1)4−T1 = (−1)4−1 = (−1)3 = −1

Our next concept is the reverse of a permutation, which is important when
dealing with the dualizing operator ∗. Let σ be given as usual by

σ =

(
1 2 . . . r

σ(1) σ(2) . . . σ(r)

∣
∣
∣
∣

r + 1 . . . n
σ(r + 1) . . . σ(n)

)

∈ Sn,r.

The reverse of σ, which we denote by σ̃, is given by

Def σ̃ =

(
1 2 . . . n− r

σ(r + 1) σ(r + 1) . . . σ(n)

∣
∣
∣
∣

n− r + 1 . . . n
σ(1) . . . σ(r)

)

∈ Sn,n−r.
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Example

σ =

(
1 2 3
2 4 5

∣
∣
∣
∣

4 5
1 3

)

σ̃ =

(
1 2
1 3

∣
∣
∣
∣

3 4 5
2 4 5

)

To determine the sign of σ̃, which will be of great importance in our future
development, we need to know the value of Tn − (Tr + Tn−r) This is found by

Tn − (Tr + Tn−r) =
n(n+ 1)

2
− r(r + 1)

2
− (n− r)(n − r + 1)

2

= 1
2

[
(r + n− r)(n+ 1)− r(r + 1)− (n− r)(n− r + 1)

]

= 1
2

[
r(n+ 1− r − 1)− (n− r)(n + 1− n+ r − 1)

]

= 1
2 [r(n − r) + (n− r)r]

= r(n − r)

This fact also has a geometrical demonstration:

.

. .

. . .

. . . .

. . . . .

. . . . . .

T2 + 2 · 4 + T4 = T6.

We note also that for any permutation σ ∈ Sn
n∑

j=1

σ(j) =

n∑

j=1

j = Tn

so that we have

sgn(σ)sgn(σ̃) = (−1)
∑r

j=1 σ(j)−Tr (−1)
∑n

j=r+1 σ(j)−Tn−r

= (−1)
∑n

j=1 σ(j)−(Tr+Tn−r)

= (−1)Tn−(Tr+Tn−r)

= (−1)r(n−r).

Thus we see that
sgn(σ̃) = (−1)r(n−r)sgn(σ).

This completes our study of increasing permutations.
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4.4 Determinants

in this section we will discuss the computational aspects of Grassmann Algebra
which are inextricably linked with the theory of determinants. Because we be-
lieve that determinants are important precisely because they are the coefficients
of Grassmann Algebra, we will develop their theory as if the reader had never
seen them before.

There is a definition of determinants (due to Weierstrass) that bases the
theory on certain axioms. We will prove these axioms, (and point out the axioms
in passing) but we will not develop the theory in this way.

The theory of determinants, since it involves permutations, cannot be made
totally comfortable. The following treatment, while requiring close attention, is
about as pleasant as possible. Readers who find the going rough in spots might
profitably compare it with more traditional developments of the theory.

The principal problem in elementary computations in Grassmann Algebra
involves the rearrangement of terms in a product, with consequent possible
change in sign. Consider the product

vi1 ∧ vi2 ∧ . . . ∧ vir

where i1, i2, . . . ir are integers between 1 and m = dimV . As we will see, it is
essential to rearrange the product into one in which the indices increase. For
example, suppose r = 4 and i2 < i4 < i3 < i1. Since vi ∧ vj = vj ∧ vi we have

vi1 ∧ vi2 ∧ vi3 ∧ vir = −vi2 ∧ vi1 ∧ vi3 ∧ vi4 = vi2 ∧ vi3 ∧ vi1 ∧ vi4

= −vi2 ∧ vi3 ∧ vi4 ∧ vi1 = vi2 ∧ vi4 ∧ vi3 ∧ vi1

The process corresponds exactly to the interchange of adjacent elements turning
1, 2, 3, 4 into 2, 4, 3, 1, which determines the sign of the permutation

(
1 2 3 4
2 4 3 1

)

.

Hence,

vi1 ∧ vi2 ∧ vi3 ∧ vir = sgn

(
1 2 3 4
2 4 3 1

)

vi2 ∧ vi4 ∧ vi3 ∧ vi1 .

Exactly the same reasoning establishes that, in general,

vi1 ∧ . . . ∧ vir = sgn(π)viπ(1)
∧ . . . ∧ viπ(r)

.

In particular if il = l we have, for π ∈ Sr,

v1 ∧ . . . ∧ vr = sgn(π)vπ(1) ∧ . . . ∧ vπ(r) .

Since sgn(π) = sgn(π−1) = 1/sgn(π), these equations may also be written

viπ(1)
∧ . . . ∧ viπ(r)

= sgn(π)vi1 ∧ . . . ∧ vir

vπ(1) ∧ . . . ∧ vπ(r) = sgn(π)v1 ∧ . . . ∧ vr .
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As Axiom 4b of section 3.1 states, a basis of Λ(V ) is given by

eσ = eσ(1) ∧ eσ(2) ∧ . . . ∧ eσ(r) σ ∈ Sn,r.

This suggests that we show interest in elements of the form

vσ = vσ(1) ∧ vσ(2) ∧ . . . ∧ vσ(r) ∈ Sn,r σ ∈ Sn,r.

where the vi ∈ V but v1, v2, . . . do not necessarily form a basis. As an example,
let us consider

w1 = 2v1 + 4v2 − v3

w2 = v1 − v2 + 2v3

where wi, vj ∈ Sn,r, and we make no explicit assumptions about he dimension
of the space V . Then

w1 ∧ w2 = 2v1 ∧ v1 − 2v1 ∧ v2 + 4v1 ∧ v3

+ 4v2 ∧ v1 − 4v2 ∧ v2 + 8v2 ∧ v3

− 1v3 ∧ v1 − 1v3 ∧ v2 + 2v3 ∧ v3

Since vi ∧ vi = 0 and vj ∧ vi = −vi ∧ vj , we have

w1 ∧ w2 = (−2− 4)v1 ∧ v2 + (4 + 1)v1 ∧ v3 + (8− 1)v2 ∧ v3

= −6v1 ∧ v2 + 5v1 ∧ v3 + 7v2 ∧ v3

The problem is how to come up with these coefficients without writing out all
the intermediate steps. If we arrange the original coefficients as columns in a
matrix 



2 1
4 −1
−1 2





then the coefficient of v1 ∧ v3 is formed from the 1st and 3rd row, that is, from
the square submatrix

(
2 1
−1 2

)

by forming 2·2−(−1)·1 = 5, and similarly for v1∧v2 and v2∧v3. The important
thing is that for each square matrix the same arithmetic process

(
a b
c d

)

→ ad− bc

solves the coefficient problem. Clearly, the next problem is to increase the
number of factors in the product and clarify the formation of the coefficients
from the square submatrices. (The clever reader will have deduced that we are
sneaking up on determinants).
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To this end, suppose that (summation convention now in effect)

wj = αi
jvi j = 1, . . . , r i = 1, . . . ,m.

(We are still not making any assumptions about the dimension of the space or
whether v1, . . . , vm is a basis.) We now form

w1 ∧ . . . ∧ vr = αi1
1 αi2

2 . . . αir
r vi1 ∧ . . . ∧ vi1 .

It will now be necessary to rearrange the terms on the right hand side
from r simple sums into a sum whose form is much better adapted to further
computation. The methodology here is quite important wand will recur in a
number of critical places.

We must rewrite the last sum in the following way. We select an element
σ ∈ Sm,r and group together those sets of indices which are rearrangements of
σ(1), . . . , σ(r). We then sum over all σ ∈ Sm,r. In this way, we get all possible
sets of values of i1, . . . , ir.

For a fixed σ ∈ Sm,r the terms in the previous sum whose indices are
rearrangements of σ(1), . . . , σ(r) can be rewritten using a π ∈ Sr. (This is
actually the key point in the derivation.) Thus i1, i2, . . . , ir when rearranged
in increasing order become iπ(1), iπ(2), . . . , iπ(r) which then coincide with the
increasing σ(1), σ(2), . . . , σ(r) where iπ(j) = σ(j) and ik = σ(π−1(k)). We then
have, using our previous knowledge of rearrangements,

vi1 ∧ vi2 ∧ . . . vir∧ = sgn(π) viπ(1)
∧ viπ(2)

∧ . . . ∧ viπ(r)

= sgn(π) vσ(1) ∧ vσ(2) ∧ . . . ∧ vσ(r)

All the terms which are rearrangements of σ(1), . . . , σ(r) then sum to

∑

π∈Sr

α
σ(π−1(1))
1 α

σ(π−1(2))
2 . . . ασ(π−1(r))

r sgn(π) vσ(1) ∧ vσ(2) ∧ . . . ∧ vσ(r)

and the final sum will be

w1 ∧ . . . ∧ wr = αi1
1 , . . . αir

1 vi1 ∧ . . . ∧ vir

=
∑

σ∈Sm,r

∑

π∈Sr

α
σ(π−1(1))
1 . . . ασ(π−1(r))

r sgn(π) vσ(1) ∧ . . . ∧ vσ(r)

We will soon introduce the concept of determinant to conveniently express the
inner sum. This method of breaking up a multiple sum i1, . . . , ir into a sum
over Sm,r and Sr will be called resolving a sum by permutations.

If we now write the coefficients in an m× r matrix








α1
1 α1

2 . . . α1
r

α2
1 α2

2 . . . α2
r

. . . . . . . . . . . .

. . . . . . . . . . . .
αm
1 αm

2 . . . αm
r
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then the coefficient of vσ(1)∧ . . .∧vσ(r), σ ∈ Sm,r is associated with the square
matrix









α
σ(1)
1 α

σ(1)
2 . . . α

σ(1)
r

α
σ(2)
1 α

σ(2)
2 . . . α

σ(2)
r

. . . . . . . . . . . .

. . . . . . . . . . . .
α
σ(r)
1 α

σ(r)
2 . . . α

σ(r)
r









in the sense that the coefficient associated with it,

∑

π∈Sr

sgn(π)α
σ(π−1(1))
1 . . . ασ(π−1(r))

r ,

is a function of the entries of this particular square matrix. Suppose we now
rearrange the α’s so that, instead of coming in the order 1, 2, . . . r they come in
the order π(1), π(2), . . . , π(r) Since the α’s are mere scalars, this will not effect
the value and we will have

∑

π∈Sr

sgn(π)α
σ(π−1π(1))
π(1) . . . α

σ(π−1π(r))
π(r) =

∑

π∈Sr

sgn(π)α
σ(1)
π(1) . . . α

σ(r)
π(r) .

We now observe that the σ(i) are functioning as mere labels in to distinguish
the rows of the coefficient matrix, and we can specialize the last expression
without losing generality. Since the last expression determines the value of the
coefficient in the Grassmann Algebra as a function of the coefficients of the
vectors, we define

Def The determinant of the square matrix








α1
1 α1

2 . . . α1
r

α2
1 α2

2 . . . α2
r

. . . . . . . . . . . .

. . . . . . . . . . . .
αr
1 αr

2 . . . αr
r








is
∑

π∈Sr

sgn(π)α1
π(1) . . . α

r
π(r) .

We will write

det(αi
j) =

∑

π∈Sr

sgn(π)α1
π(1) . . . α

r
π(r) .

The more general formula with the σ’s results from this by mere substitution:

det(α
σ(i)
j ) =

∑

π∈Sr

sgn(π)α
σ(1)
π(1) . . . α

σ(r)
π(r)
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and the final formula for the Grassmann product with our new notation for the
coefficients becomes

w1 ∧ . . . ∧wr =
∑

σ∈Sm,r

det(α
σ(i)
j ) vσ(1) ∧ . . . ∧ vσ(r), 1 ≤ i, j ≤ r.

We can now begin to exploit these formulas to derive properties of the de-
terminant function from properties of the Grassmann Algebra. Let e1, e2, . . . , en
be a basis for the vector space V . Axiom 4b tells us that e1 ∧ . . .∧ en is a basis
of Λn(V ) (and hence not 0). Let

wj = αi
j ei 1 ≤ i, j ≤ r.

Since Sn,n consists solely of the identity, we have

w1 ∧ . . . ∧ wn = det(αi
j) e1 ∧ . . . ∧ en .

This formula allows us to derive the more elementary properties of determinants.
For example

Theorem 1 The determinant is a multilinear function of its columns.

Proof Let u = βiei, v = σiei and wj = αi
j ei, j = 2, . . . , n. Then

µ (u ∧ w2 ∧ . . . ∧ wn) = µ det





β1 α1
2 . . . α1

n

. . . . . . . . . . . .
βn αn

2 . . . αn
n



 e1 ∧ . . . ∧ en

ν (v ∧ w2 ∧ . . . ∧ wn) = ν det





γ1 α1
2 . . . α1

n

. . . . . . . . . . . .
γn αn

2 . . . αn
n



 e1 ∧ . . . ∧ en

(µu+ νv) ∧ w2 ∧ . . . ∧ wn = det





µβ1 + νγ1 α1
2 . . . α1

n

. . . . . . . . . . . .
µβn + νγn αn

2 . . . αn
n



 e1 ∧ . . . ∧ en

Since the sum of the first two expressions on the left is the third, and since
e1 ∧ . . . ∧ en is a basis for Λn, we must have

µ det





β1 α1
2 . . . α1

n

. . . . . . . . . . . .
βn αn

2 . . . αn
n



 + ν det





γ1 α1
2 . . . α1

n

. . . . . . . . . . . .
γn αn

2 . . . αn
n





= det





µβ1 + νγ1 α1
2 . . . α1

n

. . . . . . . . . . . .
µβn + νγn αn

2 . . . αn
n





which shows that the determinant is linear in the first column. Similarly, it is
linear in all the other columns.

Theorem 2a If a determinant has two identical columns then its value is zero.
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Proof Let wj = αi
jei. If wi = wj then the ith and the jth columns of the

determinant will be be identical. Also w1 ∧w2 ∧w3 ∧ . . .∧wn = 0 and we have

0 = w1 ∧ w2 ∧ w3 ∧ . . . ∧ wn = det





α1
1 α1

2 α1
3 . . . α1

n

. . . . . . . . . . . . . . .
αn
1 αn

2 αn
3 . . . αn

n



 e1 ∧ . . . ∧ en

and since e1 ∧ . . . ∧ en is a basis for Λn(V ) we must have

det





α1
2 α1

1 α1
3 . . . α1

n

. . . . . . . . . . . . . . .
αn
2 αn

1 αn
3 . . . αn

n



 = 0

Theorem 2b Interchanging two adjacent columns of a determinant alters its
sign. (We express this by saying that a determinant is an alternating function
of its columns.)

Proof Let wj = αi
jei. Then

w1 ∧ w2 ∧ w3 ∧ . . . ∧ wn = det





α1
1 α1

2 α1
3 . . . α1

n

. . . . . . . . . . . . . . .
αn
1 αn

2 αn
3 . . . αn

n



 e1 ∧ . . . ∧ en

w2 ∧ w1 ∧ w3 ∧ . . . ∧ wn = det





α1
2 α1

1 α1
3 . . . α1

n

. . . . . . . . . . . . . . .
αn
2 αn

1 αn
3 . . . αn

n



 e1 ∧ . . . ∧ en

Since w1 ∧ w2 = −w2 ∧ w1, the two determinants, with the first two columns
switched, are negatives of one another. The result is clearly identical for inter-
changing any two adjacent columns.

Corollary

det





α1
σ(1) . . . α1

σ(n)

. . . . . . . . .
αn
σ(1) . . . αn

σ(n)



 = sgn(σ) det





α1
1 . . . α1

n

. . . . . . . . .
αn
1 . . . αn

n





Proof The sign of the determinant on the left is related to that on the
right according to the number of adjacent interchanges necessary to return
σ(1), . . . , σ(n) to 1, . . . , n. But this is also a way to determine sgn(σ).

Corollary If two columns of a determinant are equal, the determinant is 0.

Theorem 3 Let (αi
j) be the identity matrix; αi

j = 0 for i 6= j and αi
j = 1 for

i = j. Then det(αi
j) = 1.

Proof It is clear that ej = αi
jei. Thus

e1 ∧ . . . ∧ en = det(αi
j) e1 ∧ . . . ∧ en
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by the basic formula, and this gives det(αi
j) = 1.

Theorems 1,2b,3 are the basic axioms of Weierstrass for the determinant func-
tion on square matrices. From these three basic theorems the entire theory of
determinants can be developed provided the characteristic of the Field is not 2.
It is preferable to substitute Theorems 1,2a,3 for Weierstrass’s Theorems 1,2b,3
because, if the characteristic of the Field is 2 then Theorem 2b can be derived
from Theorem 2a but not vice versa. If the characteristic is not 2 then Theorem
2a and 2b can each be derived from the other. We leave it as an instructive
exercise for the reader to derive Theorem 2b from Theorem 2a without using
Grassmann products.

We will not follow the Weierstrass procedure however, because we wish to
exploit the associative law for Grassmann products which makes the Laplace
expansion (next section) much easier than deriving it from the Weierstrass ax-
ioms. Similarly, we did not derive Theorem 2b from Theorem 2a because our
main goal is to illustrate that determinants are the coefficients in Grassmann
algebra calculations and so we use Grassmann techniques where possible.

Next we prove one of the most important theorems of determinant the-
ory. This is relatively easy for us to do using the properties of the Grassmann
product. In fact, the ease and naturalness of this proof is an example of how
productive the use of the Grassmann product can be. Without it, this theo-
rem requires some sort of artifice, and this reflects the essential nature of the
Grassmann product; without it one must resort to tricky procedures.

Theorem 3 Let A and B be square matrices. Then det(AB) = det(A) det(B)

Proof Let A = (αi
j), B = (βi

j) and C = (γi
j) where 1 ≤ i, j ≤ n. Then

γi
j = αi

kβ
k
j since this is the definition of matrix multiplication. Let V be an n–

dimensional vector space with basis e1, . . . , en. Let vk = αi
kei and wj = βk

j vk.
Then

w1 ∧ . . . ∧ wn = det(βk
j ) v1 ∧ . . . ∧ vn

v1 ∧ . . . ∧ vn = det(αi
k) e1 ∧ . . . ∧ en

so

w1 ∧ . . . ∧ wn = det(βk
j ) v1 ∧ . . . ∧ vn

= det(βk
j ) det(α

i
k) e1 ∧ . . . ∧ en

On the other hand

wj = βk
j vk = βk

j (α
i
kei) = (βk

j α
i
k)ei = γi

jei

so

w1 ∧ . . . ∧ wn = det(γi
j) e1 ∧ . . . ∧ en

Comparing the two expressions forw1∧. . .∧wn, we see that det(γ
i
j) = det(αi

k) det(β
k
j ).
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Next we wish to discover how to compute a determinant by using its sub-
determinants. This is done via the associative law for products. We will need
to know the value of

(eσ(1) ∧ . . . ∧ eσ(r)) ∧ (eρ(1) ∧ . . . ∧ eρ(n−r))

for σ ∈ Sn,r and ρ ∈ Sn,n−r. This will be 0 unless the ρ(1), . . . , ρ(n− r) are all
distinct from all the σ(1), . . . , σ(n− r). Thus the ρ(1), . . . , ρ(n− r) must be the
same numbers as the σ(r + 1), . . . , σ(n). Since both are increasing sequences,
σ(r + j) = ρ(j). Similarly, ρ(n− r + j) = σ(j). But then ρ = σ̃, the reverse of
σ, and the non-zero elements of this form are

eσ(1) ∧ . . . ∧ eσ(r) ∧ eσ(r+1) ∧ . . . ∧ eσ(n) = eσ(1) ∧ . . . ∧ eσ(n)

With this in mind, if vj = αi
jei we have, for τ ∈ Sn,r

det(αi
j)e1 ∧ . . . ∧ en =

= v1 ∧ . . . ∧ vn

= sgn(τ) vτ(1) ∧ . . . ∧ vτ(n)

= sgn(τ) (vτ(1) ∧ . . . ∧ vτ(r)) ∧ (vτ(r+1) ∧ . . . ∧ vτ(n))

= sgn(τ)
( ∑

σ∈Sn,r

det(α
σ(i)
τ(j))eσ(1) ∧ . . . ∧ eσ(r)

)( ∑

ρ∈Sn,n−r

det(α
ρ(k)
τ(l) )eρ(1) ∧ . . . ∧ eρ(n−r)

)

= sgn(τ)
∑

σ∈Sn,r
ρ∈Sn,n−r

det(α
σ(i)
τ(j)) det(α

ρ(k)
τ(l) ) eσ(1) ∧ . . . ∧ eσ(r) ∧ eρ(1) ∧ . . . ∧ eρ(n−r)

= sgn(τ)
∑

σ∈Sn,r

sgn(σ) det(α
σ(i)
τ(j)) det(α

σ(r+k)
τ(l) ) e1 ∧ . . . ∧ en

where 1 ≤ i, j ≤ r and 1 ≤ k, l ≤ n− r.
This may be simplified slightly since

r∑

i=1

σ(i)− Tr +

r∑

j=1

τ(j) − Tr =

r∑

i=1

(
σ(i) + τ(j)

)
− 2Tr

so that, using the formula for sgn(σ) when σ ∈ Sn,r

sgn(σ)sgn(τ) = (−1)
∑

r
i=1

(
σ(i)+τ(j)

)
−2Tr = (−1)

∑
r
i=1

(
σ(i)+τ(j)

)

and thus

det(αi
j) =

∑

σ∈Sn,r

(−1)
∑r

i=1

(
σ(i)+τ(j)

)

det





α
σ(1)
τ(1) . . . α

σ(1)
τ(r)

. . . . . . . . .
α
σ(r)
τ(1) . . . α

σ(r)
τ(r)



det





α
σ(r+1)
τ(r+1) . . . α

σ(r+1)
τ(n)

. . . . . . . . .
α
σ(n)
τ(r+1) . . . α

σ(n)
τ(n)





This is called Laplace’s expansion by complementary minors. For later purposes,
we will need to express all this with less writing, so we introduce some notation.
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First we write

Def

α1
1 . . . αr

1

. . . . . . . . .
α1
r . . . αr

r

= det





α1
1 . . . αr

1

. . . . . . . . .
α1
r . . . αr

r





Next we write, for a not necessarily square matrix (αi
j),

Def α
σ(i1...il)
τ(j1...jl)

=
α
σ(i1)
τ(j1)

. . . α
σ(i1)
τ(jl)

. . . . . . . . .
α
σ(i1)
τ(jl)

. . . α
σ(il)
τ(jl)

where if σ and τ are the identity we abbreviate

αi1...il
j1...jl

=
αi1
j1

. . . αi1
jl

. . . . . . . . .
αil
j1

. . . αil
jl

and if i1, . . . , il and j1, . . . , jl are just 1, . . . , l (and this is the common situation)
we abbreviate with

ασ
τ =

α
σ(1)
τ(1) . . . α

σ(1)
τ(l)

. . . . . . . . .
α
σ(1)
τ(l) . . . α

σ(l)
τ(l)

With these abbreviations in mind and recalling that σ(r + k) = σ̃(k) for
σ ∈ Sn,r and σ̃ the reverse of σ, we have Laplace’s expansion written in the
relatively benign forms

det(αi
j) =

∑

σ∈Sn,r

(−1)
∑

r
i=1

(
σ(i)+τ(i)

)

α
σ(1,...,r)
τ(1,...,r)α

σ(r+1,...,n)
τ(r+1,...,n)

=
∑

σ∈Sn,r

(−1)
∑

r
i=1

(
σ(i)+τ(i)

)

ασ
τα

σ̃
τ̃

=
∑

σ∈Sn,r

sgn(στ)ασ
τ α

σ̃
τ̃

Note that the τ here is some fixed member of Sn,r which the expander chooses
at his own convenience. It amounts to selecting a set of r columns. For example
in the expansion of

α1
1 α1

2 α1
3 α1

4

α2
1 α2

2 α2
3 α2

4

α3
1 α3

2 α3
3 α3

4

α4
1 α4

2 α4
3 α4

4

let us select

τ =

(
1 2
1 3

∣
∣
∣
∣

3 4
2 4

)
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which amounts to selecting the first and third column. Using the formula and
writing each σ ∈ Sn,r below the corresponding term, we have

det(αi
j) =

= (−1)1+2+1+3 α1
1 α1

3

α2
1 α2

3

α3
2 α3

4

α4
2 α4

4
+ (−1)1+3+1+3 α1

1 α1
3

α3
1 α3

3

α2
2 α2

4

α4
2 α4

4

σ =

(
1 2
1 2

∣
∣
∣
∣

3 4
3 4

)

σ =

(
1 2
1 3

∣
∣
∣
∣

3 4
2 4

)

+(−1)1+4+1+3 α1
1 α1

3

α4
1 α4

3

α2
2 α2

4

α3
2 α3

4
+ (−1)2+3+1+3 α2

1 α2
3

α3
1 α3

3

α1
2 α1

4

α4
2 α4

4

σ =

(
1 2
1 4

∣
∣
∣
∣

3 4
2 3

)

σ =

(
1 2
2 3

∣
∣
∣
∣

3 4
1 4

)

+(−1)2+4+1+3 α2
1 α2

3

α4
1 α4

3

α1
2 α1

4

α3
2 α3

4
+ (−1)3+4+1+3 α3

1 α3
3

α4
1 α4

3

α1
2 α1

4

α2
2 α4

4

σ =

(
1 2
2 4

∣
∣
∣
∣

3 4
1 3

)

σ =

(
1 2
3 4

∣
∣
∣
∣

3 4
1 2

)

An important special case of the foregoing occurs when r = 1 which means
that only a single column is selected. Then

τ =

(
1
j

∣
∣
∣
∣

2 . . . j − 1 j j + 1 . . . n
2 . . . j − 1 j + 1 j + 2 . . . n

)

and the σ have the same form. The formula then reduces to

det(αi
j) =

n∑

i=1

(−1)i+jαi
jα

1...i−1,i+1...n
1...j−1,j+1...n

where the second factor is the determinant of the matrix obtained by eliminat-
ing the row and column in which αi

j lies. This is the familiar expansion of a
determinant by the cofactors of a column.

Naturally, since detA⊤ = detA, we may do the expansion by selecting a
set of rows instead of a set of columns.
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4.5 Extending a Linear Transformation to the

Grassmann Algebra and the Cauchy–Binet

Theorem

Our next effort will be to extend a linear transformation T : V →W so that it
maps Λr(V ) to Λr(W ). Consider the transformation f :V × . . .×V →W given
by

f(v1, v2, . . . , vr) = Tv1 ∧ Tv2 ∧ . . . ∧ Tvr

Clearly f is multilinear and alternating, so that by Axiom 4b there is a map
T̃ : Λr(V )→ Λr(W ) which makes the following diagram commute.

V1 × . . .× Vn
f−→ Λr(W )

∧ց ր T̃

Λr(V )

By construction T̃ (v1 ∧ . . .∧ vr) = Tv1 ∧ . . .∧Tvr. We will omit the tilde in the
future, writing

T (v1 ∧ . . . ∧ vr) = Tv1 ∧ . . . ∧ Tvr

and consider that we have extended T to Λr(V ). We have shown that a linear
transformation T :V → W may be lifted to a transformation (also called T)
from T : Λr(V ) → Λr(W ). For the case r = 0, which is not covered by the
previous conditions, we make the extension of T equal to the identity, which is
easily seen to be consistent with our requirement that α ∧ v = αv.

We ask, what is the matrix of T on Λr(V )? To this end, let e1, . . . , en be a
basis for V and f1, . . . , fm be a basis for W , and

Tej = αi
jfi forj = 1, . . . , n

so that the m× n matrix (αi
j) is the matrix of T in the bases ej of V and fi of

W .
Since eσ = eσ(1) ∧ . . . ∧ eσ(r) σ ∈ Sn,r form a basis of Λr(V ), we have

Teσ = Teσ(1) ∧ . . . ∧ Teσ(r)

= (αi1
σ(1)fi1) ∧ . . . ∧ (αi1

σ(r)fir )

= αi1
σ(1) . . . α

ir
σ(r)fi1 ∧ . . . ∧ fir

=
∑

ρ∈Sm,r

(∑

π∈Sr

α
ρ(π−1(1))...ρ(π−1(r))
σ(1) ......... σ(r)

)

fρ(1) ∧ . . . ∧ fρ(r)

=
∑

ρ∈Sm,r

det





α
ρ(1)
σ(1) . . . α

ρ(1)
σ(r)

. . . . . . . . .
α
ρ(r)
σ(1) . . . α

ρ(r)
σ(r)



 fρ

=
∑

ρ∈Sm,r

α
ρ(1...r)
σ(1...r)fρ

=
∑

ρ∈Sm,r

αρ
σ fρ
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where we are using the abbreviations for the subdeterminants of (αi
j) introduced

in section 3.3. The fourth equation is derived from the third equation by the
method of resolving a sum by permutations also introduced in section 3.3.

Thus we see that the matrix coefficients for the extension of T to Λr(V )
are the subdeterminants of order r of the matrix of T .

It now seems reasonable in view of the form of the last equation to use the
summation convention for summing over increasing permutations, so the last
equation, using this convention, can be rewritten as

Teσ = αρ
σ fρ .

For consistency, we remark that the former type of summation convention

Tej = αi
j fi

may be looked on as a special case of the more general indexing by increasing
permutations, in which we take i to stand for the σ ∈ S1,m given by

(
1
i

∣
∣
∣
∣

2 . . . i i+ 1 . . . m
1 . . . i− 1 i+ 1 . . . m

)

.

This interpretation of subdeterminants as elements in the matrix of the
linear transformation T : Λr(V ) → Λr(W ) may be used to prove the Cauchy-
Binet theorem relating the determinants of a product to the subdeterminants
of each of the factors. Indeed, Let S:U → V and T :V →W . Let g1, . . . gp be a
basis for U , e1, . . . en a basis for V , and f1, . . . fm a basis for W . We form the
matrices for S and T :

Sgk = βi
k ei and Tei = αj

i fj

If we now set (γk
j ) = (αj

i )(β
i
k) then (γk

j ) will be the matrix of TS in the bases
g1, . . . gp of V and f1, . . . fm of W . Going over to the spaces Λr(U), Λr(V ) and
Λr(W ), the above analysis shows that (summation convention active)

(TS)gσ = γρ
σfρ for ρ ∈ Sm,r, σ ∈ Sp,r

Sgσ = βτ
σeτ for τ ∈ Sn,r

Teτ = αρ
τfρ

so that

γρ
σfρ = (TS)gσ = T (Sgσ) = T (βτ

σeτ ) = βτ
σTeτ

= βτ
σα

ρ
τfρ = (αρ

τβ
τ
σ)fρ

and, since fρ is a basis of Λr(W ),

γρ
σ = αρ

τβ
τ
σ

This is the Cauchy Binet theorem: The minors of the product of two matrices
are the sums of products of the minors of the matrices.
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There are certain rules useful for the computation of determinants which
we state below. These are simply restatements of theorems and a corollary from
the previous section.

Type I Multiplying a single column of a square matrix by a scalar results in
multiplying the determinant of the matrix by the same scalar.

Type II Interchanging the columns of a matrix changes the sign of the deter-
minant.

Type III Adding a multiple of a column to another column does not effect
the value of a determinant.

We are restating these rules here because we now want to prove that these
rules are valid also for rows. This is most easily verified by showing that the
determinant of a square matrix is equal to the determinant of its transpose.

Def If a matrix A = (αi
j), then the transpose of A, denoted by A⊤ is given by

detA⊤ = (βj
i ) where βj

i = αi
j

We now have the extremely important theorem

Theorem det(A⊤) = det(A)

I do not know of a proof of this theorem in the present context which uses
the properties of Grassmann products in an intelligent manner. The following
proof, while certainly adequate, uses the properties of permutations in an in-
elegant way. To clarify the proof, we will look at an example first. Let r = 4
and

π =

(
1 2 3 4
2 4 1 3

)

so that π−1 =

(
1 2 3 4
3 1 4 2

)

Then a typical term of the determinant calculation will be

sgn(π)β1
π(1)β

2
π(2)β

3
π(3)β

4
π(4) = sgn(π)β1

2β
2
4β

3
1β

4
3

and we can rearrange the terms so that they come out

sgn(π)β3
1β

1
2β

4
3β

2
4 = sgn(π)β

π−1(1)
1 β

π−1(2)
2 β

π−1(3)
3 β

π−1(4)
4

This is done in the general case in the following proof of the theorem.

Proof of the Theorem By definition

det(A⊤) =
∑

π∈Sr

sgn(π)β1
π(1) . . . β

r
π(r)

Rearranging the elements in the product as we did in the example we have

det(A⊤) =
∑

π∈Sr

sgn(π)β
π−1(1)
1 . . . βπ−1(r)

r

=
∑

π∈Sr

sgn(π−1)β
π−1(1)
1 . . . βπ−1(r)

r since sgn(π−1) = sgn(π)

=
∑

τ∈Sr

sgn(τ)β
τ(1)
1 . . . βτ(r)

r where τ = π−1
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because τ = π−1 runs through Sr when π does. But then

det(A⊤) =
∑

τ∈Sr

sgn(τ)β
τ(1)
1 . . . βτ(r)

r

=
∑

τ∈Sr

sgn(τ)α1
τ(1) . . . α

r
τ(r)

= det(A).

It should now be obvious that the above three rules of computation are
valid for rows as well as columns, because the rows of A are the columns of A⊤.
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4.6 The Equivalence of Axioms 4a and 4b

In this section we are going to prove the equivalence of the three natural ways
of guaranteeing that the Grassmann Algebra is as large as possible consistent
with bilinearity and anticommutativity. This is not difficult, but also not very
interesting, so the reader might want to consider carefully reading over the
material until the proofs start and reserving the perusal of the proofs to a
second reading.

For convenience of reference we repeat here Axioms 4a and 4b and in ad-
dition Axiom 4a* which is a variant of Axiom 4a and will be included in the
equivalence discussion.

Axiom 4a Let G(v1, . . . , vr) be an alternating multilinear function from V ×
. . .× V →W . Let Φ be the map Φ:V × . . .× V → Λr(V ) given by

Φ(v1, . . . , vr)→ v1 ∧ . . . ∧ vr

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G̃: Λr(V )→W so that the following diagram commutes:

V1 × . . .× Vn
G−→ W

Φց րG̃

Λr(V )

The commutativity of the the diagram says that G = G̃ ◦ Φ.
We next present Axiom 4a* which differs from Axiom 4a only by having the
range of the multilinear function be the field over which the vectors spaces are
defined instead of the vector space W . This looks weaker than Axiom 4a but is
really almost trivially equivalent.

Axiom 4a* Let G(v1, . . . , vr) be an alternating multilinear function from
V × . . .× V → Field. Let Φ be the map Φ:V × . . .× V → Λr(V ) given by

Φ(v1, . . . , vr)→ v1 ∧ . . . ∧ vr

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G̃: Λr(V )→ Field so that the following diagram commutes:

V1 × . . .× Vn
G−→ Field

Φց րG̃

Λr(V )

The commutativity of the the diagram says that G = G̃ ◦ Φ.
Finally, we present again Axiom 4b

Axiom 4b The set of all products

ei1 ∧ . . . ∧ eir

{
1 ≤ r ≤ n
i1 < i2 . . . < ir
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is linearly independent, where e1, . . . , en is a basis for V .

We now begin the proof of the equivalence of the three Axioms. The scheme
will be Axiom 4b=⇒Axiom 4a* =⇒Axiom4a=⇒Axiom4b. Persons without
interest in these details may now safely skip to the next section, as the material
worked through in these proofs in not of great interest for applications.

Proof that Axiom 4b =⇒Axiom 4a*

Let F (v1, . . . .vr) be an alternating multilinear function from V to the Field. It
should be clear from previous work that

F (vπ(1), . . . , vπ(r)) = sgn(π)F (v1, . . . , vr) for π ∈ Sr

(This is so because sgn(π) is −1 raised to the power equal to the number of
interchanges necessary to restore π(1), . . . , π(r) to 1, . . . , r.) We now define
F̃ : Λr(V )→ Field by defining it on a basis of Λr(V ). By Axiom 4b such a basis
is eσ = eσ(1) ∧ . . . ∧ eσ(r), σ ∈ Sn,r. Define F̃ by

F̃ (eσ) = F̃ (eσ(1) ∧ . . . ∧ eσ(r)) = F (eσ(1), . . . , eσ(r))

Since F̃ is defined on the basis elements, it is uniquely defined on all of Λr(V ).
It remains to show that for any v1, . . . , vr ∈ V , we have F (v1, . . . , vr) = F̃ (v1 ∧
. . . ∧ vr). Let vj = αi

j ei. Then

F (v1, . . . , vr) = F (αi1
1 ei1 , . . . , α

ir
r eir )

= αi1
1 , . . . , αir

r F (ei1 , . . . , eir )

We now resolve the sum by permutations as in Section 3.3

F (v1, . . . , vr) =
∑

σ∈Sn,r

(∑

π∈Sr

α
σ(π−1(1))
1 , . . . , ασ(π−1(r))

r sgn(π)
)

F (eσ(1), . . . , eσ(r))

where we have rearranged the arguments of F (ei1 , . . . , eir ) into sgn(π)F (eiπ(1)
, . . . , erπ(r)

) =
sgn(π)F (eσ(1), . . . , eσ(r)) so that the indices of the arguments increase. We now

replace F (eσ(1), . . . , eσ(r)) by F̃ (eσ(1) ∧ . . . ∧ eσ(r)) and, reversing the process,
we get

F (v1, . . . , vr) =
∑

σ∈Sn,r

(∑

π∈Sr

α
σ(π−1(1))
1 , . . . , ασ(π−1(r))

r sgn(π)
)

F̃ (eσ(1) ∧ . . . ∧ eσ(r))

= αi1
1 , . . . , αir

r F̃ (ei1 ∧ . . . ∧ eir)

= F̃ (αi1
1 ei1 ∧ . . . ∧ αir

r eir )

= F̃ (v1 ∧ . . . ∧ vr)

as desired. Thus Axiom 4b implies Axiom 4a*.
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Proof that Axiom 4a* =⇒Axiom 4a

Assume that we have a multilinear function G:V × . . .×V →W . Let f1, . . . , fm
be a basis for W and let f1, . . . , fm be the dual basis for W , which means that
if w ∈ W and w = βjfj then f i(w) = βi. Each f i is a linear functional from
W to the Field, and Gi = f i ◦G for each i is then a multilinear functional from
V, . . . , V to the Field.

By Axiom 4a* there is a linear functional G̃i from V ∧ . . .∧ V to the Field
satisfying

G̃i(v1 ∧ . . . ∧ vr) = Gi(v1, . . . , vr).

We may now reconstitute G̃ from the G̃i as follows. Set

G̃(v1 ∧ . . . ∧ vr) = G̃i(v1 ∧ . . . ∧ vr)fi.

G̃ is obviously a linear function from V ∧ . . . ∧ V to W . Then we have

G(v1, . . . , vr) = f i
(
G(v1, . . . , vr)

)
fi

=
(
(f i ◦G)(v1, . . . , vr)

)
fi

= Gi(v1, . . . , vr)fi

= G̃i(v1 ∧ . . . ∧ vr)fi

= G̃(v1 ∧ . . . ∧ vr)

as desired. We have shown that Axiom 4a* implies Axiom 4a.

Proof that Axiom 4a =⇒Axiom 4b

Before doing the proof itself, we will prove a lemma which has a certain interest
of its own.

Lemma Given any r linear functionals f i:V → Field where 1 ≤ i ≤ r we
can construct an alternating multilinear functional F :V × . . .×V → Field and,
given Axiom 4a, a linear functional F̃ :V ∧ . . . ∧ V → Field by

F (v1, . . . , vr) =
∑

π∈Sr

sgn(π)f1(vπ(1))f
2(vπ(2)) . . . f

r(vπ(r))

and then
F̃ (v1 ∧ . . . ∧ vr) = F (v1, . . . , vr)

Proof It is clear that the F given by the above formula is multilinear, so the
only thing left to prove is that F is alternating. Indeed, let σ ∈ Sr. Then

F (vσ(1), . . . , vσ(r)) =
∑

π∈Sr

sgn(π)f1(vπ(σ(1)))f
2(vπ(σ(2))) . . . f

r(vπ(σ(r)))

= sgn(σ)
∑

π∈Sr

sgn(πσ)f1(vπ(σ(1)))f
2(vπ(σ(2))) . . . f

r(vπ(σ(r)))

= sgn(σ)
∑

ρ∈Sr

sgn(ρ)f1(vρ(1))f
2(vρ(2)) . . . f

r(vρ(r))

= sgn(σ)F (v1, . . . , vr)
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because πσ runs through all the elements of Sr once when π runs through all
the elements of Sr once. This suffices to show that F is alternating.

Now let e1, . . . , er be a basis of V and e1, . . . , er its dual basis. We must
show that the eσ(1) ∧ . . . ∧ eσ(r), σ ∈ Sn,r are linearly independent in Λr(V ).
(This is Axiom 4b). To this end, assume

∑

σ∈Sn,r

aσeσ =
∑

σ∈Sn,r

aσ(1)...σ(r)eσ(1) ∧ . . . ∧ eσ(r) = 0

We must prove that all aσ are 0. We form the alternating linear functional (as
in the Lemma)

F ρ(v1, . . . , vr) =
∑

π∈Sr

sgn(π)eρ(1)(vπ(1))e
ρ(2)(vπ(2)) . . . e

ρ(r)(vπ(r))

with some fixed ρ ∈ Sn,r. By Axiom 4a, there exists a unique F̃ ρ: Λr(V )→ Field
satisfying

F̃ ρ(v1 ∧ . . . ∧ vr) = F ρ(v1, . . . , vr)

for all v1, . . . , vr ∈ V . Applying this to the supposed linear dependence, we have

0 = F̃ ρ
( ∑

σ∈Sn,r

aσeσ
)

=
∑

σ∈Sn,r

aσF̃ ρ(eσ(1) ∧ . . . ∧ eσ(r))

=
∑

σ∈Sn,r

aσF ρ(eσ(1), . . . , eσ(r))

=
∑

σ∈Sn,r

aσ
( ∑

π∈Sr

sgn(π)eρ(1)(eσ(π(1)))e
ρ(2)(eσ(π(2))) . . . e

ρ(r)(eσ(π(r)))
)

= aρ

because the interior sum in the next to the last equality will be 0 unless ρ(k) =
σ(π(k)) for k = 1, . . . , r by the definition of the dual basis. This can only occur
if π = identity (so that σ(π(k)) will increase with k as ρ does) and then σ = ρ
(because σ, ρ ∈ Sn,r are both determined by the first r values). But in this
single nonzero case, the interior sum is equal to 1. This completes the the proof
that Axiom 4a implies Axiom 4b.



4.7. PRODUCTS AND LINEAR DEPENDENCE 79

4.7 Products and Linear Dependence

In this section we are going to develop certain relationships between products
in the Grassmann algebra, and indicate the connections between products and
to linear algebra concepts of independence and span.

Let us fix some notations which, with minor later modifications, will be in
effect for the remainder of the book. We define

Def An element of the Grassmann algebra Λ(V ) is simple if and only if it can
be expressed as a product of vectors v1, . . . , vr. When we discuss Grassmann
algebra in general, we will use the upper case Latin letters F,G,H to denote
simple elements.

Of course, not all elements are simple. Let e1, e2, e3, e4 be a basis of R4.
The the element

e1 ∧ e2 + e3 ∧ e4

is not simple.
Furthermore, in general elements of the Grassmann algebra will be denoted

the upper case Latin letters A,B,C,D. These elements are, of course, sums of
simple elements.

Def The degree of a simple element is the of vectors in the product:

deg(v1 ∧ v2 ∧ . . . ∧ vr) = r

Def An element A ∈ Λ(V ) is homogeneous if all the terms (simple summands)
of A have the same degree r, in which case A ∈ Λ(V ).

The following theorem is basic to the application of Grassmann algebra

Theorem v1 ∧ v2 ∧ . . . ∧ vr = 0⇐⇒ the set of vectors {v1, . . . , vr} is linearly
dependent.

Proof ⇐: Suppose, for example, that vr =
∑r−1

i=1 vi. Then

v1 ∧ . . . ∧ vr = v1 ∧ . . . ∧ vr−1 ∧
(
r−1∑

i=1

αivi
)

=

r−1∑

i=1

αiv1 ∧ . . . ∧ vr−1 ∧ vi

= 0

because the sum contains a repeated factor.
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⇒: Suppose that the set {v1, . . . , vr} is linearly independent. The v1, . . . , vr may
be extended to a basis v1, . . . , vr, vr+1, . . . , vn of V . Axiom 4b then guarantees
that the products

vσ(1) ∧ . . . ∧ vσ(r), σ ∈ Sn,r
form a basis of Λr(V ). But setting σ equal to the identity, we see that v1∧. . .∧vr
is a basis element, and hence cannot be 0.

We now note a trivial but important corollary.

Corollary Suppose dim(V ) = n and r < n and deg(F ) = r where F 6= 0 is
simple. Let s be given with s ≤ n− r. The there is a simple G with deg(G) = s
and F ∧G 6= 0.

Proof Let F = v1 ∧ . . . ∧ vr 6= 0. Then by the previous theorem v1, . . . , vr are
linearly independent. Complete v1, . . . , vr to a basis with vectors vr+1, . . . , vn.
Then v1∧. . .∧vn 6= 0. Let G = vr+1∧. . .∧vr+s. We have F ∧G = v1∧. . .∧vr+s

and r + s ≤ r + n− r = n and thus F ∧G 6= 0 since v1 ∧ vn 6= 0.
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5.1 Introduction

In this chapter we develop Grassmann Algebra on the conjugate or dual space.
Grassmann Algebra derives much of its power from the interaction of Λr(V ) with
its dual which can be identified with Λr(V ∗). The fundamental interrelationship
is through a certain determinant. We will call this result Grassmann’s theorem,
although from some points of view it is more like a definition than a theorem.
It is

Theorem If v1, . . . , vr ∈ V and f1, . . . , f r ∈ V ∗ then the action of f1∧. . .∧f r ∈
Λr(V ∗) on v1 ∧ . . . ∧ vr ∈ Λr(V ) is given by

(f1 ∧ . . . ∧ f r)(v1 ∧ . . . ∧ vr) = det






f1(v1) f1(v2) . . . f1(vr)
f2(v1) f2(v2) . . . f2(vr)
. . . . . . . . . . . .

f r(v1) f r(v2) . . . f r(vr)






How do we prove this result? We will look at three ways of deriving this
result in the next three sections. First, we may more or less define it to be true.
Second, we may derive the result from previous results on tensor products.
Thirdly we may derive it by specifying an action of the dual basis of Λr(V ∗) on
a basis of Λr(V ).

Because of the way we write elements of V ∗ there are some matrix triviali-
ties to discuss. For f i ∈ V ∗ we write f i = βi

je
i, i = 1, . . . , r, where {ej} is the

dual basis in V ∗ of the basis {ei} of V . To maintain consistency with matrix
notation, the coefficients of the f i are thought of as rows of the matrix






β1
1 β1

2 . . . β1
n

β2
1 β2

2 . . . β2
n

. . . . . . . . . . . .
β1
r βr

2 . . . βr
n






and the expression of f1 ∧ . . . ∧ f r would then, if we repeated the analysis of
section 3.3, come out as

∑

σ∈Sn,r

∑

π∈Sr

β1
σ(π−1(1)) . . . β

r
σ(π−1(r))f

σ(1) ∧ . . . ∧ fσ(r)

where the permutations are now acting on the lower indices. Fortunately, in
view of the fact that det(A⊤) = det(A), it is irrelevant whether the permutations
act on upper or lower indices, so that all the determinental identities remain
valid for V ∗ as for V .
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5.2 Grassmann’s Theorem by Fiat

Nothing prevents us from taking Grassmann’s theorem as simply a definition of
the action of Λr(V ∗) on Λr(V ). However, it would be necessary to show that
the action is well defined;

if v1∧. . .∧vr = w1∧. . .∧wr then (f1∧. . .∧f r)(v1∧. . .∧vr) = (f1∧. . .∧f r)(w1∧. . .∧wr)

and similarly for f1 ∧ . . . ∧ f r = g1 ∧ . . . ∧ gr. This would be extremely te-
dious, and to reduce the tedium authors who use this method generally omit
the verification.

A much better method is as follows. Define a function

(f1 ∧ . . . ∧ f r)(v1, . . . , vr) = det(f i(vj))

and show, which is trivial, that it is an alternating bilinear function on V ×
. . .×V . By Axiom 4a, this induces the map required by Grassmann’s theorem.
This still leaves the question of whether the map is well defined on f1∧ . . .∧f r,
but this becomes obvious if we remember that V ∗∗ = V , so that the roles of
f i and vj may be interchanged. We may now regard Grassmann’s theorem as
proved, but for many a sense of unease will remain, in that no derivation of
Grassmann’s theorem has been provided. While this would not be a drawback
in, for example, number theory, it is more uncomfortable in Linear Algebra or
Differential Geometry. Therefore, in the next two sections we will present two
methods for deriving Grassmann’s theorem. It is worth noting that already we
know that

dimΛr(V ∗) =

(
n

r

)

= dimΛr(V )

and this is sufficient to guarantee that there is an isomorphism of Λr(V ∗) and
Λr(V )∗.
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5.3 Grassmann’s Theorem by Tensor Products

The easiest derivation of Grassmann’s theorem is by the use of tensor products,
since we already know the action of f1 ⊗ . . .⊗ f r on v1 ⊗ . . .⊗ vr which is

(f1 ⊗ f2 ⊗ . . .⊗ f r)(v1 ⊗ v2 ⊗ . . .⊗ vr) = f1(v1)f
2(v2) . . . f

r(vr).

The drawback is that this method is not available if Grassmann products are
approached without use of tensor products, as for example, would be done in
an axiomatic treatment.

We recall that we left unspecified the multiplicative function S(r!) in the
definition

v1 ∧ . . . ∧ vr =
S(r!)

r!

∑

π∈Sr

sgn(π)vπ(1) ⊗ . . .⊗ vπ(r) (1)

At this point, as we will see, the most natural choice is to set

S(r!) =
√
r!

and thus
v1 ∧ . . . ∧ vr = 1√

r!

∑

π∈Sr

sgn(π)vπ(1) ⊗ . . .⊗ vπ(r) (2)

We will then have

(f1 ∧ . . . ∧f r)(v1 ∧ . . . ∧ vr)

=
(

1√
r!

∑

π∈Sr

sgn(π)fπ(1) ⊗ . . .⊗ fπ(r)
)(

1√
r!

∑

σ∈Sr

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(

= 1
r!

∑

π∈Sr

sgn(π)
∑

σ∈Sr

sgn(σ)(fπ(1) ⊗ . . .⊗ fπ(r))(vσ(1) ⊗ . . .⊗ vσ(r))

= 1
r!

∑

π∈Sr

sgn(π)
∑

σ∈Sr

sgn(σ)fπ(1)(vσ(1))f
π(2)(vσ(2)) . . . f

π(r)(vσ(r))

= 1
r!

∑

π∈Sr

sgn(π) det





fπ(1)(v1) . . . fπ(1)(vr)
. . . . . . . . .

fπ(r)(v1) . . . fπ(r)(vr)





= 1
r! r! det





f1(v1) . . . f1(vr)
. . . . . . . . .

f r(v1) . . . f r(vr)





= det(f i(vj))

Notice here the critical role played by the factor 1√
r!
. Its presence in both

definitions of Grassmann products in terms of tensor products contributes the
critical factor 1

r! which cancels out near the end. To be more precise, if we
wish to use a formula like (2) to define Grassmann products in terms of tensor
products, and if we wish to use the same factor for both the space V and the
dual space V ∗, then the choice of S(r!) in formula (1) must be S(r!) =

√
r!
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5.4 Grassmann’s Theorem by Use of a Basis

To derive Grassmann’s theorem in a plausible way without tensor products we
may proceed by insisting that the relationship between basis and dual basis
persist in Λr(V ) and Λr(V ∗) in analogy to the way it works in Λ1(V ) = V
and Λ1(V ∗) = V ∗ Essentially, we are again defining Grassmann’s theorem to be
true, but we are doing so in a more plausible way than in section 5.2.

Let eσ, σ ∈ Sn,r be a basis for Λr(V ) and eτ , τ ∈ Sn,r be a basis for
Λ1(V ∗), where

eτ = eτ(1) ∧ . . . ∧ eτ(r)

and e1, e2, . . . , en ∈ V ∗ is the dual basis to e1, e2, . . . , en ∈ V . By definition of
the dual basis we have

ei(ej) =

{
1 if i = j
0 if i 6= j

We regard the index i to be a way of writing

i =

(
1
i1

∣
∣
∣
∣

2 . . . i i+ 1 . . . n
1 . . . i− 1 i+ 1 . . . n

)

and similarly for j, so that a reasonable generalization becomes

eσ(eτ ) =
{
1 if σ = τ
0 if σ = τ

for σ, τ ∈ Sn,r .

This define the action of the basis element eσ ∈ Λr(V ∗) on the basis element
eτ ∈ Λr(V ), and hence defines eσ uniquely on all of Λr(V ). Once the action of
the basis elements of Λr(V ∗) have been defined, the action of any element of
Λr(V ∗) is uniquely defined by linearity.

With the action of Λr(V ∗) on Λr(V ) defined for basis elements, we may
derive the general formulas as follows. Let vj = αi

jei and f l = βl
ke

k, where
j = 1, . . . , n and l = 1, . . . , n. Then

(f1 ∧ . . . ∧ f r)(v1 ∧ . . . ∧ vr) =
( ∑

σ∈Sn,r

det(βl
σ(j))e

σ
)( ∑

ρ∈Sn,r

det(α
ρ(l)
j )eρ

)

=
∑

σ,ρ∈Sn,r

det(βl
σ(j)) det(α

ρ(l)
j )eσ(eρ)

=
∑

σ∈Sn,r

det(βl
σ(j)) det(α

σ(l)
j )

= det
(
βl
iα

i
j

)

by the Cauchy–Binet theorem. We now note that

det
(
f l(vj)

)
= det

(
(βl

ke
k)(αi

jei)
)

= det
(
βl
kα

i
je

k(ei)
)

= det
(
βl
iα

i
j

)
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so that we have Grassmann’s theorem

(f1 ∧ . . . ∧ f r)(v1 ∧ . . . ∧ vr) = det
(
f l(vj)

)
.
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5.5 The Space of Multilinear Functionals

We now wish to consider the space of r-multilinear functionals F (x1, . . . , xr) on
V . We first note that if e1, . . . , en is a basis for V then , with vj = αi

jei, we
have

F (v1, . . . , vr) = F (αi1ei1 , . . . , α
ireir)

= αi1 . . . αirF (ei1 , . . . , eir ) .

Thus two things become obvious. First, a multilinear functional is completely
determined by its values on r-tuples of basis elements for inputs. Second, if the
values are specified on all r-tuples of basis elements as inputs then the above
equation, using these values, will generate a multilinear functional.

Since the multilinear functionals are clearly a vector space, it is reasonable
to seek a basis and determine the dimension. A basis is easily found; we set

F i1...ir (v1, . . . , vr) =

{
1 if vj = eij , 1 ≤ j ≤ r
0 for any other combination of basis-vector inputs.

By the above formula, this determines a unique multilinear functional F i1...ir

and we may then write any multilinear functional F in terms of the F i1...ir by
the following method. First, with vj = αi

jei,

F i1...ir (v1, . . . , vr) = αj1
1 . . . αjr

r F i1...ir (ej1 , . . . , ejr )

= αi1
1 . . . αir

r

since the term with subscripts i1, . . . , ir is the only non-zero term. Then it
follows that

F (v1, . . . vr) = αi1
1 . . . αir

r F (ei1 , . . . , eir)

= F i1...ir (v1, . . . , vr)F (ei1 , . . . , eir ) ,

from which we see that the F i1...ir span the space of multilinear functionals.
These are clearly linearly independent, for if we have a linear combination

αi1...irF
i1...ir = 0

then, applying it to the arguments ej1 , . . . , ejr , we will have

αj1...jr = 0 .

We can now clearly see that the dimension of the space of multilinear
functionals is [dim(V )]r = nr.

Readers familiar with chapter 2 (tensor products) will have noticed a sim-
ilarity
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between the space of multilinear functionals and
⊗r

i=1 V
∗. Essentially, they are

the same:

Theorem
⊗r

i=1 V
∗ and the space of multilinear functionals are isomorphic.

Proof Consider the mapping F : V ∗ × . . . × V ∗ → (space of multilinear
functionals) given by

[F (f1, . . . , f r)](v1, . . . , vr) = f1(v1)f
2(v2) . . . f

r(vr) .

F is clearly multilinear. Hence by the fundamental theorem on tensor products,
there is a map

F̃ : V ∗ ⊗ . . .⊗ V ∗ → (space of multilinear functionals)

so that
F̃ (f1 ⊗ . . .⊗ f r) = F (f1, . . . , f r) .

I claim F̃ is an isomorphism. For consider the image F (ei1 ⊗ . . . ⊗ eir ) of the
element ei1 ⊗ . . .⊗ eir . We have

F̃ (ei1 ⊗ . . .⊗ eir)(v1, . . . , vr) = ei1(v1)e
i2(v2) . . . e

ir (vr) .

This will be non-zero for precisely one set of basis vector inputs, namely vj = eij ,
and for that set of inputs it well be 1. Hence

F̃ (ei1 ⊗ . . .⊗ eir ) = F i1...ir

which we previously defined. Since these elements are a basis, and therefore
generate the space of Linear functionals, F̃ is onto. But

dim(

r⊗

i=1

V ∗) = nr = dim(space of multilinear functionals)

Hence F̃ is one-to-one, and thus an isomorphism
Since the Grassmann products Λr(V ∗) may be constructed inside

⊗r
i=1 V

∗

as shown in chapter 2, it must, by the last theorem, be possible to construct
a copy of Λr(V ∗) inside the space of r-multilinear functionals. Guided by the
above isomorphism F̃ , we have the correspondence

ei1 ⊗ . . .⊗ eir
F̃←→ F i1...ir .

But then, as shown in chapter 2, we may take

ei1 ∧ . . . ∧ eir =
√
r! Π sgn(π) eiπ(1) ⊗ . . .⊗ eiπ(r)

=
√
r! 1

r!

∑

π∈Sr

sgn(π)eiπ(1) ⊗ . . .⊗ eiπ(r)

F̃←→
√
r! 1

r!

∑

π∈Sr

sgn(π)F iπ(1) ...iπ(r)
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This suggests the introduction of an operator Π on the space of multilinear
functionals that duplicates the activity of Π on

⊗r
i=1 V

∗. We define

ΠF (v1, . . . , vr) =
1
r!

∑

π∈Sr

sgn(π)F (vπ(1), . . . , vπ(r))

and note

ΠF (vσ(1), . . . , vσ(r)) = 1
r!

∑

π∈Sr

sgn(π)F (vπ(σ(1)), . . . , vπ(σ(r)))

= sgn(σ) 1
r!

∑

π∈Sr

sgn(π)sgn(σ)F (v(πσ)(1), . . . , v(πσ)(r))

= sgn(σ) 1
r!

∑

π∈Sr

sgn(πσ)F (v(πσ)(1) , . . . , v(πσ)(r))

= sgn(σ)ΠF (v1, . . . , vr)

since πσ runs through all the permutations of Sr exactly once when π runs
through all the permutations of Sr exactly once.

Thus for any F , ΠF is an alternating multilinear functional. Moreover, all
alternating multilinear functionals arise in this way since

ΠΠF (v1, . . . , vr) = 1
r!

∑

π∈Sr

sgn(π)ΠF (vπ(1), . . . , vπ(r))

= 1
r!

∑

π∈Sr

sgn(π)2 ΠF (v1, . . . , vr)

= ΠF (v1, . . . , vr)

The alternating multilinear functionals thus constitute a subspace, the
range of Π, of the space of all multilinear functionals.
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5.6 The Star Operator and Duality

The star operator sets up a duality between Λp(V ) and Λn−p(V ∗). It is one of
Grassmann’s most fundamental contributions because it algebraizes the princi-
ple of duality in projective geometry and elsewhere. It also expresses the dual
tensor in differential geometry.

The star operator is not absolute; it requires some additional structure on
V to define. This can be done in a variety of ways, but the simplest seems to
be to choose a basis for the 1–dimensional space Λn(V ∗) (where n = dim(V )).
Once this is chosen, the star operator is uniquely determined. If the basis of
Λn(V ∗) is changed, the ∗ operator accumulates a constant factor but is otherwise
unaffected. In the presence of a metric, more stability is possible, as we will
discuss in the next chapter. Suppose we have selected a fixed basis element
Ω∗ ∈ Λn(V ∗). Let m ∈ Λn−p(V ∗) be fixed and l ∈ Λp(V ∗). We have l ∧m ∈
Λn(V ∗) which is 1–dimensional. Given our basis element Ω∗ we have, for some
element fm(l)

l ∧m = fm(l)Ω∗

where fm(l), as a function of l ∈ Λp(V ∗), is clearly a linear functional of Λp(V ∗)
to the Field. Since the dual space of Λp(V ∗) can be identified with Λp(V ), we
can find a element vm ∈ Λp(V ) so that we have

fm(l) = 〈l, vm〉
l ∧m = 〈l, vm〉Ω∗

Now the map m 7→ fm 7→ vm is clearly linear as a function from Λn−p(V ∗) to
Λp(V ). We will show that this map is injective. Indeed, suppose that m 7→ 0
for some m. Then l ∧ m = 0 for all l, so we know that m = 0 by section
(∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗). Since dimΛp(V ) =

(
n
p

)
= dimΛn−p(V ∗), the mapping

m 7→ vm is an isomorphism of Λn−p(V ∗) onto Λp(V ) and thus has an inverse
∗: Λp(V )→ Λn−p(V ∗) satisfying

l ∧ ∗v = 〈l, v〉Ω∗ for l ∈ Λp(V ∗), v ∈ Λp(V )

which is the primary equation for the ∗ operator. Similarly, we can define an
operator ∗: Λp(V ∗)→ Λn−p(V ) defined by the dual equation

u ∧ ∗l = 〈l, u〉Ω for u ∈ Λp(V ), l ∈ Λp(V ∗)

where Ω is a basis element of Λn(V ).
Either ∗ may be used in isolation with the selection of an appropriate Ω∗

or Ω. However, they will not interact properly unless we have the additional
condition

〈Ω∗,Ω〉 = 1

From now on we will always assume this condition is satisfied.
Note that a choice of either Ω∗ or Ω together with the above condition

determines the other uniquely.
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The ∗ operator depends on the choice of Ω∗ (or Ω). If a new choice is made,
the ∗ operator will accumulate a constant factor.

Indeed, let us suppose that we make another choice Ω̃ of Ω, so that

Ω̃ = κΩ.

Then the condition 〈Ω∗,Ω〉 = 1 will force

Ω̃∗ = 1
κ
Ω∗ .

Let ∗̃ be the corresponding ∗ operator for Ω̃∗ and Ω̃. Then

l ∧ ∗̃v = 〈l, v〉Ω̃∗ for l ∈ Λp(V ∗) v ∈ Λp(V )

= 〈l, v〉 1
κ
Ω∗

= 1
κ
〈l, v〉Ω∗

= 1
κ
l ∧ ∗v

= l ∧ ( 1
κ
∗ v)

which shows that
∗̃v = 1

κ
∗ v, for v ∈ Λp(V ).

Similarly, for l ∈ Λp(V ∗) and u ∈ Λp(V )

u ∧ ∗̃l = 〈l, u〉Ω̃ = 〈l, v〉κΩ = κ〈l, v〉Ω = κu ∧ ∗l
= u ∧ (κ ∗ l)

so that
∗̃l = κ(∗l) for l ∈ Λp(V ∗).

Now suppose we are given a basis e1, . . . , en of V and we set Ω = e1∧. . .∧en.
Let e1, . . . , en be the dual basis and set Ω∗ = e1 ∧ . . . ∧ en. Then

〈Ω∗,Ω〉 = 〈e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en〉 = det
(
(ei, ej)

)
= 1

by Grassmann’s theorem, so Ω∗ and Ω satisfy the required condition 〈Ω∗,Ω〉 = 1.
We now wish a formula for ∗eσ where eσ ∈ Sn,p is a basis element of Λp(V ).

We recall that for basis elements eπ, π ∈ Sn,p of Λp(V ∗) and eρ, ρ ∈ Sn,n−p of
Λn−p(V ∗) we have

eπ ∧ eρ =

{

0 for eρ 6= eπ̃

sgn(π)Ω∗ for eρ = eπ̃

where π̃ is the reverse of π (see section 3.2). Let (summation convention!)
∗eσ = αρe

ρ. Then

〈eπ, eσ〉Ω∗ = eπ ∧ ∗eσ π, σ ∈ Sn,p
= eπ ∧ αρe

ρ ρ ∈ Sn,n−p

δπσ Ω∗ = sgn(π)απ̃Ω
∗
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since the only value of ρ in the second line to contribute a non zero value is
ρ = π̃. From the last equation we see that απ̃ = 0 when π 6= σ and απ̃ = sgn(π)
when π = σ. Thus, since π̃ runs through Sn,n−p when π runs through Sn,p we
have

∗eσ = αρe
ρ = απ̃e

π̃ = sgn(σ)eσ̃

which is the desired formula. Similarly

∗eσ = sgn(σ)eσ̃ .

Now we want to compute ∗ ∗ v. Recall from our work on permutations in

section 3.2 that if Tn = n(n+1)
2 is the nth triangular number then

Tp + Tn−p + p(n− p) = Tn

and
sgn(π) = (−1)

∑p

k=1 π(k)−Tp for π ∈ Sn,p
and thus

sgn(π)sgn(π̃) = (−1)
∑p

k=1 π(k)−Tp × (−1)
∑n−p

l=1 π̃(l)−Tn−p

= (−1)
∑

n
k=1 π(k)−Tp−Tn−p

= (−1)Tn−Tp−Tn−p

= (−1)p(n−p)

From this we easily derive

Theorem The formulas for ∗∗ are

∗ ∗ v = (−1)p(n−p)v for v ∈ Λp(V )

∗ ∗ l = (−1)p(n−p)v for l ∈ Λp(V ∗)

Proof It suffices to prove the formula for v, the proof for l being identical. It
also suffices to prove the formula for basis elements eπ, π ∈ Sn,p since it will
then follow for general v by linearity.

∗ ∗ eπ = ∗ sgn(π)eπ̃

= sgn(π) ∗ eπ̃

= sgn(π)sgn(π̃)e˜̃π

= (−1)p(n−p)eπ

It would be preferable to derive the formula ∗ ∗ v = (−1)p(n−p) without the
use of a basis, but I have not been able to find a way to do this. However, from
the definitions the following related formulas are easily derivable:

〈∗v, ∗m〉Ω∗ = ∗v ∧ ∗ ∗m = (−1)p(n−p) ∗ ∗m ∧ ∗v = (−1)p(n−p)〈∗ ∗m, v〉Ω∗

〈∗v, ∗m〉Ω = ∗m ∧ ∗ ∗ v = (−1)p(n−p) ∗ ∗v ∧ ∗m = (−1)p(n−p)〈m, ∗ ∗ v〉Ω
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and thus

〈∗v, ∗m〉 = (−1)p(n−p)〈∗ ∗m, v〉 = (−1)p(n−p)〈m, ∗ ∗ v〉

Corollary For v ∈ Λp(V ) and l ∈ Λp(V ∗) we have

〈∗v, ∗l〉 = 〈l, v〉

Proof From the above formula and the Theorem

〈∗v, ∗m〉 = 〈m, (−1)p(n−p) ∗ ∗v〉 = 〈m, v〉

In the foregoing discussion we have tacitly assumed that 1 ≤ p ≤ n−1. We
now wish to complete the discussion for the cases p = 0 and p = n. Recall that
Λ0(V ) is the Field of scalars, and that for α ∈ Λ0(V ), A ∈ Λp(V ), 0 ≤ p ≤ n we
defined α ∧ A = A ∧ α = αA. Also, 〈λ, α〉 = λα for λ ∈ Λ0(V ∗) by definition.
Thus we can rewrite the basic equation

l ∧ ∗u = 〈l, u〉Ω∗ for l ∈ Λp(V ∗), u ∈ Λp(V )

as

λ ∧ ∗α = 〈λ, α〉Ω∗ for λ ∈ Λ0(V ∗), u ∈ Λ0(V )

λ ∗ α = λαΩ∗

which gives us that
∗α = αΩ∗

so
∗1 = Ω∗

and then
1 = (−1)0·(n−0) · 1 = ∗ ∗ 1 = ∗Ω∗ .

Similarly, when 1 is regarded as a member of Λ0(V ∗), we derive

∗1 = Ω and 1 = ∗Ω.

Notice that ∗1 depends on which ∗ is being used.

The foregoing formula for ∗ on the basis elements, ∗eσ = sgn(σ)eσ̃ is actu-
ally valid for a wider class of products than just the basis elements eσ. In fact,
we have for any σ ∈ Sn

∗(eσ(1) ∧ . . . ∧ eσ(p) = sgn(σ)eσ(p+1) ∧ . . . ∧ eσ(n)

This formula may be derived by examining interchanges of elements, but the
following technique is much more interesting and may have applications in other
contexts.
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The general concept is perhaps clearer if illustrated by an example. We
take n = 7 and p = 4 and

σ =

(
1 2 3 4 5 6 7
4 2 6 3 7 1 5

)

Since p = 4 we will now arrange the first four elements in σ in increasing order,
and then the last three elements also in increasing order to get

σ =

(
2 4 1 3 6 7 5
2 3 4 6 1 5 7

)

Now the central point is the rearrangement of the top level of the permutation
σ can be accomplished by another permutation π which clearly is (compare top
line of last equation for σ with outputs for π)

π =

(
1 2 3 4 5 6 7
2 4 1 3 6 7 5

)

We then have

τ = σπ =

(
1 2 3 4
2 3 4 6

∣
∣
∣
∣

5 6 7
1 5 7

)

∈ S7,4

because the first four and last three elements were arranged in increasing order,
as required to be in S7,4. It is worth noting that we could have formed τ
immediately from σ by rearrangement of the first four and last three elements
in increasing order, and then found π as

π = σ−1τ.

The permutation π has the interesting property that it exchanges the first four
elements among themselves and last three elements among themselves. To see
this, note that for 1 ≤ j ≤ 4 we have σ(π(j)) = τ(j) ∈ {σ(1), σ(2), σ(3), σ(4)}
so we must have π(j) ∈ {1, 2, 3, 4}, and similarly for 5 ≤ j ≤ 7. Thus π can be
written as a product π = π1π2 where

π1 =

(
1 2 3 4 5 6 7
2 4 1 3 5 6 7

)

and π2 =

(
1 2 3 4 5 6 7
1 2 3 4 6 7 5

)

Now all this reasoning is perfectly general; we can for any σ ∈ Sn and any p
with 1 ≤ p ≤ n a permutation π ∈ Sn and a τ ∈ Sn and any p with 1 ≤ p ≤ n
a permutation π ∈ Sn,p so that

τ = σπ

and π has the property that
π = π1π2

where for p+1 ≤ j ≤ n we have π1(j) = j and for 1 ≤ k ≤ p we have π2(k) = k.
We then have, since τ ∈ Sn,p,

∗eτ = sgn(τ)eτ̃
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or, more explicitly,

∗(eτ(1) ∧ . . . ∧ eτ(p)) = sgn(τ)eτ(p+1) ∧ . . . ∧ eτ(n)

We now replace τ by σπ and using the elementary properties of permutations
as they relate to products of vectors we have

∗(eσπ(1) ∧ . . . ∧ eσπ(p)) = sgn(σπ)eσπ(p+1) ∧ . . . ∧ eσπ(n)

sgn(π1) ∗ (eσ(1) ∧ . . . ∧ eσ(p)) = sgn(σ)sgn(π)sgn(π2)e
σ(p+1) ∧ . . . ∧ eσ(n)

(eσ(1) ∧ . . . ∧ eσ(p)) = sgn(σ)sgn(π)sgn(π2)sgn(π
−1
1 )eσ(p+1) ∧ . . . ∧ eσ(n)

= sgn(σ)sgn(π)sgn(π2)sgn(π1)e
σ(p+1) ∧ . . . ∧ eσ(n)

= sgn(σ)[sgn(π)]2eσ(p+1) ∧ . . . ∧ eσ(n)

= sgn(σ)eσ(p+1) ∧ . . . ∧ eσ(n)

as desired.

It is worth noting here that all we require of e1, . . . , en is that it be a basis,
that is that it be a linearly independent set. Thus the formula will work for any
permutation and any set of linearly independent vectors. Of course, the catch
is one must first find the dual set of elements in the dual space V ∗.
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5.7 The δ systems and ǫ systems

For computations of various quantities in coordinates it is useful to define certain
quantities which act more like what we are accustomed to in linear algebra. The
quantities also make it easier to interact the Grassmann product with other
types of quantities. On the other hand, these quantities can be used to obscure
the role of increasing permutations on Grassmann algebra, with the result that
the theory looks much more complicated than it really is.

Let V be an n-dimensional vector space, e1, . . . en a basis of V and e1, . . . en

the dual basis of V ∗. To maintain symmetry we will express the value of a linear
functional f ∈ V ∗ on an element v ∈ V by 〈f, v〉 rather than f(v) and similarly
for elements of Λr(V ∗) and Λr(V ). We now define

Def δi1,...,irj1,...,jr
= 〈ei1 ∧ . . . ∧ eir , ej1 ∧ . . . ∧ ejr〉.

As a special case we have
δi1j1 = 〈ei1 , ej1〉

This is the ordinary Kronecker delta. The above represents a generalization.
Next, by Grassmann’s theorem we have

δi1,...,irj1,...,jr
= det





〈e1, e1〉 . . . 〈e1, er〉
. . . . . . . . .
〈er, e1〉 . . . 〈er, er〉





= det





δ11 . . . δ1r
. . . . . . . . .
δr1 . . . δrr





This last equation is used as a definition of δi1,...,irj1,...,jr
when this quantity is required

and no Grassmann algebra is available.
These equations allow us to discuss δi1,...,irj1,...,jr

in more detail. First we no-

tice that if jk is not among i1, . . . , ir then δiljk = 0 for all l = 1, . . . , r so the
determinant has the value 0. From this we see that

δi1,...,irj1,...,jr
= 0 if {i1, . . . ir} 6= {j1, . . . jr} as sets.

We also notice that δi1,...,irj1,...,jr
= 0 if i1 . . . ir are not all distinct (since the de-

terminant would then have a repeated column) and similarly for the indices
j1 . . . jr.

Next we have for π ∈ Sr

δ
iπ(1)...iπ(r)

j1 ... jr
= det





〈eiπ(1) , ej1〉 . . . 〈eiπ(1) , ejr 〉
. . . . . . . . .

〈eiπ(r) , ej1〉 . . . 〈eiπ(r) , ejr〉





= sgn(π) det





〈ei1 , ej1〉 . . . 〈ei1 , ejr 〉
. . . . . . . . .

〈eir , ej1〉 . . . 〈eir , ejr 〉





= sgn(π)δi1...irj1...jr
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Setting ik = jk = k for k = 1, . . . , r gives

δ
iπ(1)...iπ(r)

j1 ... jr
= sgn(π)δ1...r1...r = sgn(π).

Here are some examples:

Examples: 1 = δ137137 = −δ173137 = δ713137

0 = δ136137

We now derive some computational formulas useful from time to time. The
reader may wish to skim this material until she has reason to want to understand
the proofs, which are straightforward but not very interesting.

We wish to contract δi1,...,irj1,...,jr
on the last two indices, which means that we

make the last upper and lower indices equal and then sum from 1 to n. To do
this, we must first expand by the last column the determinant

δ
i1...ir−1ir
j1...jr−1jr

=

δi1j1 . . . δi1jr−1
δi1jr

δi2j1 . . . δi2jr−1
δi2jr

. . . . . . . . . . . .
δirj1 . . . δirjr−1

δirjr

which gives

(−1)rδi1jrδ
i2...ir
j1...jr−1

+(−1)r+1δi2jrδ
i1i3...ir
j1...jr−1

+(−1)r+2δi3jrδ
i1i2i4...ir
j1 ... jr−1

+. . .++(−1)r+rδirjrδ
i1...ir−1

j1...jr−1

We now identify ir and jr and sum over the repeated index

δ
i1...ir−1ir
j1...jr−1ir

= (−1)rδi1ir δ
i2...ir
j1...jr−1

+ (−1)r+1δi2ir δ
i1i3...ir
j1...jr−1

+ (−1)r+2δi3ir δ
i1i2i4...ir
j1 ... jr−1

+

+ . . .+ (−1)r+rδirir δ
i1...ir−1

j1...jr−1

= (−1)rδi2...ir−1i1
j1...jr−1

+ (−1)r+1δ
i1i3...ir−1i2
j1 ... jr−1

+ (−1)r+2δ
i1i2i4...ir−1i3
j1 ... jr−1

+

+ . . .+ nδ
i1...ir−1

j1...jr−1

= (−1)r(−1)r−1δ
i1i2...ir−1

j1 ... jr−1
+ (−1)r+1(−1)r−2δ

i1i2i3...ir−1

j1 ... jr−1
+

+(−1)r+2(−1)r−3δ
i1i2i3i4...ir−1

j1 ... jr−1
+ . . .+ nδ

i1...ir−1

j1...jr−1

= (r − 1)(−1)δi1...ir−1

j1...jr−1
+ nδ

i1...ir−1

j1...jr−1

= (n− r + 1)δ
i1...ir−1

j1...jr−1
.

We can now repeat this process;

δ
i1...isis+1...ir
j1...jsis+1...ir

= (n− r + 1)δ
i1...isis+1...ir−1

j1...jsis+1...ir−1

= (n− r + 1)(n− r + 2)δ
i1...isis+1...ir−2

j1...jsis+1...ir−2

= . . .

= (n− r + 1)(n− r + 2) . . . (n− r + r − s)δi1...isj1...js

= (n−s)!
(n−r)!

δi1...isj1...js
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If we set r = s+ t, this can be rewritten as

δ
i1...isis+1...is+t

j1...jsis+1...is+t
= (n−s)!

(n−s−t)!
δi1...isj1...js

.

Setting s = 1 gives
δ
i1i2...itit+1

j1i2...itit+1
= (n−1)!

(n−1−t)!
δi1j1

and contracting i1 and j1 gives

δ
i1i2...itit+1

i1i2...itit+1
= (n−1)!

(n−1−t)! δ
i1
i1

= (n−1)!
(n−1−t)!n = n!

(n−1−t)!

so that, more simply,
δi1...iri1...ir

= n!
(n−r)!

and
δi1...ini1...in

= n!
(n−n)!

= n! .

Now let Ai1...ir be any system of scalars indexed by r indices. Then

δi1...irj1...jr
Ai1...ir =

∑

π∈Sr

sgn(π)Ajπ(1) ...jπ(r)

since the δ term is 0 unless i1, . . . , ir is a permutation π of j1, . . . , jr, and if this
is the case the value is then sgn(π). Applying this formula to

Ai1...ir = δk1...kr

i1...ir

gives

δi1...irj1...jr
δk1...kr

i1...ir
=

∑

π∈Sr

sgn(π)δk1 ... kr

jπ(1) ...jπ(r)

=
∑

π∈Sr

[sgn(π)]2δk1...kr

j1...jr

= r!δk1...kr

j1...jr
.

It will occasionally prove useful to have a variant of the generalized Kro-
necker delta for use with increasing permutations. Let σ, τ ∈ Sn. Then we
define

Def δ
σ(i1,...,ir)
σ(j1,...,jr)

= δ
σ(i1)σ(i2)...σ(ir)
τ(j1)τ(j2)...τ(jr)

.

If, in addition, σ, τ ∈ Sn,r, we will define

Def δστ = δ
σ(i1,...,ir)
σ(j1,...,jr)

= δ
σ(i1)σ(i2)...σ(ir)
τ(j1)τ(j2)...τ(jr)

for σ, τ ∈ Sn,r .

We then notice the interesting circumstance that

δστ =
{
0 if σ 6= τ
1 if σ = τ

for σ, τ ∈ Sn,r
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because if σ 6= τ then {σ(1), . . . , σ(r)} and {τ(1), . . . , τ(r)} are distinct as sets
and the Kronecker delta must be 0.

Clearly, if Aσ is a quantity indexed by σ ∈ Sn,r then

δστAσ = Aτ .

We will find the following formula occasionally useful:

∑

π∈Sn,r

δ
π(1)...π(r)
i1 ... ir

δ j1 ... jr
π(1)...π(r) = δi1...irj1...jr

.

This formula is almost obvious; we go into detail only to illustrate some tech-
nique. Fir, we note that unless {i1, . . . , in} and {j1, . . . , jn} coincide as sets,
both sides are 0. Supposing now that {i1, . . . , in} and {j1, . . . , jn} coincide as
sets there will be exactly one π0 ∈ Sn,r having these sets as value, so that for
k = 1, . . . , r

iσ(k) = π0(k) ik = π0(σ
−1(k))

jρ(l) = π0(l) jl = π0(ρ
−1(l))

for some σ, ρ ∈ Sr .

Then

∑

π∈Sn,r

δ
π(1)...π(r)
i1 ... ir

δ j1 ... jr
π(1)...π(r) = δ

π0(1)...π0(r)
i1 ... ir

δ j1 ... jr
π0(1)...π0(r)

= δ
iσ(1)...iσ(r)

i1 ... ir
δ j1 ... jr
jρ(1)...jρ(r)

= sgn(σ)sgn(ρ)

= sgn(σ−1)sgn(ρ−1)δ
π(1)...π(r)
π(1)...π(r)

= δ
π0(ρ

−1(1))...π0(ρ
−1(r))

π0(σ−1(1))...π0(σ−1(r))

= δi1...irj1...jr

as desired. We have gone into the matter in such detail to illustrate that bridging
the gap between a set of indices {i1, . . . , ir} and a π ∈ Sn,r may be rigorously
accomplished through the action of a σ ∈ Sr. This is seldom necessary but it is
comforting to know the technique exists.

Closely related to the generalized Kronecker deltas are the computationally
useful ε-systems.

Def εi1...in = δ1 ... n
i1...in

εi1...in = δi1...in1 ... n

Notice that an ε-system has n = dim(V ) indices whereas the generalized
Kronecker deltas may have any number of indices. Second, notice that i1, . . . in
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must be a permutation of 1, . . . , n or the ε-symbol has the value 0. Finally, from
the properties of the δ-symbol we see

ε1...n = 1

εiπ(1)...π(n)
= δ1 ... n

iπ(1)...iπ(n)

= sgn(π)δ1 ... n
i1...in

= sgn(π)εi1...in .

Setting ij = j we have

επ(1)...π(n) = sgn(π)δ1...n1...n

= sgn(π) .

The calculations are similar for εi1...in . Thus we have

εi1...in = εi1...in =

{
0 if i1, . . . , in is not a permutation of 1, . . . , n
sgn(π) if ij = π(j) for some π ∈ Sn .

We now establish that
εi1...inεj1...jn = δi1...inj1...jn

.

Both sides are 0 if i1, . . . , in are not all distinct. Similarly for j1, . . . , jn. Thus
to have a non-zero result we must have j1, . . . , jn a permutation of 1, . . . , n and
similarly with i1, . . . , in. Hence there are permutations π, σ ∈ Sn for which

ik = π(k)

jl = σ(l)

Then we will have

δi1...inj1...jn
= δ

π(1)...π(n)
j1 ... jn

= sgn(π)δ1 ... n
j1...jn

= sgn(π)δ1 ... n
σ(1)...σ(n) = sgn(π)sgn(σ)δ1...n1...n

= sgn(π)sgn(σ)

= επ(1)...π(n)εσ(1)...σ(n)

= εi1...inεj1...jn

We note that
εi1...ini1...in

= δi1...ini1...in
= n!

The ε-systems express the same idea as the sign of a permutation with the
added advantage that if the indices are repeated then the ε-symbol gives the
value 0. The disadvantage is that it is very hard to keep control of any ideas
when one is manipulating ε-systems.

An important use of the ε-systems is in the theory of determinants. We
recall that

det





α1
1 . . . α1

n

. . . . . . . . .
αn
1 . . . αn

n



 =
∑

π∈Sn

sgn(π)α1
π(1) · · ·αn

π(n) .
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We can replace sgn(π) by an ε-symbol, and introduce 0 terms for repeated
indices, so that

det(αi
j) = εi1...inα1

i1
α2
i2
· · ·αn

in
.

We can now rearrange the factors with a permutation π ∈ Sn and rewrite

det(αi
j) = εi1i2...inα

π(1)
iπ(1)

α
π(2)
iπ(2)
· · ·απ(n)

iπ(n)

= sgn(π)εiπ(1)iπ(2)...iπ(n)α
π(1)
iπ(1)

α
π(2)
iπ(2)
· · ·απ(n)

iπ(n)
.

We can now relable the iπ(k) = jk and get

det(αi
j) = sgn(π)εj1j2...jnα

π(1)
j1

α
π(2)
j2
· · ·απ(n)

jn
.

Summing this last equation over π ∈ Sn we have

n! det(αi
j) =

∑

π∈Sn

sgn(π)εj1j2...jnα
π(1)
j1

α
π(2)
j2
· · ·απ(n)

jn

and introducing another ε-symbol for sgn(π) we have

det(αi
j) = 1

n!εi1...inε
j1j2...jnαi1

j1
· · ·αin

jn

= 1
n!δ

j1j2...jn
i1...in

αi1
j1
· · ·αin

jn
.

We want now to use the generalized Kronecker deltas to describe Grass-
mann algebra coefficients. We can derive all this from previous material, but
will first introduce the basic idea from first principles.

Let w1 = α1
1v1 + α2

1v2 + α3
1v3 and w2 = α1

2v1 + α2
2v2 + α3

2v3. Then

w1 ∧ w2 = α2
1α

3
2 − α3

1α
2
2v1 ∧ v2 + two other terms.

The coefficient of v1 ∧ v2 is
δ23ij α

i
1α

j
2

In a similar way, if wi = αj
ivj then the coefficient of vπ(1) ∧ . . .∧ vπ(r), π ∈ Sn,r

in wσ(1) ∧ . . . ∧ wσ(r), σ ∈ Sn,r is

δ
π(1)...π(r)
i1 ... ir

αi1
σ(1) . . . α

ir
σ(r) .

We have treated this problem before, in section 3.3, where we found that the
coefficient was

απ
σ = det





α
π(1)
σ(1) . . . α

π(1)
σ(r)

. . . . . . . . .
α
π(r)
σ(1) . . . α

π(r)
σ(r)





so that the above expression coincides with this determinant:

απ
σ = δ

π(1)...π(r)
i1 ... ir

αi1
σ(1) · · ·α

ir
σ(r) .
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We now wish to rewrite the product itself with generalized Kronecker deltas.
First, notice that the last equation will remain valid if π(i) and σ(j) are replaced
by sets of distinct (not necessarily increasing) indices:

det





αi1
k1

. . . αi1
kr

. . . . . . . . .
αir
k1

. . . αir
kr



 = δj1...jri1...ir
αi1
k1
· · ·αir

kr

because both sides will undergo similar changes in sign if the j1 . . . jr and
k1 . . . kr are permuted into increasing sequences of indices. Next notice that
if j1 . . . jr are not all distinct then both sides are 0, and similarly if k1 . . . kr
are not all distinct. Thus the relationship is true for any valued of j1 . . . jr and
k1 . . . kr. Now notice that

vσ(1) ∧ · · · ∧ vσ(r) = sgn(π) vσ(π(1)) ∧ · · · ∧ vσ(π(r))

= 1
r!

∑

π∈Sn

sgn(π)vσ(π(1)) ∧ · · · ∧ vσ(π(r))

= δ i1 ... ir
σ(1)...σ(1)vi1 ∧ · · · ∧ vir

where all the summands in the sums are equal to vσ(1) ∧ · · · ∧ vσ(r), σ ∈ Sn,r.
We are now in a position to write the Grassmann product with the generalized
Kronecker deltas. Indeed

wσ(1) ∧ · · · ∧wσ(r) =
∑

π∈Sn,r

δ
π(1)...π(1)
i1 ... ir

αi1
σ(1) · · ·α

ir
σ(r) vπ(1) ∧ · · · ∧ vπ(r)

= 1
r!

∑

π∈Sn,r

δ
π(1)...π(1)
i1 ... ir

αi1
σ(1) · · ·α

ir
σ(r) δ

j1 ... jr
π(1)...π(1) vj1 ∧ · · · ∧ vjr

= 1
r! δ

j1...jr
i1...ir

αi1
σ(1) · · ·α

ir
σ(r) vj1 ∧ · · · ∧ vjr

where we have used the formula from earlier in the section to eliminate the sum.
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6.1 Introduction

In this chapter we develop Inner Products on the Grassmann algebra. On any
vector space, an inner product can be correlated with an isomorphism between
the vector space V and its dual space V ∗. We can extend this isomorphic
mapping Φ : V → V ∗ to an isomorphic mapping Φ : Λp(V ) → Λp(V ∗) in a
natural way, and this can be reinterpreted to give an inner product. In classical
Tensor Analysis, this is the content behind raising and lowering indices.

The basic tool to develop the formulas for the inner product will be Grass-
mann’s theorem. It would be possible to simply define the inner product to be
the final formula, but the definition then looks rather arbitrary.

We will also develop the ∗-operator in a metric setting. Clasically, ∗
is usually developed by the use of an orthonormal basis, which I feel is im-
proper methodology. The reason for the orthonormal basis is that the metric
∗-operators are really combinations of the ∗-operator of Chapter 5 and the above
isomorphisms generated by the inner product. When the basis is orthonormal,
the isomorphisms become very well behaved and can be virtually ignored, but
this methodology does not work well if the bases are not orthogonal. We show
in this chapter that quite natural formulas for ∗ can be developed for any basis
and that the difficulties can be completely overcome by separating the roles in
the metric versions of ∗ of the above isomorphisms and the ∗ of chapter 5. This
leads to the derivation of doublets of formulas for ∗ which then can be used to
good advantage, since if one of the doublet is not acting productively the other
often will.

We will also see that in the metric setting and real scalars the metric form
of ∗ is almost uniquely defined; it can do no more than change sign when the
basis is changed (and we know when the sign change will occur). In the case of
complex scalars things are less satisfactory and it will turn out that the metric ∗
operator may accumulate a unimodular (|λ| = 1) complex factor when the basis
is changed. There appears no obvious satisfactory way to insulate ∗ from basis
changes in the case of complex scalars.
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6.2 Exporting the Inner Product on V to V ∗,
Λr(V ) and Λr(V ∗)

We first remind the reader of certain of our conventions. If V is a complex
vector space with an inner product (u, v), we specify that the inner product is
linear in the second variable and anti-linear in the first variable:

(λu, v) = λ(u, v) (u, λv) = λ(u, v) .

You may prefer it the opposite way, and it turns out that it will be the opposite
way for the inner product we will create for V ∗. I have tried various alternatives
here and since there is no way to please everyone I have selected this alternative
as being as good as any and better than some.

As with any inner product, we assume it is Hermitian ( (v, u) = (u, v) )
if the scalars are the complex numbers and symmetric ( (v, u) = (u, v) ) if the
scalars are the real numbers. We can handle both cases at once but considering
the conjugate bar to have no effect in the second (real) case. We also assume
the inner product is non-degenerate, which means

if (u, v) = 0 for all v ∈ V then u = 0 .
if (u, v) = 0 for all u ∈ V then v = 0 .

(By the Hermitian or symmetric property, it suffices to assume just one of these.)

An inner product on V creates an anti-isomorphism between V and V ∗.
We recall that a function Φ is anti-linear if it satisfies

Φ(λu + µv) = λΦ(u) + µΦ(v) .

An anti-isomorphism is an anti-linear map which is one-to-one and onto. The
mapping Φ determined by the inner product is defined as follows:

Def 〈Φ(u), v〉 = (u, v) for all u, v ∈ V .

Φ(u) is clearly in V ∗ and we also have

〈Φ(λu + µv), w〉 = (λu + µv,w)

= λ(u,w) + µ(v, w)

= λ〈Φ(u), w〉+ µ〈Φ(v), w〉
= 〈λΦ(u) + µΦ(v), w〉 .

Since this is true for all w ∈ V , we have

Φ(λu + µv) = λΦ(u) + µΦ(v) for all u, v ∈ V .

We now have the basic theorem:



106 CHAPTER 6. INNER PRODUCTS ON V AND V ∗

Theorem Φ : V → V ∗ defined by

〈Φ(u), v〉 = (u, v) for all u, v ∈ V

is an anti-isomorphism. Proof We have already verified the anti-linearity. We

next show that Φ is one-to-one. Suppose Φ(u) = 0. Then for all v ∈ V

(u, v) = 〈Φ(u), v〉 = 〈0, v〉 = 0 .

Since the inner product is non-degenerate, (and this is the place where we really
need it,) we have u = 0. Thus Φ is one-to-one.

To show it is onto, we note the obvious fact that the image Φ[V ] is a
subspace of V ∗. Because Φ is one-to-one, it is an n-dimensional subspace of V ∗.
But dim(V ∗) = dim(V ) = n, so that V ∗ must be the image of Φ and thus Φ is
onto.

Exporting the Inner Product from V to V ∗

We can use Φ−1 to export the inner product on V to an inner product on
V ∗ in the obvious way; Def For ℓ,m ∈ V ∗ we set

(ℓ,m) = (Φ−1(ℓ),Φ−1(m))

where the inner product on the right side of the equation is taken in V . This
inner product is linear in the first variable and anti-linear in the second variable;
for ℓ,m, n ∈ V ∗

(λℓ + µm, n) = (Φ−1(λℓ+ µm),Φ−1(n))

= (λΦ−1(ℓ) + µΦ−1(m),Φ−1(n))

= λ(Φ−1(ℓ),Φ−1(n)) + µ(Φ−1(m),Φ−1(n))

= λ(ℓ, n) + µ(m,n)

and

(ℓ, λm+ µn) = (Φ−1(ℓ),Φ−1(λm+ µn))

= (Φ−1(ℓ), λΦ−1(m) + µΦ−1(n))

= λ(Φ−1(ℓ),Φ−1(m)) + µ(Φ−1(ℓ),Φ−1(n))

= λ(ℓ,m) + µ(ℓ, n)

The Hermitian or symmetric property is obvious. The non-degeneracy is checked
as follows: if (ℓ,m) = 0 for all m ∈ V ∗ then

(Φ−1(ℓ),Φ−1(m)) = (ℓ,m) = 0

and since Φ−1 is onto we then have

(Φ−1(ℓ), v) = 0 for all v ∈ V
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so Φ−1(ℓ) = 0 by the non-degeneracy of the inner product in V and since Φ−1

is one to one, ℓ = 0. Thus (ℓ,m) is an inner product in V ∗.
To maintain the symmetry between V and V ∗ we want to derive one other

formula:

(ℓ,m) = (Φ−1(ℓ),Φ−1(m))

= 〈Φ(Φ−1(ℓ)),Φ−1(m)〉
= 〈ℓ,Φ−1(m)〉 .

Thus we have the two symmetric equations

(u, v) = 〈Φ(u), v〉 for u, v ∈ V
(ℓ,m) = 〈ℓ,Φ−1(m)〉 for ℓ,m ∈ V ∗ .

Exporting the Inner Product from V to Λr(V ) We recall Grassmann’s

Theorem: 〈ℓ1 ∧ . . .∧ ℓr, v1 ∧ . . .∧ vr〉 = det(〈ℓi, vj〉). We also recall that a linear
operator Φ : V → V ∗ may be extended to an operator Φ : Λr(V )→ Λr(V ∗) by
means of the formula Φ(v1 ∧ . . . ∧ vr) = Φ(v1) ∧ . . . ∧ Φ(vr). We use these to
export the inner product from V to Λr(V ) by insisting that the formula

(u, v) = 〈Φ(u), v〉 u, v ∈ V

remain valid for all Λp(V ):

Def (u1 ∧ . . . ∧ ur, v1 ∧ . . . ∧ vr) = 〈Φ(u1 ∧ . . . ∧ ur), v1 ∧ . . . ∧ vr〉.

We then have immediately Grassmann’s Theorem; inner product form

(u1 ∧ . . . ∧ ur, v1 ∧ . . . ∧ vr) = det((ui, vj)) .

Proof

(u1 ∧ . . . ∧ ur, v1 ∧ . . . ∧ vr) = 〈Φ(u1 ∧ . . . ∧ ur), v1 ∧ . . . ∧ vr〉
= 〈Φ(u1) ∧ . . . ∧Φ(ur), v1 ∧ . . . ∧ vr〉
= det(〈Φ(ui), vj〉)
= det((ui, vj)) .

The inner product is now extended by linearity from products of r vectors to

the whole of Λr(V ).

This covers all of the Grassmann algebra of V except Λ0(V ) which is defined
to be the set of scalars. In this case we define

Def (λ, µ) = λµ for λ, µ ∈ Λ0(V ) .

It is sometimes convenient to extend the inner product from each Λr(V ) to the
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entire Grassmann Algebra

Λ(V ) =
n⊕

r=0

Λr(V )

This is easily done by setting

Def (A,B) = 0 if A ∈ Λr(V ) and B ∈ Λs(V ) and r 6= s .

It is also sometimes convenient to extend the definition of Φ to the entire
Grassmann algebra. We have already defined Λr(V ) for all positive r. It only
remains to define Φ : Λ0(V )→ Λ0(V ∗). We first define, for 1 ∈ Λ0(V )

Φ(1) = 1 ∈ Λ0(V ∗)

and then to preserve the usual antilinearity define

Φ(λ) = Φ(λ · 1) = λΦ(1) = λ · 1 = λ

and similarly we have Φ−1 : Λ0(V ∗)→ Λ0(V ) defined by

Φ−1(λ) = λ .

We now have defined the isomorphism Φ of Grassmann algebras completely:

Φ : Λ(V ) =

n⊕

r=0

Λr(V )→
n⊕

r=0

Λr(V ∗) = Λ(V ∗) .

Exporting the Inner Product from V ∗ to Λr(V ∗)

There are several equivalent ways to extend the inner product to Λr(V ∗)
all leading to the same result. We will do it in analogy to the method we used
to go from V to Λr(V ), but here we will use the formula

(ℓ,m) = 〈ℓ,Φ−1(m)〉.

We now insist this formula hold in Λr(V ∗), and for ℓ1, . . . , ℓr,m1, . . . ,mr ∈ V ∗

we define

Def (ℓ1 ∧ . . . ∧ ℓr,m1 ∧ . . . ∧mr) = 〈ℓ1 ∧ . . . ∧ ℓr,Φ−1(m1 ∧ . . . ∧mr)〉 .

One then has the expected result

(ℓ1 ∧ . . . ∧ ℓr,m1 ∧ . . . ∧mr) = 〈ℓ1 ∧ . . . ∧ ℓr,Φ−1(m1 ∧ . . . ∧mr)〉
= det(〈ℓi,Φ1(mj)〉
= det((ℓi,mj)) .

We then extend by linearity to all of Λr(V ∗), and finally to all of Λ(V ∗) =
⊕n

r=0 Λ
r(V ∗) by (A,B)) = 0 for A ∈ Λr(V ∗), B ∈ Λs(V ∗) and r 6= s. We now
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derive some variants of the basic formulas. By definition, for u, v ∈ Λr(V )

(u, v) = 〈Φ(u), v〉 .

But then

(u, v) = 〈Φ(u), v〉 = (u, v) = (v, u)

= 〈Φ(v), u〉 .

Now, setting ℓ = Φ(u), m = Φ(v), we have ℓ,m ∈ Λr(V ∗) and

〈l, v〉 = (Φ−1(ℓ), v)

= 〈Φ(v),Φ−1(ℓ)〉

giving us the interesting formula

〈Φ(v),Φ−1(ℓ)〉 = 〈l, v〉 .

Before moving on, we wish to note that the the formulas used for defining
the inner products on Λr(V ) and on Λr(V ∗) also extend by linearity to all
elements of the Grassmann algebra, giving

(A,B) = 〈Φ(A), B〉 for all A,B ∈ Λr(V )
(A,B) = 〈A,Φ−1(B)〉 for all A,B ∈ Λr(V ∗) .

We have defined Φ on all of the Grassmann algebras Λ(V ) and Λ(V ∗) except
for the bottom levels Λ0(V ) and Λ0(V ∗). Recall that the bottom level Λ0(V ) is
just the scalars, and similarly for Λ0(V ∗). A basis in either case is the number
1. The reasonable definition in the circumstances is for 1 ∈ Λ0(V ) we define

Def Φ(1) = 1 ∈ Λ0(V ∗)

Recalling that Φ has always been an anti-isomorphism, it is reasonable to extend
this by

Φ(λ) = Φ(λ · 1) = λΦ(1) = λ .

We then naturally also have
Φ−1(λ) = λ .

Formulas for Φ and the Inner Products in Coordinates

Now that we have all the necessary formulas in hand, we wish to find the
coordinate forms of the formulas. There are several things to find. We need
matrices which express Φ and Φ−1 and we want matrices for the various inner
products.

First we find the matrix of the inner product for V . We have e1, . . . , en
a basis for V and e1, . . . , en the dual basis of V ∗. (Recall this means that
ei(ej) = 〈ei, ej〉 = δij .) The matrix gij is made from

Def gij = (ei, ej)
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so that gji = gij , and (gij) is a Hermitian (or symmetric if V is a real vector
space) matrix. Since the inner product is non-degenerate, det(gij) 6= 0 and we
can form gkℓ = g−1

ij . Now if u = ρiei and u = σjej we have

(u, v) = (ρiei, σ
jej) = ρiσj(ei, ej)

= gijρiσ
j

Our next job is to find the formula for Φ in coordinates, which is easy. The
”matrix” of Φ can now be found, using the bases e1, . . . , en for V and e1, . . . , en

for V ∗ in the following way:

Φ(ei) = αije
j for some αij

〈Φ(ei), ek〉 = (ei, ek) def of Φ

〈αije
j, ek〉 = gik

αij〈ej, ek〉 = gik

αijδ
j
k = gik

αik = gik

so that
Φ(ei) = gike

k .

If now we set u = ρiei ∈ V then

Φ(u) = Φ(ρiei) = ρiΦ(ei) = gikρie
k .

Since Φ is an anti-isomorphism we would also like to have the formula in coor-
dinates for Φ−1. We have

Φ(ei) = gike
k

so that

ei = Φ−1(gike
k)

= gikΦ
−1(ek)

= gkiΦ
−1(ek)

giℓei = gkig
iℓΦ−1(ek)

= δℓkΦ
−1(ek)

= Φ−1(eℓ)

and thus for ℓ = λie
i ∈ V ∗ we have

Φ−1(ℓ) = Φ−1(λie
i)

= λiΦ
−1(ei)

= gkiλiek .

If one wishes to work entirely in coordinates we can set ℓ = λie
i and u = ρjej

and the formulas that reflect ℓ = Φ(u) and u = Φ−1(ℓ) are

λi = gjiρj Lower with Left index

ρj = gjiλi Raise with Right index
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These are the formulas for ”raising and lowering indices” so familiar from clas-
sical tensor analysis. The meaning behind the activity is representing u ∈ V by
the element Φ(u) ∈ V ∗ or vice-versa. The formulas can also be presented in the
variant forms

λi = gijρj ρj = gijλi

Since Λr(V ) is an inner product space, it will have metric coefficients cor-
responding to any basis, and we now wish to determine their form. To this end
we recall that

eπ = eπ(1) ∧ . . . ∧ eπ(r) form a basis of Λr(V ) where π ∈ Sn,r.

The metric coefficients are then given by

Def gπσ = (eπ, eσ) = (eπ(1) ∧ . . . ∧ eπ(r), eσ(1) ∧ . . . ∧ eσ(r))
= det((eπ(i), eσ(j))) = det(gπ(i)σ(j)), 1 ≤ i, j ≤ r .

Thus, the metric coefficients of Λr(V ) are the size r subdeterminants of
(gij). In terms of basis elements, if u = ραeα and v = σβeβ where α, β ∈ Sn,r,
then

(u, v) = (ραeα, σ
βeβ)

= ρασβ(eα, eβ)

= gαβρασ
β α, β ∈ Sn,r

Now we want the matrix for the inner product in V ∗. We compute

(ei, ej) = (Φ−1(ei),Φ−1(ej))

= (gkiek, g
ℓjeℓ)

= gkigℓj(ek, eℓ)

= gkigℓjgkℓ

= gkiδjk = gji = gij

Thus we have the metric coefficients for the inner product on V ∗ and they turn
out to be the inverse of those of the inner product of V .

Remark Note that we have the following three highly desirable equations:

(ei, ej) = gij (ei, ej) = gij (gij)(g
jk) = (δki ) = I

We are able to get all of these in the case of complex scalars because we have
set up the inner products on V and V ∗ to be antilinear in the opposite slots.
No matter how things are set up there will be inconvenience somewhere, and
this seems to me to be fairly optimal for computational purposes.

We can now find formulas in coordinates for (ℓ,m). Let ℓ = λie
i and

m = µje
j and we have

(ℓ,m) = (λie
i, µje

j)

= λiµj(e
i, ej)

= gijλiµj .
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Just as in the case of Λr(V ) we can now derive the coefficients for the inner
product in Λr(V ∗). We have

eπ = eπ(1) ∧ . . . ∧ eπ(r) form a basis of Λr(V ∗) where π ∈ Sn,r.

The metric coefficients are then given by

gπσ = (eπ, eσ) = (eπ(1) ∧ . . . ∧ eπ(r), eσ(1) ∧ . . . ∧ eσ(r))

= det((eπ(i), eσ(j))) = det(gπ(i)σ(j)), 1 ≤ i, j ≤ r .

Thus, the metric coefficients of Λr(V ) are the size r subdeterminants of (gij).
In terms of basis elements, if ℓ = λαe

α and m = µβe
β where α, β ∈ Sn,r, then

(ℓ,m) = (λαe
α, µβe

β)

= λαµβ(e
α, eβ)

= gαβλαµβ α, β ∈ Sn,r
We now wish explicit formulas describing Φ : Λr(V )→ Λr(V ∗). We define

Def
Ei = Φ(ei) = gike

k ∈ V ∗

Ei = Φ−1(ei) = gjiej ∈ V

and recall that, since Φ is an anti-isomorphism,

Φ(ρiei) = ρiEi

Φ−1(λje
j) = λjE

j .

Φ extends naturally to Λr(V ) and Φ−1 to Λr(V ∗) so that

Φ(ραeα) = ραEα α ∈ Sn,r
Φ−1(λβe

β) = λβE
β β ∈ Sn,r .

These Eα and Eα will do no good unless we can decode them, which we do
now. Although we have general formulas for this, we will run through it again
quickly for those who don’t want to read the background material.

Eα = Eα(1) ∧ . . . ∧ Eα(r)

= gα(1)i1e
i1 ∧ . . . ∧ gα(r)ire

ir

= gα(1)i1gα(2)i2 . . . gα(r)ire
i1 ∧ ei2 ∧ . . . ∧ eir

We now use the method of resolving by permutations, where we group together
all terms with the same indices on the ei which we have arranged so the indices
increase. We then have

Eα =
∑

π∈Sn,r

(∑

ρ∈Sr

sgn(ρ)gα(1)π(ρ(1))gα(2)π(ρ(2)) · · · gα(r)π(ρ(r))
)

eπ(1) ∧ . . . ∧ eπ(r)

=
∑

π∈Sn,r

det(gα(i)π(j))e
π(1) ∧ . . . ∧ eπ(r)

= gαπe
π π ∈ Sn,r .
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This gives us formulas for Φ on Λr(V ) in terms of the subdeterminants of (gij):

Φ(ραeα) = ραEα = gαπραe
π α, π ∈ Sn,r

and similarly

Φ−1(λβe
β) = λβE

β = gπβλβeπ β, π ∈ Sn,r .

We will use these formulas later to get explicit formulas for the ∗-operators.
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6.3 The Unit Boxes Ω0 and Ω∗0

The Unit Boxes

For the definition of of metric forms of the ∗-operator in the next section, it
is necessary to fix a Unit Box for the vector spaces V and V ∗. Given any basis
e1, . . . , en for V we may form Ω = e1 ∧ . . . ∧ en and then normalize Ω. Since

(Ω,Ω) = (e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en) = det(gij) = g

and since gij is symmetric (for Real vector spaces) or Hermitian (for Complex
vector spaces,) we know that det(gij) is a real number.

Let us recall what happens to Ω under a change of basis. If ẽi = αj
iej then

Ω̃ = ẽ1 ∧ . . . ∧ ẽn

= (αj1
1 ej1) ∧ . . . ∧ (αjn

n een)

= det(αj
i ) e1 ∧ . . . ∧ en

= det(αj
i )Ω .

and

g̃ = det(g̃ij) = det((ẽi, ẽj)) = (ẽ1 ∧ . . . ∧ ẽn, ẽ1 ∧ . . . ∧ ẽn)

= (det(αj
i ) e1 ∧ . . . ∧ en, det(α

ℓ
k) e1 ∧ . . . ∧ en)

= det(αj
i ) det(α

ℓ
k)(e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en)

= | det(αj
i )|2g .

We can always find an orthonormal basis f1, . . . , fn by the Gram-Schmidt
process and arrange things so that

(fi, fi) = +1 for 1 ≤ i ≤ n− s

(fi, fi) = −1 for n− s+ 1 ≤ i ≤ n

In this case we will have

(f1∧. . .∧fn, f1∧. . .∧fn) = det((fi, fj) = det










1 0 . . . 0
. . . 0

0 0 . . . 1
−1 0 . . . 0

0 . . .
0 0 . . . −1










= (−1)s

Now, with our original basis e1, . . . , en, we put

ei = αj
ifj , Ω = e1 ∧ . . . ∧ en

and using the formula above formula for the change of basis we have

g = (Ω,Ω) = (e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en)

= | det(αj
i )|2(f1 ∧ . . . ∧ fn, f1 ∧ . . . ∧ fn)

= | det(αj
i )|2(−1)s .
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Hence
g = det(gij) = | det(αj

i )|2(−1)s

and the sign of det(gij) is fixed by s, the number of fi with (fi, fi) = −1 in
an orthonormal basis. (This s is stable under change of orthonormal basis by
Sylvester’s Law of Inertia.)

Thus the expression

(−1)s det(gij) = (−1)sg

is always a positive number, and we may normalize Ω to a unit box Ω0 by
dividing Ω by the square root of this quantity:

Ω0 =
1

√

(−1)sg
Ω .

Then we have

(Ω0,Ω0) =
1

(−1)sg (Ω,Ω) =
1

(−1)sg g = (−1)s

If V is a real vector space, then the one–dimensional real vector space Λn(V )
has room for just two normalized Ω0, one being the negative of the other. A
choice of one of them amounts to choosing an orientation for the vector space
V . Forming an Ω̃0 from any basis ẽ1, . . . , ẽn will then result in either Ω̃0 = Ω0

or Ω̃0 = −Ω0. A basis ẽ1, . . . , ẽn is similarly oriented to the basis e1, . . . , en that
produced Ω0 if

Ω̃0 =
ẽ1, . . . , ẽn
√

(−1)sg
= Ω0

and oppositely oriented if Ω̃0 = −Ω0. Note that in either case

(Ω̃0, Ω̃0) = (Ω0,Ω0) = (−1)s .

Also note that one can shift an oppositely oriented basis to a similarly oriented
one by simply changing the sign on any one ẽi to −ẽi.

It is also worth noting that odd–dimensional and even–dimensional vector
spaces behave differently if we replace all ei by −ei. If V is even–dimensional,
−e1, . . . ,−en is similarly oriented to e1, . . . , en, but if V is odd–dimensional
then −e1, . . . ,−en is oppositely oriented to e1, . . . , en. This phenomenon of odd
and even–dimensional spaces having differing behavior shows up in a number of
different places.

If V is a Complex vector space (the scalars are the Complex numbers) things
are not nearly so nice. We have Λn(V ) isomorphic to the Complex numbers.
The normalized Ω0 do not now break down into two easily distinguished classes
but instead form a continuum connected to each other by unimodular Complex
numbers. (A complex number λ is unimodular if and only if |λ| = 1.) For
example, given a basis e1, . . . , en of V we can form another basis ẽ1, . . . , ẽn in
which

ẽ1 = λe1, ẽ2 = e2, . . . , ẽn = en .
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Then

g̃ = (ẽ1 ∧ . . . ∧ ẽn, ẽ1 ∧ . . . ∧ ẽn) = ((λe1) ∧ e2,∧ . . . ∧ en, (λe1) ∧ e2,∧ . . . ∧ en)

= λλ(e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en) = |λ|2g .
Thus if |λ| = 1 we have g̃ = g and

Ω̃0 =
ẽ1 ∧ . . . ∧ ẽn
√

(−1)sg̃
=

(λe1) ∧ e2 ∧ . . . ∧ en
√

(−1)sg̃
= λ

e1 ∧ . . . ∧ en
√

(−1)sg
= λΩ0

Hence we cannot put an orientation on a Complex vector space; Ω0 and −Ω0

are connected by a continuous family eiθΩ0 with 0 ≤ θ ≤ π.
We will use Ω0 to define the metric ∗-operations in the next section. We

have found that they are defined (except for sign) independently of the basis in
a Real vector space, but in Complex vector spaces there is no way to uniquely
specify the Ω0; different bases will result in different Ω0’s that are connected only
through unimodular complex numbers and don’t fall into any discrete classes as
they do in the real case. We will discuss this further in the next section.

We now consider the analogous unit boxes in Λn(V ∗). We set

Ω∗ = e1 ∧ . . . ∧ en

and compute

(Ω∗, Ω∗) = (e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en)

= det((ei, ej))

= det(gij) =
1

g
=

(−1)s
(−1)sg .

We normalize by dividing by 1√
(−1)sg

to get

Ω∗
0 =

√

(−1)sg Ω∗

so that
(Ω∗

0,Ω
∗
0) = (−1)s .

We note that

〈Ω∗
0,Ω0〉 =

√

(−1)sg 1√
(−1)sg

〈Ω∗,Ω〉

= 〈e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en〉
= det(〈ei, ej〉) = det(δji )

= 1

as we expect for a basis and dual basis element. Next we compute Φ on these
elements Ω and Ω∗

Φ(Ω) = Φ(e1 ∧ . . . ∧ en) = Φ(e1) ∧ . . . ∧Φ(en)

= E1 ∧ . . . ∧ En = g1i1e
i1 ∧ . . . ∧ gnine

in

= det(gij)e
1 ∧ . . . ∧ en = det(gij)Ω

∗

= gΩ∗
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and thus

Φ−1(Ω∗) =
1

g
Ω = det(gij)Ω

and we then have

Φ(Ω0) = 1√
(−1)sg

Φ(Ω) = 1√
(−1)sg

gΩ∗

= (−1)s (−1)sg
√

(−1)sg
Ω∗ = (−1)s

√

(−1)sgΩ∗

= (−1)sΩ∗
0

and thus

Φ−1(Ω∗
0) = (−1)sΩ0 =

(−1)s
√

(−1)sg
Ω .
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6.4 ∗ Operators Adapted to Inner Products.

When an inner product is available, it is possible to redefine the star operator
so as to give an almost involutive isometry between Λp(V ) and Λn−p(V ) and
similarly for V ∗. We do this by combining our ∗ : Λr(V ∗) → Λn−r(V ) from
the previous chapter with the mapping Φ : V → V ∗, and multiplying by certain
constants which force isometry. There is an additional advantage; the reader will
recall that ∗ changes by a multiplicative constant when the basis e1, . . . , en is
changed. In the case of a real vector space the metric form of ∗ becomes almost
independent of the basis; there is a sign change if the bases are oppositely
oriented by no other constants appear. In the case of a complex vector space ∗
is defined only up to a unimodular (|λ| = 1) complex number.

We begin our investigation with the following diagram

Λp(V ∗)
∗−→ Λn−p(V ∗)

Φ↑ ↓Φ−1 ցր
*

Φ−1↓ ↑Φ

Λp(V ) −→
∗

Λn−p(V )

and define

Def
∗ℓ =

√

(−1)sg(∗ ◦ Φ−1)ℓ ℓ ∈ Λp(V ∗)
∗v = 1√

(−1)sg
(∗ ◦ Φ)v v ∈ Λp(V )

The operator ∗ is then extended by antilinearity to the whole of Λp(V ),
and similarly for ∗.

The factors involving
√

(−1)sg are inserted to compensate for changes in
the ∗-operator when bases are changed. One can determine them by first putting
in k and then determining the value of k which will make the next theorem come
out as it does, and this is the value of k that leads to invariance. This is not
particularly interesting so we have skipped the details.

The reader will note that ∗ and ∗ could also equally well be defined by
k1Φ◦∗ and k2Φ

−1 ◦∗ with appropriate k1 and k2. We will return to this matter
shortly.

To set the stage for the next theorem, which is critical to all that follows
let us recall some notation. We have a basis e1, . . . , en for V with dual basis
e1, . . . , en for V ∗, gij = (ei, ej), g = det(gij). If we use the Gram-Schmidt
process to form an orthonormal basis f1, . . . , fn from the ei then (fi, fi) is +1
for n − s of the fi’s and −1 for s of the fi’s. The details are in the previous
section. Then we set

Ω = e1 ∧ . . . ∧ en

Ω∗ = e1 ∧ . . . ∧ en

Ω0 = (
1

√

|(Ω,Ω)|
)Ω =

1
√

(−1)sg
Ω

Ω∗
0 = (

1
√

|(Ω∗,Ω∗)|
)Ω∗ =

√

(−1)sgΩ∗
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We now have

Theorem

ℓ ∧ ∗m = (ℓ,m)Ω∗
0 ℓ,m ∈ Λp(V ∗)

u ∧ ∗v = (u, v)Ω0 u, v ∈ Λp(V )

Proof

ℓ ∧ ∗m = ℓ ∧
√

(−1)sg(∗ ◦ Φ−1)m

=
√

(−1)sg(ℓ ∧ ∗Φ−1(m))

=
√

(−1)sg〈ℓ,Φ−1(m)〉Ω∗

= (ℓ,m)Ω∗
0

u ∧ ∗v = u ∧ 1
√

(−1)sg
(∗ ◦ Φ)v

=
1

√

(−1)sg
(u ∧ ∗Φ(v))

=
1

√

(−1)sg
〈Φ(v), u〉Ω

= (v, u)Ω0

= (u, v)Ω0

This theorem conceals a critical fact; since the value of ∗v is completely
determined by the values of u ∧ ∗v, we see that ∗v is just as well determined
as Ω0. As we saw in the last section, for real vector spaces Ω0 is uniquely
determined up to sign, and the same goes for Ω∗

0 and ∗ℓ. Hence in this case

Corollary For a vector space with real scalars, ∗v and ∗ℓ are uniquely defined
up to sign. More precisely, if the bases e1, . . . , en and ẽ1, . . . , ẽn are used to
compute ∗ev and ∗ẽv then

∗ẽv = +∗ev if ẽ1, . . . , ẽn and e1, . . . , en are similarly oriented

∗ẽv = −∗ev if ẽ1, . . . , ẽn and e1, . . . , en are oppositely oriented .

and the same is true for ∗ℓ. For the case of a complex vector space, as we saw in

the previous section, it is not possible to define Ω0 and Ω∗
0 uniquely; they will

change by a unimodular complex number when the basis is changed. Hence in
this case ∗v and ∗ℓ are defined only up to unimodular complex numbers.

We now return to the alternate possibilities for defining ∗ and ∗. Once
again we skip the dull details of deriving the values of the constants and simply
verify the final results.

Theorem

∗ℓ =
(−1)s
√

(−1)sg
(Φ ◦ ∗)ℓ

∗v = (−1)s
√

(−1)sg (Φ−1 ◦ ∗)v
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Proof We present the proof in detail because care is necessary not to lose
minus signs or conjugate bars. For any ℓ ∈ V ∗

ℓ ∧ (−1)s
√

(−1)sg
(Φ ◦ ∗)m =

(−1)s
√

(−1)sg
ℓ ∧ Φ(∗m)

=
(−1)s
√

(−1)sg
Φ(Φ−1(ℓ) ∧ ∗m)

=
(−1)s
√

(−1)sg
Φ(〈m,Φ−1(ℓ)〉Ω)

=
(−1)s
√

(−1)sg
〈m,Φ−1(ℓ)〉Φ(Ω)

= 〈m,Φ−1(ℓ)〉 (−1)s
√

(−1)sg
(gΩ∗)

= 〈ΦΦ−1(m),Φ−1(ℓ)〉 (−1)sg
√

(−1)sg
Ω∗

= 〈ℓ,Φ−1(m)〉
√

(−1)sgΩ∗

= (ℓ,m)Φ∗
0

= ℓ ∧ ∗m
Since this is true for all ℓ ∈ Λ(V ∗),

∗m =
(−1)s
√

(−1)sg
(Φ ◦ ∗)m

as required.
In a similar way, for any u ∈ Λp(V )

u ∧ (−1)s
√

(−1)sg(Φ−1 ◦ ∗)(v) = (−1)s
√

(−1)sg (u ∧ Φ−1(∗v))
= (−1)s

√

(−1)sgΦ−1(Φ(u) ∧ ∗v)
= (−1)s

√

(−1)sgΦ−1(〈Φ(u), ∗v〉Ω∗)

= (−1)s
√

(−1)sg 〈Φ(u), ∗v〉Φ−1(Ω∗)

= (−1)s
√

(−1)sg 〈Φ(u), ∗v〉1
g
Ω

= (u, v)

√

(−1)sg
(−1)sg Ω

= (u, v)
1

√

(−1)sg
Ω

= (u, v)Ω0

= u ∧ ∗v
Since this is true for all u ∈ Λp(V )

∗v = (−1)s
√

(−1)sg (Φ−1 ◦ ∗)(v)
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as desired.

Using the definition and the two previous theorems, we can easily show
that ∗ and ∗ are almost, but not quite, involutive operators and isometries.
Notice in the proof that we use both formulas for ∗, one from the definition
and one from the theorem; having both formulas is what makes it possible to
present an easy basis–free proof of this theorem. Having these two formulas
in turn depends on our methodology of factoring ∗ : Λp(V ) → Λn−p(V ) into
Φ : Λp(v) → Λp(V ∗) and ∗ : Λp(V ∗) → Λn−p(V ). The common methodology
for proving this theorem uses an orthonormal basis. The reason this works is
that if the basis is orthonormal the Φ can be almost ignored.

Theorem

∗ ∗ℓ = (−1)p(n−p)+sℓ, ℓ ∈ Λp(V ∗)

∗ ∗v = (−1)p(n−p)+sv, v ∈ Λp(V )

Proof

∗ ∗ℓ =
√

(−1)sg(∗ ◦ Φ)(∗ℓ)

=
√

(−1)sg(∗ ◦ Φ) ◦ (−1)s
√

(−1)sg
Φ−1 ◦ ∗)ℓ

= (−1)s(∗ ◦ Φ ◦ Φ−1 ◦ ∗)ℓ
= (−1)s(∗ ◦ ∗)ℓ
= (−1)s(−1)p(n−p)ℓ

= (−1)p(n−p)+sℓ

and similarly

∗ ∗v =
1

√

(−1)sg
(∗ ◦ Φ)(∗v)

=
1

√

(−1)sg
(∗ ◦ Φ)((−1)s

√

(−1)sgΦ−1 ◦ ∗)v

= (−1)s(∗ ◦ Φ ◦ Φ−1 ◦ ∗)v
= (−1)s(∗ ◦ ∗)v
= (−1)s(−1)p(n−p)v

= (−1)p(n−p)+sv
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Theorem ∗ and ∗ are anti-isometries:

(∗ℓ, ∗m) = (ℓ,m) = (m, ℓ)
(∗u, ∗v) = (u, v) = (v, u)

Proof

(∗ℓ, ∗m)Ω∗
0 = ∗ℓ ∧ ∗∗m

= (−1)p(n−p)∗ℓ ∧m

= m ∧ ∗ℓ
= (m, ℓ)Ω∗

0

and similarly

(∗u, ∗v)Ω0 = ∗u ∧ ∗ ∗v
= (−1)p(n−p)∗u ∧ v

= v ∧ ∗u
= (v, u)Ω0

For convenience we want to exhibit the formulas for certain special cases.
We have, for Ω ∈ Λn(V )

∗Ω = (−1)s
√

(−1)sg (Φ−1 ◦ ∗)Ω
= (−1)s

√

(−1)sg Φ−1(1)

= (−1)s
√

(−1)sg 1

= (−1)s
√

(−1)sg

and then

∗Ω0 = ∗
( 1
√

(−1)sg
Ω
)

=
1

√

(−1)sg
∗Ω

=
1

√

(−1)sg
(−1)s

√

(−1)sg

= (−1)s .

and then for 1 ∈ Λ0(V )

∗ 1 =
1

√

(−1)sg
(∗ ◦ Φ) 1

=
1

√

(−1)sg
(∗ 1)

=
1

√

(−1)sg
Ω

= Ω0
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Similarly, for Ω∗ ∈ Λn(V ∗)

∗Ω∗ =
(−1)s
√

(−1)sg
(Φ ◦ ∗)Ω∗

=
(−1)s
√

(−1)sg
Φ(1)

=
(−1)s
√

(−1)sg
1

=
(−1)s
√

(−1)sg

and then

∗Ω∗
0 = ∗

(√

(−1)sg Ω∗)

=
√

(−1)sg
( (−1)s
√

(−1)sg

)

= (−1)s

and finally for 1 ∈ Λ0(V ∗)

∗ 1 =
√

(−1)sg (∗ ◦ Φ−1) 1

=
√

(−1)sg (∗1)
=

√

(−1)sg Ω∗

= Ω∗
0 .
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6.5 Coordinate formulas for ∗-Operators

The ∗-operators are often underutilized in applications because the available
technology for them is cumbersome. What we hope to show here that using
the metric coefficients gαβ for Λp(V ) and gαβ for Λp(V ∗) where α, β ∈ Sn,p we
can recapture some of the ease of computation of classical tensor analysis. The
reader may recall our earlier contention that using Sn,p as the indexing set is
the key to efficient use of Grassmann algebra.

We will now use the formulas from the last section to derive explicit for-
mulas for the ∗-operators, which are important for applications. As usual let
e1, . . . , en be a basis of V and e1, . . . , en be the dual basis for V ∗. We recall the
formulas

∗v = (−1)s
√

(−1)sg(Φ−1 ◦ ∗)v
Φ−1(ei) = Ei = gjiej .

Then we have

∗eσ = (−1)s
√

(−1)sg(Φ−1 ◦ ∗)eσ
= (−1)s

√

(−1)sgΦ−1(sgn(σ)eσ̃)

= (−1)s
√

(−1)sg sgn(σ)Φ−1(eσ̃(p+1) ∧ . . . ∧ eσ̃(n))

= (−1)s
√

(−1)sg sgn(σ)Φ−1(eσ̃(p+1)) ∧ . . . ∧ Φ−1(eσ̃(n))

= (−1)s
√

(−1)sg sgn(σ)Eσ̃(p+1) ∧ . . . ∧ Eσ̃(n)

= (−1)s
√

(−1)sg sgn(σ)gi1σ̃(p+1) . . . gin−pσ̃(n)ei1 ∧ . . . ∧ ein−p

= (−1)s
√

(−1)sg sgn(σ)gτσ̃eτ where τ ∈ Sn,n−p .

In the last line we have used the method of resolving a sum by permutations.
See section 3.3 or the end of section 5.1 for more detailed explanations of this
method.

Similarly, using the formulas

∗ℓ =
(−1)s
√

(−1)sg
(Φ ◦ ∗)ℓ

Φ(ei) = Ei = gike
k

we get, in exactly the same way,

∗eσ =
(−1)s
√

(−1)sg
sgn(σ)gσ̃τe

τ τ ∈ Sn,n−p .

The natural thing to do next would be to use the alternate formulas for ∗
and ∗ to get alternate formulas for ∗eσ and ∗eσ. However, we think it is worth
disturbing the logical flow in order to learn another technique. We will resume
the logical flow in a moment.
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In many books on differential forms a technique like the following is used
for computing ∗eσ, (interest in this case being focussed on the dual space V ∗).
We begin with the important equation (sometimes used as the definition of ∗).

ℓ ∧ ∗m = (ℓ,m)Ω∗
0

where Ω∗
0 is the unit box in V ∗:

Ω∗
0 =

√

(−1)sg Ω∗ =
√

(−1)sg e1 ∧ . . . ∧ en .

We use this to compute ∗eσ, σ ∈ Sn,p by setting

∗eσ = ατe
τ τ ∈ Sn,n−p

for some constants ατ , and then attempt to determine ατ by some kind of
trickery resembling that used in orthogonal expansions. We substitute eρ for ℓ
and eσ for m in the above formula and then use the expansion of ∗eσ to get

eρ ∧ ∗eσ = (eρ, eσ)Ω∗
0

eρ ∧ ατe
τ = gρσΩ∗

0

ατ eρ ∧ eτ = gρσΩ∗
0 .

Since ρ ∈ Sn,p and τ ∈ Sn,n−p, the left side of the last equation is non–zero for
exactly one τ , namely τ = ρ̃. We then have

αρ̃ eρ ∧ eρ̃ = gρσΩ∗
0 (no sum on ρ)

and then
αρ̃ sgn(ρ)e1 ∧ . . . ∧ en = gρσ

√

(−1)sg e1 ∧ . . . ∧ en

and thus
αρ̃ = sgn(ρ)

√

(−1)sg gρσ ρ ∈ Sn,p
which we can rewrite in a handier form, setting τ = ρ̃:

ατ = sgn(τ̃ )
√

(−1)sg gτ̃σ

= (−1)p(n−p)sgn(τ)
√

(−1)sg gτ̃σ τ ∈ Sn,n−p

since sgn(τ)sgn(τ̃ ) = (−1)p(n−p) (see section 3.2). Finally

∗eσ = ατe
τ =

√

(−1)sg
∑

τ∈Sn,n−p

sgn(τ̃ )gτ̃σeτ .

This formula is correct, but the perceptive will note that it bears little resem-
blance to the previously derived formula. The equivalence of the two formulas
is not difficult to prove provided one has some specialized tools and knowledge
(found in this book) but when working on ones own this sort of thing can be a
real source of frustration, and the frustration is augmented when the formulas
are expressed with gτ̃σ written out in full determinental form.
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We can derive this formula much more easily by using the other formula
for ∗ℓ:

∗ℓ =
√

(−1)sg (∗ ◦Φ−1)ℓ .

We then have

∗eσ =
√

(−1)sg (∗ ◦ Φ−1)eσ

=
√

(−1)sg ∗ (Φ−1(eσ(1)) ∧ . . . ∧ Φ−1(eσ(p))

=
√

(−1)sg ∗
(
gi1σ(1)gi2σ(2) . . . gipσ(p)(ei1 ∧ ei2 ∧ . . . ∧ eip)

)

=
√

(−1)sg ∗
( ∑

τ∈Sn,p

[∑

ρ∈Sp

sgn(ρ)gτ(ρ(1))σ(1) . . . gτ(ρ(p))σ(p)
]

eτ(1) ∧ . . . ∧ eτ(p)

)

=
√

(−1)sg
∑

τ∈Sn,p

sgn(τ) gτσeτ̃

=
√

(−1)sg
∑

τ∈Sn,p

sgn(τ) gστeτ̃ .

Similarly, using

∗v =
1

√

(−1)sg
(∗ ◦ Φ)v

we derive

∗eσ =
1

√

(−1)sg
∑

τ∈Sn,p

sgn(τ) gτσeτ̃ .
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For convenience of reference, we collect here the various formulas involving
the star operator.

Formulas

∗ℓ =
√

(−1)sg(∗ ◦ Φ−1)ℓ ℓ ∈ Λp(V ∗)

=
(−1)s
√

(−1)sg
(Φ ◦ ∗)ℓ

∗eσ =
(−1)s
√

(−1)sg
sgn(σ)gσ̃τe

τ τ ∈ Sn,n−p

∗eσ =
√

(−1)sg
∑

τ∈Sn,p

sgn(τ) gστ eτ̃

∗v =
1

√

(−1)sg
(∗ ◦ Φ)v v ∈ Λp(V )

= (−1)s
√

(−1)sg (Φ−1 ◦ ∗)v

∗eσ =
(−1)s
√

(−1)sg
sgn(σ)gσ̃τe

τ τ ∈ Sn,n−p

∗eσ =
1

√

(−1)sg
∑

τ∈Sn,p

sgn(τ) gστ eτ̃

ℓ ∧ ∗m = (ℓ,m)Ω∗
0 ℓ,m ∈ Λp(V ∗)

u ∧ ∗v = (u, v)Ω0 u, v ∈ Λp(V )

Ω∗ = e1 ∧ . . . ∧ en

Ω∗
0 =

√

(−1)sgΩ∗

∗Ω∗ =
(−1)s
√

(−1)sg
∗Ω∗

0 = (−1)s

∗1 = Ω∗
0

Ω = e1 ∧ . . . ∧ en

Ω0 =
1

√

(−1)sg
Ω

∗Ω = (−1)s
√

(−1)sg
∗Ω0 = (−1)s

∗1 = Ω0
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6.6 Formulas for Orthogonal bases

Although one of the basic principles of this book is never to derive formulas
using orthogonal or orthonormal bases, we recognize the importance of these
objects in applications. Hence this section will be devoted to the calculation of
the ∗-operator in V ∗ for orthogonal bases.

We are going to do this in two different ways. First, we will show how to
specialize our general formulas to this case. Second, we will show how to calcu-
late these formulas directly from the definition. The latter method is included
for the convenience of those persons who wish to utilize the ∗-operator in classes
but do not have the time (or perhaps the inclination) to go through the general
procedure.

We will derive all our formulas for V ∗. The case of V is handled analogously,
and the formulas are predictable from those of V ∗.

To make the formulas as simple as possible we will simplify the notation,
using hi for

√

gii. This destroys the systematic applicability of the summation
convention, which is suspended for this section. We will continue to use increas-
ing permutations as one of our basic tools, since without them the ∗-operator
is very hard to manage.

What characterizes an orthogonal basis is that gij = 0 for i 6= j. We will
set things up like this:

(gij) =










h2
1 . . . 0 0 . . . 0

. . . . . . . . . 0 . . . 0
0 . . . h2

r 0 . . . 0
0 . . . 0 −h2

r+1 . . . 0
0 . . . 0 . . . . . . . . .
0 . . . 0 0 . . . −h2

n










Thus the last s = n − r diagonal coefficients have negative signs. A typical
example would be the inner product used in special relativity with coordinates
t, x, y, z (in that order) and matrix

(gij) =






(1
c
)2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 .

Here n = 4 and s = 3.
The general formula for the ∗-operator is given by

∗eσ =
√

(−1)sg
∑

τ∈Sn,p

sgn(σ)gστ eτ̃

where the gστ are the p × p subdeterminants of (gij). (We have chosen this
formula for ∗eσ because it uses the entries from the (gij) and is thus most
convenient.)
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We first discuss the situation for gστ where σ 6= τ . We will have gστ = 0 as
we see from the following example which demonstrates how a row of zeros will
appear in this case. We take σ, τ ∈ Sn,2

σ =

(
1 2
2 3

∣
∣
∣
∣

3 4 . . . n
1 4 . . . n

)

τ =

(
1 2
2 4

∣
∣
∣
∣

3 4 . . . n
1 3 . . . n

)

.

We then have

gστ = det

(
h2
2 0
0 0

)

because the entries for the second row must come from the third (= σ(2)) row
of the (gij) and the only non zero entry in that row is in the third column.
However, τ selects columns 2 and 4, thus missing the only non-zero entry.

Hence gστ is diagonal; for σ = τ ∈ Sn,p it selects a set of rows and equally
numbered columns to form a diagonal submatrix of (gij). For example, with
the above σ and τ we have

gσσ = det

(
h2
2 0
0 h2

3

)

gττ = det

(
h2
2 0
0 h2

4

)

(We have assumed here that 4 ≤ r). Recall now that (gij) = (gij)
−1 and

g = det(gij) from which we obtain

g =
1

h2
1 . . . h

2
n−r(−h2

n−r+1) . . . (−h2
n)

=
1

(−1)s(h1 . . . hn)2

so that
√

(−1)sg =
1

h1 . . . hn

.

Now suppose σ ∈ Sn,p and

σ(1), . . . , σ(p− b) ≤ r and σ(p− b+ 1), . . . , σ(p) > r .

Then exactly p− (p− b+ 1) + 1 = b of the entries of










h2
σ(1) . . . 0 0 . . . 0
. . . . . . . . . 0 . . . 0
0 . . . h2

σ(p−b) 0 . . . 0

0 . . . 0 −h2
σ(p−b+1) . . . 0

0 . . . 0 . . . . . . . . .
0 . . . 0 0 . . . −h2

σ(p)











will be negative, so that the determinant of this matrix will be

gσσ = (−1)bh2
σ(1) . . . h

2
σ(p)

and
√

(−1)sg gσσ =
1

h1 . . . hn

(−1)bh2
σ(1) . . . h

2
σ(p)

= (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)
.
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Thus finally we have

∗eσ =
√

(−1)sg
∑

τ∈Sn,p

sgn(σ)gστeτ̃

=
√

(−1)sg sgn(σ)gσσeσ̃

= (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)
sgn(σ)eσ̃ .

Just as a quick check, let us calculate ∗ ∗eσ. We have

∗ ∗eσ = (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)
sgn(σ)∗eσ̃

= (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)
sgn(σ)(−1)s−b

hσ̃(1) . . . hσ̃(n−p)

hσ̃(n−p+1) . . . hσ̃(n)
sgn(σ̃)eσ

= (−1)ssgn(σ)sgn(σ̃) hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)

hσ(p+1) . . . hσ(n)

hσ(1) . . . hσ(p)
eσ

= (−1)s(−1)p(n−p)eσ = (−1)s+p(n−p)eσ

which is correct, as we have seen in section 5.3.
Now we want to apply this formula, as an example, to the special relativity

metric





(1
c
)2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 .

However, in order to be consistent with established custom and our future needs
for this material we are going to modify some of our usual notations. In this
context it is usual to index with the numbers 0, 1, 2, 3 rather than 1, 2, 3, 4 and to
replace the basis vectors e1, e2, e3, e4 with dt, dx1, dx2, dx3. The reasons for this
will become clear in Chapter 9. We know that for normally indexed increasing
permutations we can get the sign of the permutation by

sgn(σ) = (−1)
∑p

j=1 σ(j)−Tp = (−1)
∑p

j=1(σ(j)−j) .

If we reset the origin from 1 to 0, the exponent becomes

p−1
∑

i=0

(
(σ(i) + 1)− (i+ 1)

)
=

p−1
∑

i=0

(σ(i)− i) =

p−1
∑

i=0

σ(i)− Tp−1

and
sgn(σ) = (−1)

∑p−1
i=0 σ(i)−Tp−1

In this formula we put T0 = 0 when p = 1.
We give some examples:

σ =

(
0
1

∣
∣
∣
∣

1 2 3
0 2 3

)

sgn(σ) = (−1)1−T0 = (−1)1−0 = −1
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σ =

(
0 1
0 3

∣
∣
∣
∣

2 3
1 2

)

sgn(σ) = (−1)0+3−T1 = (−1)3−1 = +1

σ =

(
0 1
1 3

∣
∣
∣
∣

2 3
0 2

)

sgn(σ) = (−1)1+3−T1 = (−1)4−1 = −1

σ =

(
0 1 2
0 1 3

∣
∣
∣
∣

3
2

)

sgn(σ) = (−1)0+1+3−T2 = (−1)4−3 = −1

With these and the formula for ∗ we can compute

∗ dx1 = (−1)1 1
1
c
· 1 · 1(−1) dt ∧ dx2 ∧ dx3 = +c dt ∧ dx2 ∧ dx3

∗ dt ∧ dx3 = (−1)1
1
c
· 1

1 · 1 (+1) dx1 ∧ dx2 = −1

c
dx1 ∧ dx2

∗ dx1 ∧ dx3 = (−1)2 1 · 11
c
· 1(−1) dt ∧ dx2 = −c dt ∧ dx2

∗ dt ∧ dx1 ∧ dx3 = (−1)2
1
c
· 1 · 1
1

(−1) dt ∧ dx2 = −1

c
dx1

Now, using the formula ∗ ∗eσ = (−1)s+p(n−p)eσ each of the above four gives us
a second formula. For example from the second of the above four we have

∗ ∗ dt ∧ dx3 = −1

c
∗ dx1 ∧ dx2

(−1)3+2(4−2) dt ∧ dx3 = −1

c
∗ dx1 ∧ dx2

∗ dx1 ∧ dx2 = (−1) · (−c) dt ∧ dx3

= c dt ∧ dx3 .

We can now digest all this and more in the following table

∗ 1 = c dt ∧ dx1 ∧ dx2 ∧ dx3

∗ dt = +(1/c)dx1 ∧ dx2 ∧ dx3 ∗ dx1 ∧ dx2 ∧ dx3 = +c dt
∗ dx1 = +c dt ∧ dx2 ∧ dx3 ∗ dt ∧ dx2 ∧ dx3 = +(1/c) dx1

∗ dx2 = −c dt ∧ dx1 ∧ dx3 ∗ dt ∧ dx1 ∧ dx3 = −(1/c) dx2

∗ dx3 = +c dt ∧ dx1 ∧ dx2 ∗ dt ∧ dx1 ∧ dx2 = +(1/c) dx3

∗ dt ∧ dx1 = −(1/c)dx2 ∧ dx3 ∗ dx2 ∧ dx3 = +c dt ∧ dx1

∗ dt ∧ dx2 = +(1/c)dx1 ∧ dx3 ∗ dx1 ∧ dx3 = −c dt ∧ dx2

∗ dt ∧ dx3 = −(1/c)dx1 ∧ dx2 ∗ dx1 ∧ dx2 = +c dt ∧ dx3

∗ dt ∧ dx1 ∧ dx2 ∧ dx3 = −(1/c)
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We would now like to derive the formula

∗eσ = (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)
sgn(σ)eσ̃

by a less sophisticated method. To do this we recall the formulas

ℓ ∧ ∗m = (ℓ,m)Ω∗
0

and

Ω∗
0 =

√

(−1)sg Ω∗ =
1

h1 . . . hn

e1 ∧ . . . ∧ en .

If we now set,

∗ eσ =
∑

τ∈Sn,n−p

αστ e
τ

where the αστ are to be determined, then we have

eρ ∧ ∗ eσ =
∑

τ∈Sn,n−p

αστe
ρ ∧ eτ ρ ∈ Sn,p .

The term eρ ∧ eτ is 0 unless τ = ρ̃. Thus

eρ ∧ ∗ eσ = ασρ̃ .

Next we note by the above equation and Grassmann’s theorem

eρ ∧ ∗ eσ = (eρ, eσ)Ω∗
0

= det





(eρ(1), eσ(1)) . . . (eρ(1), eσ(p))
. . . . . . . . .

(eρ(p), eσ(1)) . . . (eρ(p), eσ(p))



Ω∗
0

and by the othogonality we have the right side equal to 0 unless {ρ(1) . . . ρ(p)}
and {σ(1) . . . σ(p)} coincide as sets (so that no column will be all zeros). But
then, since they are both in Sn,p, we must have σ = ρ. Thus αστ is 0 except for
the terms ασσ̃ . We now know

∗ eσ = α eσ̃

for some α (depending on σ) and we must determine α. Once again

eσ ∧ ∗ eσ = α eσ ∧ eσ̃

(eσ, eσ)Ω∗
0 = α sgn(σ)e1 ∧ . . . ∧ en

det





((eσ(1), eσ(1)) 0 . . . 0
0 . . . . . . 0
0 . . . 0 ((eσ(p), eσ(p))



 = α sgn(σ)Ω∗
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Now (eσ(i), eσ(i)) = +hi for σ(i) ≤ r = n − s and (eσ(i), eσ(i)) = −hi for
σ(i) > r = n − s. Let b be the number of σ(i) satisfying the latter condition.
We then have

(−1)bh2
σ(1) . . . h

2
σ(p) Ω

∗
0 = α sgn(σ)h1 . . . hn Ω

∗
0

= α sgn(σ)hσ(1) . . . hσ(n) Ω
∗
0

giving

α = (−1)b hσ(1) . . . hσ(p)

hσ(p+1) . . . hσ(n)

which is our previous result.
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Chapter 7

Regressive Products

135
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7.1 Introduction and Example

The Regressive Product is Grassmann’s extension of the wedge product. Unlike
the wedge product, the extended product has not been much appreciated but it
has many uses in vector algebra and projective geometry. In this introductory
section we will show how natural a construction it is by looking at the problem of
finding the intersection of two planes in R3. We examine the standard solution
of this problem by vector algebra, and then by Grassmann’s regressive product,
and show the methodological superiority of the latter.

I must mention at this point that the regressive product does have some-
thing of a defect; it is somewhat basis dependent. If the basis is changed the
regressive product will pick up a multiplier. This is not a problem in projective
geometry and there are fixes in metric geometry. We will discuss this matter at
greater length in the next section.

Let dim(V ) = n. For the wedge product, if A ∈ Λr(V ) and B ∈ Λs(V ) and
r+ s > n then A∧B = 0. This is convenient for many purposes but also a little
dull. Grassmann found and “extension” of the wedge product which gives more
interesting information, which we will now present.

To motivate our construction we will look at a familiar problem of vector
algebra; finding a vector along the line of intersection of two planes. We will
work here in V = R3 with the standard inner product.

Let the two planes be

P1 : −2x1 − 3x2 + x3 = 0
P2 : 3x1 − x2 − 2x3 = 0

The normal vectors to these planes are

n1 = (−2,−3, 1)⊺ (7.1)

n2 = (3,−1,−2)⊺ (7.2)

The vector v along the line of intersection must be perpendicular to the two
normals n1 and n2 and thus we can take for V

v = n1 × n2 = (7,−1, 11)⊺

From this and the point (0, 0, 0) on both planes we could write down the equation
for the line of intersection, if we were interested in this.

Now we want to look at the calculation in a very different way. Recall the
basic equations for the ∗-operator:

Ξ ∧ ∗A = 〈Ξ, A〉Ω∗

A ∧ ∗Ξ = 〈Ξ, A〉Ω

We will now redo the vector algebra calculation in R3 but we will NOT use the
inner product in R3 which means we will work in R3 and R3∗. Elements of R3
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will be written as column vectors and elements of R3∗ will be written as row
vectors. We will use the standard basis for R3∗ and its dual basis

e1 = (1, 0, 0) e2 = (0, 1, 0) e3 = (0, 0, 1)

for R3∗. So we have

〈ei, ej〉 = δij

as usual.
Now we want to represent the planes P1 and P2 as wedge products of two

vectors in each plane. For P1 we take the two vectors

v1 = (1, 0, 2)⊺ v2 = (0, 1, 3)⊺

= 1e1 + 0e2 + 2e3 = 0e1 + 1e2 + 3e3

and form

v1 ∧ v2 = −2e2 ∧ e3 − 3e3 ∧ e1 + 1e1 ∧ e2

and then

λ1 = ∗(v1 ∧ v2) = −2e1 − 3e2 + 1e3

Notice that we have counterfeited normal vector n1 in the dual space. Notice
also that a vector w = (x1, x2, x3)⊺ in in p1 ⇔

λ1(w) = 〈λ1, w〉
= 〈−2e1 − 3e2 + e3, x1e1 + x2e2 + x3e3〉
= −2x1 − 3x2 + x3

= 0

In a similar way, using the vectors w1 and w2 in P2

w1 = (2, 0, 3)⊺

w2 = (0,−1, 12 )
⊺

we get

w1 ∧ w2 = 3e2 ∧ e3 − 1e3 ∧ e1 − 2e1 ∧ e2

λ2 = ∗(w1 ∧ w2) = 3e1 − e2 − 2e3

and vector w = (x1, x2, x3)⊺ is in P2 ⇔ λ2(w) = 0.
Now let us form

λ1 ∧ λ2 = (−2e1 − 3e2 + 1e3) ∧ (3e1 − 1e2 − 2e3)

= 7e2 ∧ e3 − 1e3 ∧ e1 + 11e1 ∧ e2

v = ∗(λ1 ∧ λ2) = 7e1 − 1e2 + 11e3

= (7,−1, 11)⊺
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Now let us verify in this context that v satisfies our desire, namely that it
lies in both planes which is equivalent to λ1(v) = λ2(v) = 0. We calculate

〈λ1, v〉 Ω∗ = 〈λ1, ∗(λ1 ∧ λ2〉 Ω∗

= λ1 ∧ ∗ ∗ (λ1 ∧ λ2)

= λ1 ∧ λ1 ∧ λ2

= 0

and similarly for 〈λ2, v〉 = 0. (Here we have used that for A ∈ Λr(R3) we have
∗ ∗A = (−1)r(3−r)A) = A.)

The perceptive reader will notice that we have gotten the same vector v
which we originally obtained from the cross product n1×n2. Why is this impres-
sive? Notice that the problem of finding a vector along the line of intersection
of two planes has nothing to do with an inner product. The vector method uses
the inner product in an essential way. Using Grassmann techniques we have
eliminated the extraneous inner product from the problem, which is method-
ologically desirable. Careful examination of the calculation will clarify how we
were able to counterfeit the activities of the inner product by using the dual
space. This is valuable methodology, since if we want to apply Grassmann al-
gebra to, say, projective geometry we definitely do NOT want an inner product
hanging around marring the beauty of the landscape.

Grassmann was able to find a modification of the wedge product which gets
to the v we found from the products v1∧v2 and w1∧w2 representing the planes.
He writes

v = [v1 ∧ v2(w1 ∧ w2)]

or more elegantly
v = [v1 ∧ v2.w1 ∧ w2]

The definition and properties of this new product [AB] are the subject of the
following sections.

Since Grassmann was unaware of the dual space as a separate entity, his
construction of the above product was based on an inner product methodology.
This is contrary to the spirit of modern mathematics (virtually the only part
of Grassmann’s work where this is the case) and so our development in the
following sections will modify Grassmann’s construction. It is rather remarkable
how little this changes things. The modifications are not very significant.
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7.2 Definition of the Regressive Product

Based on our experience in the last section we will now define the regressive
and combinatorial products. We will work with a vector space V of dimension
n, its dual space V ∗ and the duality operators

∗ : Λr(V ) → Λn−r(V ∗)

∗ : Λr(V ∗) → Λn−r(V )

Let {e1, . . . , en} be a basis of V and {e1, . . . , en} the dual basis of V ∗. Recall
that if π ∈ Sn,r then

∗ eπ = ∗(eπ(1) ∧ . . . ∧ eπ(r)) = sgn(π)eπ(r+1) ∧ . . . ∧ eπ(n)

and similarly for ∗eπ. Recall that these formula are valid for any permutation,
not just the ones from Sn,r. Finally recall that for A ∈ Λr(V )

∗ ∗A = (−1)r(n−r)A

Now we define the regressive product:

Def Let A ∈ Λr(V ) and B ∈ Λs(V ∗) where 0 ≤ r, s < n
if r + s < n then [AB] = A ∧B
if r + s ≥ n then ∗[AB] = ∗A ∧ ∗B

In the latter case we can compute [AB] by using the formula above to compute
∗ ∗ [AB]. Also, since r, s < n we have n− r, n− s > 0 and ∗A ∈ Λn−r(V ∗) and
∗B ∈ Λn−s(V ∗) so

∗[AB] = ∗A ∧ ∗B ∈ Λn−r+n−s(V ∗) = Λ2n−(r+s)(V ∗)

[AB] ∈ Λn−(2n−(r+s))(V ∗) = Λ(r+s)−n(V ∗)

Since n ≤ r + s < 2n, we have 0 ≤ (r + s)− n < n so [AB] is in the range we
like. Summing up

if r + s < n then [AB] ∈ Λr+s(V ∗)
if r + s ≥ n then [AB] ∈ Λr+s−n(V ∗)

The vocabulary is
if r + s < n then the product [AB] is called progressive
if r + s ≥ n then the product [AB] is called regressive

For A ∈ Λr(V ∗) and B ∈ Λs(V ∗) exactly the same formulas are used,
although the ∗ in these formulas goes the opposite way from the ∗ used above.

Grassmann identified Λn(V ) with Λ0(V ) by identifying aΩ ∈ Λn(V ) with
a ∈ Λ0(V ). This is natural in our circumstances, which we now demonstrate.
Let A = e1 ∧ . . . ∧ er and B = er+1 ∧ . . . ∧ en. First note that ∗B uses the
permutation

π =

(
1 2 . . . n− r n− r + 1 n− r + 2 . . . n

r + 1 r + 2 . . . n 1 2 . . . r

)
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We see that sgn(π) = (−1)r(n−r) so that ∗B = (−1)r(n−r)e1∧. . .∧er. According
to the above rules we must calculate [AB] regressively so that

∗[AB] = ∗A ∧ ∗B
= (er+1 ∧ . . . ∧ en) ∧ (−1)r(n−r)(e1 ∧ . . . ∧ er)

= (e1 ∧ . . . ∧ er) ∧ (er+1 ∧ . . . ∧ en)

= Ω∗

= ∗1
[AB] = 1

Since A∧B = Ω this is pretty good evidence that Ω is going to act like 1 in the
regressive world. We can also see this if we relax the restrictions on the A and
B so that we allow A = Ω and compute regressively

∗[ΩB] = ∗Ω ∧ ∗B
= 1 ∧ ∗B
= ∗B

[ΩB] = B

and thus again Ω acts like 1. However, it seems simpler to me to just restrict A
and B to the range Λr(V ) with 0 ≤ r ≤ n− 1 and leave Λn(V ) completely out
of the system, its job being done by Λ0(V ).

Later we will have to work with products of more than two elements.
Notice that the formula when r + s ≥ n, ∗[AB] = ∗A ∧ ∗B has an auto-

morphism like quality to it. It was clever of Grassmann to build this into the
theory long before automophisms had been defined, and is another example of
Grassmann’s profound instincts.

It is always nice to know how a new concept applies to the basis vectors so
let us now deal with that. Let π ∈ Sn,r and σ ∈ Sn,s:

eπ = eπ(1) ∧ . . . ∧ eπ(r)

eσ = eσ(1) ∧ . . . ∧ eσ(s)

If r + s < n then [eπeσ] = eπ ∧ eσ and there is nothing new.
If r + s = n there are two possibilities.
First

eπ(1), . . . , eπ(r), eσ(1), . . . , eσ(s)

are all distinct. Since both π and σ are increasing permutations, this can happen
only if σ = π̃. By the rules, we must compute this product regressively:

∗ eπ = sgn(π) eπ̃

∗ eσ = ∗ eπ̃ = sgn(π̃) eπ

∗ [eπeσ] = ∗ eπ ∧ ∗ eσ = ∗ eπ ∧ ∗ eπ̃
= sgn(π)sgn(π̃) eπ̃ ∧ eπ
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= (−1)r(n−r)eπ̃ ∧ eπ

= eπ ∧ eπ̃

= sgn(π) e1 ∧ . . . ∧ en

= sgn(π)Ω∗

= sgn(π) ∗ 1
[eπeσ] = sgn(π)

Second, if r + s = n and

eπ(1), . . . , eπ(r), eσ(1), . . . , eσ(s)

are not all distinct, then

eπ̃(1), . . . , eπ̃(s), eσ̃(1), . . . , eσ̃(r)

also cannot be all distinct, and so

∗ [eπeσ] = ∗ eπ ∧ ∗ eσ
= ∗ eπ ∧ ∗ eσ
= sgn(π)sgn(σ) eπ̃ ∧ eσ̃

= 0

[eπeσ] = 0

We can sum this up conveniently by

If r + s = n then [eπeσ] = sgn(π) δπσ

Notice that
eπ ∧ eσ = sgn(π)δπσΩ

So everything is nicely consistent, and we can even write

eπ ∧ eσ = [eπeσ]Ω

The case r+ s > n is best approached in the following way. There must be
some repetitions among

eπ(1), . . . , eπ(r), eσ(1), . . . , eσ(s)

Collect the repetitions together and arrange in increasing order to get a ρ ∈ Sn,r,
By rearrangement we can write

eπ = ± eρ eπ1

eσ = ± eρ eσ1

where eπ1 and eσ1 have no elements in common. Then compute

[(eρ eπ1)(eρ eσ1)]
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In certain cases this can be simplified, but we will handle this when we get to
products of three or more elements.

Our next project is to discuss the basis dependence of the regressive prod-
uct.
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7.3 Change of Basis

We now wish to discuss what happens to the Regressive Product when the basis
is changed. It will turn out that the regressive product accumulates a constant
multiplier, which in simple cases is predictable.

Let {e1, . . . , en} be the original basis of V with dual basis {e1, . . . , en} of
V ∗ and let {f1, . . . , fn} be the new basis of V and {f1, . . . , fn} be the new basis
of V ∗. We want to know the effect of the change of basis on [AB].

We have, with Ω = e1 ∧ . . . ∧ en,

fi = αj
iej

Ω̃ = f1 ∧ . . . ∧ fn

=
∑

π

sgn α
π(1)
1 α

π(2)
2 . . . απ(n)

n e1 ∧ . . . ∧ en

= det(αj
i ) e1 ∧ . . . ∧ en

= det(αj
i ) Ω

The crudest way to find the equation connecting Ω̃∗ and Ω∗ is as follows.
We know

fk = βk
j e

j

for some matrix (βk
j ) so

δkℓ = 〈fk, fℓ〉 = 〈βk
mem, αj

ℓej〉
= βk

mαj
ℓ〈em, ej〉 = βk

mαj
ℓδ

m
j

= βk
j α

j
ℓ

so

I = (βk
j )(α

j
ℓ)

(βk
j ) = (αj

ℓ)
−1

Thus

Ω̃∗ = f1 ∧ . . . ∧ fn = det(βk
j )e

1 ∧ . . . ∧ en

= [det(αi
j)]

−1Ω∗

Of course, it would have been easier to use 〈Ω∗,Ω〉 = 1 and 〈Ω̃∗, Ω̃〉 = 1
and hence with Ω̃∗ = βΩ for some β

1 = 〈Ω̃∗Ω̃〉 = 〈βΩ∗, det(αi
j)Ω〉

= β det(αi
j)〈Ω∗,Ω〉 = β det(αi

j)

β = [det(αi
j)]

−1

Ω̃∗ = [det(αi
j)]

−1Ω∗
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Notice the second compuation short circuits a lot of trivia. These computations
can also be done in matrix form but we will leave this for the reader to do
herself.

Recall now the basic equations for the ∗-operator, which are, with A ∈
Λr(V ) and Ξ ∈ Λr(V ∗),

Ξ ∧ ∗A = 〈Ξ, A〉Ω∗

A ∧ ∗Ξ = 〈Ξ, A〉Ω
The basis enters here in the definitions of Ω and Ω∗. Let us set α = det(αi

j).

Then Ω̃ = αΩ and Ω̃∗ = α−1Ω∗. We will designate with ∗̃A the result of
calculationg the ∗-operator using the basis {f1, . . . , fn}. Then we have

Ξ ∧ ∗A = 〈Ξ, A〉Ω∗

Ξ ∧ ∗̃A = 〈Ξ, A〉 Ω̃∗

= 〈Ξ, A〉α−1Ω∗

Then
Ξ ∧ ∗̃A = α−1 〈Ξ, A〉Ω∗ = α−1Ξ ∧A = Ξ ∧ α−1 ∗A

Since this is true for all Ξ ∈ Λr(V ∗) we have

∗̃A = α−1 ∗A
Using exactly similar methods the reader will have no difficulty showing

∗̃Ξ = α ∗ Ξ
for Ξ ∈ Λr(V ∗).

It is now time to look at a simple example to get a feeling for how this
all works and fix the methodology in our minds. Let V = R3, {e1, . . . , en} the
standard basis (written as columns). The new basis will be {f1, . . . , fn} where
fi = 2ei. Then (αi

j) = 2I and α = det(αi
j) = 8. Note also for the dual basis

that f i = 1
2e

i. We now have

∗e1 = e2 ∧ e3

∗ 12f1 = 2f2 ∧ 2f3

∗f1 = 8f2 ∧ f3

whereas
∗̃ f1 = f2 ∧ f3 = 1

8 ∗ f1
just as we predicted from theory. As a second example

∗(e2 ∧ e3) = e1

∗(12f2 ∧ 1
2e3) = 2f1

∗(f2 ∧ e3) = 8f1

∗̃ (f2 ∧ f3) = f1 = 1
88f

1 = 1
8 ∗ (f2 ∧ f3)
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again as we predicted.
It is now trivial to see what happens to the regressive product under basis

change of A ∈ Λr and B ∈ Λs when r + s ≥ n We will label the regressive
products [AB]∗ and [AB]∗̃. Then

∗̃[AB]∗̃ = [∗̃A∗̃B]∗̃

= ∗̃A ∧ ∗̃B
=

1

α2
∗A ∧ ∗B

1

α
∗ [AB]∗̃ =

1

α2
∗ [AB]∗

[AB]∗̃ =
1

α
[AB]∗

Naturally this equation is true only when two elements are multiplied and only
when the multiplication is regressive.

Now let us again practise to see this at work. Suppose, as before, V = R3

and A = e1 ∧ e2, B = e1 ∧ e3. Then

∗[(e1 ∧ e2)(e1 ∧ e3)] = [∗(e1 ∧ e2) ∗ (e1 ∧ e3)]

= [e3(−e2)]
= [e2e3] = e2 ∧ e3

= ∗e1

Thus
[(e1 ∧ e2)(e1 ∧ e3)]∗ = e1

Similarly
[(f1 ∧ f2)(f1 ∧ f3)]∗̃ = f1

Now using fi = 2ei and recalling that α = 8, we have from the last equation

[(2e1 ∧ 2e2)(2e1 ∧ 2e3)]∗̃ = 2e1

16[(e1 ∧ e2)(e1 ∧ e3)]∗̃ = 2e1

[(e1 ∧ e2)(e1 ∧ e3)]∗̃ = 1
8e1

= 1
8 [(e1 ∧ e2)(e1 ∧ e3)]∗

as predicted.
Thus the regressive product of two elements of Λ(V ) picks up a factor

of 1
det(αi

j
)
under basis change fj = αi

jei, and similarly the regressive product

of two elements of Λ(V ∗) will pick up a factor det(αi
j). If more than two

elements are involved and both progressive and regressive products show up in
the computation it can be difficult to keep track of the factors. We will look at
this briefly in a later section.

However, in applications in projective geometry the factors usually do not
matter since things are usually defined only up to a constant multiplier. Also,
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looking back at section one where we found the line of intersection of two planes,
the actual length of the vector along the line was of no relevance, so again the
constant multiplier is of little importance.

In applications where the length of the vector is important one approach
would be to restrict ourselves to base change where det(αi

j) = 1, that is, to

require (αi
j) ∈ SO(n,R). The appearance of SO(n,R) here suggests that in this

approach a metric lurks in the background, which could be defined by declaring
the given basis {e1, . . . , en} to be orthonormal.
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7.4 Dot Notation

This section has almost no content; it is about notation. Because the com-
binatorial product (which requires both progressive and regressive products in
its computation) is highly non associative, it is important to invent a notation
that clarifies how the various elements are to be combined in the product. We
could, of course, use parentheses, but this turns out to be cumbersome in prac-
tise. Thus I have adapted a notation using dots which I learned from W. V. O.
Quine long ago. Quine adapted it from Russel and Whitehead, and that is as
much history as I know. Similar notations have no doubt been invented many
times.

In this section A,B, . . . ,M are elements of Λ(V ) which are not necessarily
monomials. The basic principle which we use is left associativity, which means
that

[AB · · ·M ] = [· · · [[[AB]C]D] · · ·M ]

That is, unless otherwise indicated, products are computed by first computing
the first 2, then computing with that product and the third element, etc.

If we wish the multipliaction to associate elements differently, we set off
groupb of left associated multiplications with dots. Left associativity begins
anew with each dot. Thus for example

[A.BC] = [A[BC]]

[AB.CD] = [[AB][CD]]

[AB.CD.EF ] = [[[AB][CD]][EF ]]

Already the reader may note some advantage in the notation. However, we
cannot do everything with a single dot. Often multiple dots are necessary; the
more dots the stronger the association. There is even a rule for decoding, which
we will see later. As examples of where this is necessary, consider the two

[[[AB][CD]][EF ]] and [[AB][[CD][EF ]]]

with dots

[AB.CD.EF ] and [AB : CD.EF ]

In the first product, all the dots are of equal weight and so left associativity
takes over; first compute [[AB][CD]] = X and then compute [X [EF ]]. In the
second product the double dot indicates that left associativity starts over at the
double dot, so first one computes [[CD][EF ]] = Y and then computes [[AB]Y ].

The principle in general is left associativity starts at an n-dot symbol and
continues until the next n-dot symbol, a higher dot symbol, or a final ]. After
the new n-dot or higher dot symbol left associativity begins anew. It is most im-
portant to realize that the number of dots is equal to the number of left bracket
symbols at that point. Using this, one can mechanically fill in the brackets when
one sees the dots. Observe this carefully in the following examples.

[ABC.EF ] = [[[AB]C][EF ]]
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[A.BC.EF ] = [[A[BC]][EF ]]

[A : BC.EF ] = [A[[BC]][EF ]]]

[A : B.C.EF ] = [A[B[C[EF ]]]] WRONG

This expression on the left might be psychologically helpful but it violates the
rules; the double dot is not necessary as one sees by counting only one left
bracket [ at that point. This is a source of confusion and should be avoided.
The proper expression is

[A.B.C.EF ] = [A[B[C[EF ]]]] CORRECT

Here are more examples, but in order to increase comprehensibility I will write
[ABC] for the correct [[AB]C]. Notice my abbreviation conforms to the left
associative rule.

[ABC.DEF ] = [[ABC][DEF ]]

[ABC.DEF.GHI] = [[[ABC][DEF ]][GHI]]

[ABC : DEF.GHI] = [[ABC][[DEF ]][GHI]]

[AB.CD.EF.GH ] = [[[[AB][CD]][EF ]][GH ]]

[AB.CD : EF.GH ] = [[[AB][CD]][[EF ]][GH ]]]] common

[AB : CD.EF.GH ] = [[AB][[CD][EF ][GH ]]]

Note that I am here using the left associativity convention in the expression
[[CD][EF ][GH ]]. This is necessary to make the count come out right.

A couple more examples:

[AB : CD : EF.GH ] = [[AB][[CD][[EF ][GH ]]]]

[AB : .CD : EF.GH : IJ.KL] = [[AB][[[CD][[EF ][GH ]][[IJ ][KL]]]]
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8.1 Introduction

What is vector algebra? As it is ordinarily taught in the United States, it
consists of the elementary theory of the dot product in three dimensional space
over R (largely trivial), a component involving the cross product which is based
on the property that v, w ⊥ v × w and the equality ||v × w|| = ||v||||w|| sin θ,
and a much less trivial part which centers around the vector triple product law
u × (v × w) = (u · w)v − (v × w)u. In the first section of this chapter we will
essentially duplicate this construction, but to maintain interest we will do it in
n-dimensions. In particular, we will construct an analogy of the cross product
that functions in n-dimensions. This construction is well known in Russia as
the “skew product” but is less well known in the west. This section assumes the
standard inner or dot product on Rn.

In the second section we will geometrically interpret (in Rn) the elements
of Λr(V ) and in the third we will look at Λr(V ∗). Then we will examine the
meaning of the duality operator ∗ : Λr(V ) → Λn−r(V ∗) in the fourth section.
Finally in the fifth section we will look at the interpretation of ∗ : Λr(V ) →
Λn−r(V ) in the presence of a metric.
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8.2 Elementary n-dimensional Vector Algebra

The inner (or dot) product part of n-dimensional vector has been sketched out
in Chapter 1. It differs not at all from the theory of the 3-dimensional case which
we assume known. It allows us to find lengths of vectors and angles between
vectors.

We turn now to the analog of the “cross product”. We recall that in the
3-dimensional case the cross product is characterized by

1. v, w ⊥ v × w

2. ||v × w|| = ||v||||w|| sin θ
3. v, w, and v × w form a right handed system.

To produce an analog in n-dimensions, we must discuss the third item
first. Handedness is determined by choosing an element 0 6= Ω ∈ Λn(V ), and we
consider Ω1 and Ω2 to determine the same handedness if Ω2 = αΩ1 where α > 0.
(This makes sense because Λn(V ) is 1-dimensional.) There are two handedness
classes represented by Ω and −Ω. We will refer to the chosen element Ω (really
its handedness class) as the positive orientation or right handed orientation; the
other will be the negative or left handed orientation. A basis e1, e2, . . . , en is then
positively oriented or negatively oriented according to whether e1∧e2∧. . .∧en =
αΩ where α > 0 or α < 0. If a reader feels that he has a right handed basis
e1, e2, . . . , en he need only take Ω = e1 ∧ e2 ∧ . . . ∧ en as his chosen element of
Λn(V ). There is of course no mathematical way to distinguish right from left;
only the distinction between the two has meaning.

Let us suppose a choice of basis Ω has been made. We select an orthonormal
basis e1, e2, . . . , en and form e1 ∧ e2 ∧ . . . ∧ en = αΩ If α < 0, we may reverse
the sign on any ei and we will now have a right handed orthonormal basis.
We will always consider that this adjustment has been made. We then set
e1 ∧ e2 ∧ . . .∧ en = Ω0 and have Ω0 = αΩ with α > 0, so e1, e2, . . . , en is a right
handed system and Ω0 is in the right handedness class. We then have

(Ω0,Ω0) = det( (ei, ej) ) = det





1 . . . 0
...

...
...

0 . . . 1



 = 1 .

We then have a duality operator ∗ : Λr(V )→ Λn−r(v) which, as we know from
section 5.3, satisfies

A ∧ ∗B = (A,B)Ω0 for A,B ∈ Λr(V ) .

Since in this section we will not be discussing V ∗ at all, we can simplify the
notation by dropping the underline on ∗ and writing simply ∗. We are now in a
position to define the vector product. Def Let v1, v2, . . . vn−1 ∈ V . The cross

product of these vectors, which we shall denote by {v1, v2, . . . vn−1}, is defined
by

{v1, v2, . . . vn−1} = ∗(v1 ∧ v2 ∧ . . . ∧ vn−1) .
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The perceptive reader will note that the cross product involves n−1 vectors.
For n = 3, this is two vectors and gives the familiar v1 × v2. However, the ×
notation is not well adapted to any dimension except n = 3.

We remark at this point that it would be possible to define the cross product
as a determinant in a way analogous to the case of three dimensions. The theory
can then be developed from this, but there is a difficulty in getting the length of
the cross product by this route. We will not adopt this method; we will develop
the cross product out of the theory of the ∗ operator and get the determinantal
formula later.

Notice that the cross product is indeed a vector; v1∧v2∧ . . .∧vn−1 ∈ Λn−1

and ∗ : Λn−1(V )→ Λ1(V ). Let us next note that if

σ =

(
1 2 . . . n− 1

σ(1) σ(2) . . . σ(n− 1)

∣
∣
∣
∣

n
σ(n)

)

∈ Sn,n−1

then

{eσ(1) . . . eσ(n−1)} = ∗(eσ(1) ∧ . . . ∧ eσ(n−1))

= sgn(σ)eσ(n)

Recall that the reverse σ̃ of σ is given by

σ̃ =

(
1

σ(n)

∣
∣
∣
∣

2 3 . . . n
σ(1) σ(2) . . . σ(n− 1)

)

∈ Sn,1

Then sgn(σ̃) = (−1)σ(n)−T1 = (−1)σ(n)−1 and since sgn(σ)sgn(σ̃) = (−1)1·(n−1)

we have
sgn(σ) = (−1)n−1−[σ(n)−1] = (−1)n−σ(n)

so that
{eσ(1) . . . eσ(n−1)} = (−1)n−σ(n)eσ(n) .

Now we can do some examples.

n = 2 : Then the cross product has only one input element {eσ(1)} and we
have

{e1} = (−1)2−2e2 = e2

{e2} = (−1)2−1e1 = −e1
Thus for n = 2 the cross product rotates the vector π

2 positively.

n = 3 : The cross product now has two elements and we have

{e1e2} = (−1)3−3e3 = e3

{e1e3} = (−1)3−2e2 = −e2
{e2e3} = (−1)3−1e1 = e3

Since {e1e3} = ∗(e1 ∧ e3) = − ∗ (e3 ∧ e1) = −{e3e1}, the second equation is
often written

{e3e1} = e2 .
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These last equations show that {eiej} = ei × ej and thus {vw} = v × w
as the latter is ordinarily defined, since the value of × on the basis vectors
determines it completely. Hence our cross product is indeed a generalization of
the ordinary three dimensional cross product.

To return to the general theory, we first have

∗ ∗ (v1 ∧ . . . ∧ vn−1) = (−1)(n−1)(n−[n−1])v1 ∧ . . . ∧ vn−1

= (−1)(n−1)v1 ∧ . . . ∧ vn−1

and then, for 1 ≤ i ≤ n− 1,

(vi, {v1 . . . vn−1})Ω0 = (vi, ∗(v1 ∧ . . . ∧ vn−1) )Ω0

= vi ∧ ∗ ∗ (v1 ∧ . . . ∧ vn−1)

= (−1)n−1vi ∧ v1 ∧ . . . ∧ vn−1

= 0

and thus (vi, {v1 . . . vn−1}) = 0 and

vi ⊥ {v1 . . . vn−1} for 1 ≤ i ≤ n− 1 .

This is perhaps the most important property of the cross product.
Next we have

v1 ∧ . . . ∧ vn−1 ∧ {v1 . . . vn−1} = (v1 ∧ . . . ∧ vn−1) ∧ ∗(v1 ∧ . . . ∧ vn−1)

= (v1 ∧ . . . ∧ vn−1, v1 ∧ . . . ∧ vn−1)Ω0 .

Since (v1∧. . .∧vn−1, v1∧. . .∧vn−1) ≥ 0, we have either v1, . . . , vn−1, {v1 . . . vn−1}
are linearly dependent or v1, . . . , vn−1, {v1 . . . vn−1} is a right handed system.

The first possibility, that v1, . . . , vn−1, {v1 . . . vn−1} is linearly dependent,
is equivalent to v1, . . . , vn−1 being linearly dependent, as we now show. Indeed,
since ∗ is an isometry in R we have

({v1 . . . vn−1}, {v1 . . . vn−1}) = (∗(v1 ∧ . . . ∧ vn−1), ∗(v1 ∧ . . . ∧ vn−1) )

= (v1 ∧ . . . ∧ vn−1, v1 ∧ . . . ∧ vn−1)

= ||v1 ∧ . . . ∧ vn−1||2

Thus
v1 ∧ . . . ∧ vn−1 ∧ {v1 . . . vn−1} = ||v1 ∧ . . . ∧ vn−1||2 Ω0

and we have

v1, . . . , vn−1, {v1 . . . vn−1} lin. ind. iff v1 ∧ . . . ∧ vn−1 ∧ {v1 . . . vn−1} = 0

iff v1 ∧ . . . ∧ vn−1 = 0

iff v1, . . . , vn−1 linearly independent .

Thus the third characteristic property of the cross product remains valid in the
generalization.



154 CHAPTER 8. APPLICATIONS TO VECTOR ALGEBRA

Another useful property, obtained from Grassmann’s theorem, is

({v1 . . . vn−1}, {w1 . . . wn−1}) = (∗(v1 ∧ . . . ∧ vn−1), ∗(w1 ∧ . . . ∧ wn−1) )

= (v1 ∧ . . . ∧ vn−1, w1 ∧ . . . ∧ wn−1)

= det( (vi, wj) ) (1)

so that

||v1 ∧ . . . ∧ vn−1||2 = ({v1 . . . vn−1}, {v1 . . . vn−1})
= det( (vi, vj) ) . (2)

The generalization of the second property is less straightforward. The for-
mula

||v × w|| = ||v||||w|| sin θ

does not generalize in a simple way and we cannot discuss it further here. How-
ever, the geometric idea behind the formula does generalize, although we will
need to be a bit informal about it at this time. The expression above for ||v×w||
gives the absolute value of the area of the parallelogram spanned in 3-space by
the v and w. This we can generalize. Let v1, . . . , vn be n linearly independent
vectors in n-space. They span an n-parallelopiped P whose n-volume is (by
definition) ||v1∧ . . .∧vn||. (We will discuss this more completely in section 7.5).
Let P1 be the “face” of P spanned by v1, . . . , vn−1. Then it is plausible that

(n-volume of P ) = ( (n− 1)-volume of P1) ||vn|| | cos θ|

where θ is the angle between {v1 . . . vn−1} (which is perpendicular to the face)
and vn. But now we note that

||{v1 . . . vn−1}|| ||vn|| cos θ Ω0 = (vn, {v1 . . . vn−1})Ω0

= (vn, ∗(v1 ∧ . . . ∧ vn−1) )Ω0

= vn ∧ ∗ ∗ (v1 ∧ . . . ∧ vn−1)Ω0

= vn ∧ ∗ ∗ (v1 ∧ . . . ∧ vn−1)

= (−1)(n−1)(n−(n−1))vn ∧ (v1 ∧ . . . ∧ vn−1)

= (−1)(n−1)vn ∧ v1 ∧ . . . ∧ vn−1

= v1 ∧ . . . ∧ vn

So, taking norms and recalling that ||Ω0|| = 1, we have

||{v1 . . . vn−1}|| ||vn|| | cos θ| = ||v1 ∧ . . . ∧ vn||
= (n-volume of P ) .

Comparing this with the equation above, we see that

||{v1 . . . vn−1}|| = ( (n− 1)-volume of P )
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We can extract from the above proof that

({v1 . . . vn−1}, vn)Ω0 = v1 ∧ . . . ∧ vn (3)

which is a useful formula.
Next we wish to generalize the formula

v × w =

∣
∣
∣
∣
∣
∣

î ĵ k̂
v1 v2 v3

w1 w2 w3

∣
∣
∣
∣
∣
∣

.

This form is bad for two reasons. First, we would like to write our vector
components in column form, and second, the sign comes out wrong in even
dimensional spaces. The proper way to write this for purposes of generalization
is

v × w =

∣
∣
∣
∣
∣
∣

v1 w1 î
v2 w2 ĵ
v3 w3 k̂

∣
∣
∣
∣
∣
∣

.

We can now generalize, when v1, . . . , vn−1 are written in terms of an orthogonal
coordinate system e1, . . . , en as vi = vji ej , by

{v1 . . . vn−1} =

∣
∣
∣
∣
∣
∣
∣

v11 v12 · · · e1
...

...
...

...
vn1 vn2 · · · en

∣
∣
∣
∣
∣
∣
∣

. (4)

The proof is very easy; let w be any vector in V . Then

({v1 . . . vn−1}, w)Ω0 = (w, {v1 . . . vn−1})Ω0

= (w, ∗(v1 ∧ . . . ∧ vn−1) )Ω0

= w ∧ ∗ ∗ (v1 ∧ . . . ∧ vn−1)

= (−1)(n−1)(n−(n−1))w ∧ (v1 ∧ . . . ∧ vn−1)

= (−1)(n−1)w ∧ v1 ∧ . . . ∧ vn−1

= v1 ∧ . . . ∧ vn−1 ∧w

=

∣
∣
∣
∣
∣
∣
∣

v11 v12 · · · v1n−1 w1

...
...

...
...

...
vn1 vn2 · · · vnn−1 wn

∣
∣
∣
∣
∣
∣
∣

Ω0

=

(

(−1)n+1

∣
∣
∣
∣
∣
∣
∣

v21 · · · v2n−1

...
...

...
vn1 · · · vnn−1

∣
∣
∣
∣
∣
∣
∣

w1 + · · · · · ·
)

Ω0

=

(

(−1)n+1

∣
∣
∣
∣
∣
∣
∣

v21 · · · v2n−1

...
...

...
vn1 · · · vnn−1

∣
∣
∣
∣
∣
∣
∣

e1 + · · · · · · , w1e1 + · · ·+ wnen

)

Ω0

=

(
∣
∣
∣
∣
∣
∣
∣

v11 v12 · · · v1n−1 e1
...

...
...

...
...

vn1 vn2 · · · vnn−1 en

∣
∣
∣
∣
∣
∣
∣

, w

)

Ω0
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from which, since w is arbitrary, the desired equation follows.
Methodologically speaking, it is useful to note that one could take (4) as the

Definition of {v1 . . . vn−1} of one were only interested in having the cross product
and not the entire Grassmann process available. If one goes this route it is not
so easy to derive (1) or (2) unless one assumes that det(AB) = det(A) det(B)
where A and B are matrices with both scalar and vector entries, like (4), in
which case different multiplications are being used for different entries.

To see what interesting and important results may be derived with just the
equipment in this section, the reader might profitably consult the splendid book
Rosenblum[1].

Equation (1) can be looked at as the source of various special laws resem-
bling the vector triple product law. For example, if n = 3 we have by (3)

({uv}, z)Ω0 = u ∧ v ∧ z = v ∧ z ∧ u = ({vz}, u)Ω0

so that
({uv}, z) = ({vz}, u) = (u, {vz})

or, in more familiar notation

u× v · z = v × z · u = u · v × z

with the familiar interchange of · and × . Then (1) gives, upon substituting
{uw} for u and using Grassmann’s theorem,

({{uw}v}, z) = ({vz}, {uw})
= det

(
(v, u) (v, w)
(z, u) (z, w)

)

= (u, v)(w, z)− (w, v)(u, z)

= ( (u, v)w − (w, v)u, z )

Since z is arbitrary,
{{uw}v} = (u, v)w − (w, v)u

or in more familiar notation

(u× w) × v = (u, v)w − (w, v)u

which is the familiar vector triple product law.
It is clear that the vector triple product law can now be generalized to n

dimensions by using similar techniques. First we have

({uv2 . . . vn−1}, z)Ω0 = u ∧ v2 ∧ . . . ∧ vn−1 ∧ z

= (−1)n−1v2 ∧ . . . ∧ vn−1 ∧ z ∧ u

= (−1)n−1({v2 . . . vn−1z}, u)Ω0

and then
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({{u1 . . . un−1}, v2 . . . vn−1}, z) = (−1)n−1({v2 . . . vn−1z}, {u1 . . . un−1})

= (−1)n−1 det







(v2, u1) · · · (v2, un−1)
...

...
...

(vn−1, u1) · · · (vn−1, un−1)
(z, u1) · · · (z, un−1)







= det






(v2, u2) · · · (v2, un−1)
...

...
...

(vn−1, u2) · · · (vn−1, un−1)




 (u1, z)

− det






(v2, u1) (v2, u3) · · · (v2, un−1)
...

...
...

(vn−1, u1) (vn−1, u3) · · · (vn−1, un−1)




 (u2, z) + · · ·

where we have expanded the determinant by using the bottom row. This shows,
since z was arbitrary, that

{{u1 . . . un−1}, v2 . . . vn−1} = det






(v2, u2) · · · (v2, un−1)
...

...
...

(vn−1, u2) · · · (vn−1, un−1)




 u1

− det






(v2, u1) (v2, u3) · · · (v2, un−1)
...

...
...

(vn−1, u1) (vn−1, u3) · · · (vn−1, un−1)




u2 + · · ·

This is the n-dimensional analog of the vector triple product law.
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8.3 Standard Interpretation of the Grassmann

Algebra Λr(V ) of a Real Vector Space V

We assume for this section that the field is the real numbers R. Things will be
similar over other fields but more difficult to visualize.

We must review some matters before beginning to avoid possible confusion.
First, we recall that if V is an n-dimensional vector space then Λn(V ) is one
dimensional. Hence any two non-zero elements will be real multiples of each
other, and are thus to that extent comparable; for example, one may be twice
the other.

Now suppose that we have a 2-dimensional subspace W of a 3-dimensional
space V . Then any two elements of Λ2(V ) which are constructed from elements
of W are also in Λ2(W ) and hence are comparable. We are quite used to this
in the case of Λ1(V ). We interpret elements of Λ1(V ) as directed line segments
(“vectors”) and if we have two collinear vectors (that is, two vectors in the same
1-dimensional subspace W ,) then one will be a multiple of the other;

v

2v

Figure 8.1: A vector and its double

for example in the picture we see v and 2v. The standard way to describe this
situation is to say the 2v is twice as long as v. However, there is no metric
involved here; the reason we can speak this way is because both v and 2v are
in the same 1-dimensional space Λ1(W ) where W is the 1-dimensional subspace
spanned by v.

We could push this even further if we wished; we could select a vector e
to be the basis of W . Then v = αe for any v ∈ W and we could assign a
“length” |α| to the vector v, thus counterfeiting a metric on W . The flaw in this
plan is that there is no sensible relationship between vectors in V which are not
collinear, so we do not have an actual metric.

I mention in passing that this method of counterfeiting a metric is often
used in projective geometry to define the cross ratio in a situation in which there
normally would be no mention of a metric.

Although it is possible to object to the use of language like “2v is twice as
long as v,” it is very handy to use this language for our purposes, and indeed
to avoid it would require creating some clumsy circumlocutions. Therefore we
will use the phrase “2v is twice as long as v” in this and the following sections
but the reader must remember that no metric has been introduced. More to the
point, we will use analogous expressions for higher dimensions, for example “2A
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has twice the area of A,” and the reader will understand that what is meant here
is that we are working in some Λ2(W ) where W is a two dimensional subspace
of V , or working in some Λr(W ) where W is an r-dimensional subspace of V ,

It is worth noting that should a metric become available then “w is twice as
long as V ” in the sense of this section really does imply that ||w|| = ||2v||, but
the converse is of course false. The situation is similar for higher dimensions.

The situation w = −2v is very common and the description ”w is twice as
long as v and oppositely oriented” is clumsy, but nothing better is obviously
available and we must muddle through with it as best we can.

These preliminaries out of the way, we can now get to the main objective.
Vectors in V are represented pictorially as directed line segments in the usual
way. Now let V be a three dimensional vector space and e1, e2, e3 a fixed basis,
which we here draw as orthonormal for artistic convenience.

Let

v1 = e1 + e2

v2 = e1 + e2 + e3

so that the picture looks like:

v1

v2

e1

e2

e3

Figure 8.2: Rectangle represented as product

We think of v1∧v2 as represented by the parallelogram two of whose sides are v1
and v2 as pictured above. The parallelogram has an orientation (first v1 then v2)
which is not easy to represent pictorially. Then v2∧v1 is represented by the same
parallelogram which we think of as oriented oppositely, so that v1∧v2+v2∧v1 =
0. We have drawn the customary circular arrows on the parallelogram to indicate
orientation. These are occasionally helpful for visualization. We will often omit
the orientation arrows from the figures if they are not relevant to the discussion.
This orientation is not easily controlled geometrically, so it is fortunate that the
corresponding algebra controls it adequately.

In elementary vector analysis orientation is controlled by using a normal
vector n so that v1, v2, n form a right handed system. Certain generalizations of
this method will function in restricted circumstances but in general normal vec-
tors are not available for Grassmann objects so we will not pursue this method.

Besides the orientation problem, there is a second difficulty in the represen-
tation of elements of Λ2(V ). For vectors there is essentially just one geometrical
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object representing the element of Λ1(V ), but for Λr(V ) with r > 1 this is no
longer true. (It is not even true for Λ1(V ) unless we insist that all the vector
tails are at the origin, which we have tacitly done. Without this requirement
a vector is an “equivalence class” of directed line segments where equivalence
means same “length” and same direction.) The situation is similar for Λr(V );
even a element v1 ∧ v2 which is a pure product will have many equivalent repre-
sentations as a parallelogram, and the same will be true for higher dimensional
objects. This makes the pictorial representation less useful than it is for vectors,
but still much can be learned from it. We illustrate this now.

Recall that to express v1 ∧ v2 in terms of e1, e2, e3 we use the subdetermi-
nants of the matrix of coefficients





1 1
1 1
0 1





of v1 and v2. We have

v1 ∧ v2 = 0e1 ∧ e2 + 1e1 ∧ e3 + 1e2 ∧ e3

= (e1 + e2) ∧ e3

This gives us the picture:

e1

e2

e3

e1+ e2

Figure 8.3: Rectangle represented as product

which the reader will note is not the same as the previously pictured parallel-
ogram. Thus the elements v1 ∧ v2 and (e1 + e2) ∧ e3 are equal as elements of
the Grassmann algebra but have differing pictorial representations, illustrating
the non-uniqueness of the representation. We would like to have some sense of
when two parallelograms do indeed represent the same element of the Grass-
mann algebra, and this is true if we have the following

1. The Parallelograms lie in the same plane
2. The parallelograms have the same area
3. The parallelograms have the same orientation

For number 2. we can deal with the question of area in some naive way, for exam-
ple dissection. (Recall the discussion of this earlier in this section.) Remember
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that we are dealing with a pictorial representation which gets progressively less
adequate as the dimensions grow, and we must not expect too much of it. For
3., if the dimension of V is 3, one can get a sense of the orientation by curling
the fingers of ones right hand in the direction from the first vector to the sec-
ond, and noting the direction of ones thumb; the orientation is the same if the
thumb points out of the plane the same way each time. For higher dimensions
orientation is best controlled algebraically.

The reader should now have the sense that any two two pairs of vectors
v1, v2 and w1, w2 which lie in the same plane, create parallelograms with the
same area and have the same orientation will satisfy v1 ∧ v2 = w1 ∧w2. Here is
another example: Let

v1 = (e1 + e2) w1 = e1 + e2 − e3
v2 = 2e3 w2 = e1 + e2 + e3

We then have the pictures

e1+e2

w1

w2e3

e1+e2

e3

2e3

Figure 8.4: Different representations of the same product

The equality of the areas show can be seen by an elementary dissection. Com-
puting algebraically the matrix of coefficients for w1 and w2 is





1 1
1 1
−1 1





and this gives

w1 ∧ w2 = 0e1 ∧ e2 + 2e1 ∧ e3 + 2e2 ∧ e3 = (e1 + e2) ∧ 2e3

We now note that the above analysis, though taking place in a space V of
dimension 3, would also be valid if it all took place in a subspace of dimension
3 in a space V of arbitrary dimension. Products of two vectors would still
be represented by parallelograms and everything in the above analysis would
remain correct with the exception of the remark concerning the use of a normal
vector, which would not be available in the more general case.

Let us illustrate these ideas by considering a sum of the form v1∧v2+v3∧v4.
If v1 ∧ v2 and v3 ∧ v4 determine the same plane, the problem is not interesting,
so we suppose this is not occurring. In an arbitrary vector space V the most
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common case occurs when the two planes only intersect at the origin, and this
case is also uninteresting because we can do nothing further. However, if the
two planes intersect in a line, and this is the case which must occur for distinct
planes if dim(V ) = 3, there is then an interesting special case. We may then
find a vector w contained in the intersection of the planes. We illustrate in the
picture with v1 = e1 + e2 − 1

2e3, v2 = e3, v3 = e1, and v4 = e2

e2

e1

e3

e +e1 2

e +e - -e1
21 2 3

e1

e2

e3

e +e1 2

Figure 8.5: Adding two rectangles

In these pictures we see the parallelograms for v1∧v2 and v3∧v4 and we choose
the vector w = e1 + e2 in the intersection of the two planes. It is then possible
to rewrite the products
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using this w, so that v1 ∧ v2 = w ∧w1 and v3 ∧ v4 = w ∧w2. Of course, w1 and
w2 are not uniquely determined. They need only be chosen so as to conserve
the area. In our case this can be accomplished by

e2

e1

e3

e +e1 2= w

e +e - -e1
21 2 3

e1

e2

e3

e + e1 2 = w

w

Figure 8.6: Adding two rectangles

taking

v1 ∧ v2 = (e1 + e2 − 1
2e3) ∧ e3 = (e1 + e2) ∧ e3 = w ∧ e3

v3 ∧ v4 = e1 ∧ e2 = (e1 + e2) ∧ e2 = w ∧ e2 .

We then have

v1 ∧ v2 + v3 ∧ v4 = w ∧ e3 + ∧e2
= w ∧ (e2 + e3)

which we can picture as

e

e

w
e + e

e + e

1

3

1 2

2 3

Figure 8.7: Sum of two rectangles

Thus, in the sense of Grassmann algebra, we have added the two parallel-
ograms.

In a similar way, products of three vectors can be represented by paral-
lelopipeds. Higher dimensional objects can be imagined in analogy to those
described.
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e

e

e

v

v

v

1

2

3

1

2

3

Figure 8.8: Representation of product of 3 vectors

An arbitrary element A ∈ Λr(V ) will be a sum of products of r vectors
which in general will not collapse into a single prodict. In this case our geometric
intuition for A remains weak at best. (Those who are familiar with homology
theory will sense the similarity to chains in that context.) We best we can do is
visualize the individual r-parallelograms corresponding to the summands of A.

We will now attempt to clarify pictorially the orientation on v1 ∧ v2 ∧ v3.
Below we have shown the parallelopiped representing v1 ∧ v2 ∧ v3 and we have
drawn in the orientations

v

v

v

1

2

3

Figure 8.9: Representation showing orientations
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and now we show and exploded view:

v

v

v

1

2

3

Figure 8.10: Exploded view showing orientations.

Arrows for the faces determined by v1∧v2, v2∧v3 and v3∧v1. These particular
orientations are determined by the fact that

(v1 ∧ v2) ∧ v3 = (v2 ∧ v3) ∧ v1

= (v3 ∧ v1) ∧ v2

so that in each of the orders we the vectors form a same handed system as
v1, v2, v3. We can now order all the sides by following the rule that orientations
must cancel when they meet at an edge. Thus in exploded view we have
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8.4 Geometrical Interpretation of V ∗

We wish in this section to provide a geometrical interpretation of V ∗. While
certain aspects of this interpretation are incomplete, it nevertheless gives a way
of visualizing the elements of Λp(V ∗) and, surprisingly, was discovered over a
hundred years ago.

We will begin our discussion with more generality than is really necessary
for this section but which will be helpful later in the chapter on manifolds. In
this Chapter we will assume the field is always the real numbers R. We first
consider a one dimensional vector space V and then we will interpret an element
f ∈ Λ1(V ∗) = V ∗ to be pictured by a series of vertical lines.

Figure 8.11: An element f of V ∗

This representation of f we now superimpose on the a horizontal line represent-
ing V on which a basis element e1 has been chosen.

e0 1

Figure 8.12: f and an element of e1 of V

This particular example is set up to represent the element f = 2e1 ∈ V ∗, and
the picture is interpreted by counting the number of intervals crossed by e1
to give the value f(e1) =< 2e1, e1 >= 2 We further interpret f to be a the
description of a (constant) linear density 2. If we wish to illustrate with units,
the e1 represents one centimeter and f represents a density of 2 grams/cm.
Then < f, e1 > represents the mass of two grams. Similarly, we represent the
situation v = 2e1 as

v0

Figure 8.13: An element f of V ∗

For a physical example, suppose we have a wire of density 4 gm/cm and we
wish to find the mass of a wire of length 2 cms. We have g = 4e1 for the
density and v = 2e1 for the length, which we diagram in Figure 4. which
illustrates that < g, v >=< 4e1, 2e1 >= 8; that is, the wire has mass 8 gm. If
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v0

Figure 8.14: 〈g, v〉 = 8

1.250 e1

Figure 8.15: < 2e1, 1.25e1 >= 2.5

we stretch our imaginations a bit we can make this work in general; for example
< 2e1, 1.25e1 >= 2.5 is illustrated in Figure 5.
We could refine the system by putting subdivisions in to make it easier to count
fractions of a unit:

1.250 e1

Figure 8.16: < 2e1, 1.25e1 >= 2.5 in high res

but we are not really interested in refining the system to this degree. We could
also change the base unit from cm to inches and correspondingly change the
spacing between the lines to represent ounces per inch.

In terms of our previous theory, choosing a ”distance” between the vertical
lines is choosing a basis element Ω∗ for Λ1(V ):

Ω∗

Figure 8.17: Diagram of basis element

and then 1
2Ω

∗ is represented by

Ω∗

Figure 8.18: Diagram of 1
2 basis element

and 2Ω∗ is represented by
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Ω∗

Figure 8.19: Diagram of twice basis element

Associated with the choice of Ω∗ ∈ V ∗ is a choice of Ω ∈ V which fits precisely
between the two vertical lines of Ω∗:

Ω∗

0

Ω

Figure 8.20: Diagram of both basis elements

In our example, since Ω∗ represents 2 gm/cm, Ω will be a vector half a centimeter
long.

We now turn to the case dim(V ) = 2. We first interpret elements of Λ1(V ∗).
We choose a basis in V and a corresponding dual basis e1, e2 in V ∗ and ask how

e

e1

2

0

Figure 8.21: Diagram of e1 and e2 from V

to interpret f = λ1e
1 + λ2e

2. We interpret f as a series of equidistant parallel
lines generated as follows. The first line is the straight line connecting 1

λ1
e1 and

1
λ2
e2. For clarity we will use a specific example; if we take f = 2e1 + e2 this is

the line shown on the left side of Figure 12. The second line is the line parallel
to this and through the origin as shown on the right side of Figure 12, and then
a whole series of lines is determined by these two as in Figure 13.

The series of parallel lines represents f = 2e1 + e2. The extra mark has a
significance which we will explain shortly.

We now want to relate the this picture of f ∈ Λ1(V ) to the value of f
on a vector v, that is we want to use the picture with the vector included to
determine the value of 〈f, v〉. To do this we define a stripe as the region between
two of the parallel lines. We then draw the vector into the picture and count
the number of stripes through which the vector passes. This is then the value
of 〈f, v〉.
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e

e1

2

0

e

e1

2

0

Figure 8.22: Partial Diagrams of 2e1 + e2

e

e1

2

0

Figure 8.23: Complete Diagram of 2e1 + e2

We take as examples the vectors v = e1 + e2, u = −e1 + e2, and w =
1.5e1 + .5e2. First we concentrate on v, where we see in the picture that v
crosses three stripes:

e

e

v

w

u

1

2

0

Figure 8.24: Value of 2e1 + e2 on vectors u, v, w ∈ V

and this tells us that 〈f, v〉 = 3. If we calculate this we find

〈f, v〉 = 〈2e1 + e2, e1 + e2〉 = 2 + 0 + 0 + 1 = 3 .

in agreement with the result from the picture.
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To justify the pictorial representation, we note that it is clear, first that
〈f, e1〉 = 2 and 〈f, e2〉 = 1 and, second, that the method of computing 〈f, v〉 is
linear in v. Thus our method correctly represents f = 2e1 + e2.

For the other vectors u and w, pictorially we have

〈f, w〉 = 3 1
2 〈f, u〉 = −1

and computationally

〈f, w〉 = 〈f = 2e1 + e2, 1.5e1 + .5e2〉 = 2 · 1.5 + 1 · .5 = 3.5

〈f, u〉 = 〈f = 2e1 + e2,−1e1 + 1e2〉 = 2 · (−1) + 1 · (1) = −1

Notice that in the visual computation of 〈f, u〉 = −1 we obtained the result −1.
This is where the small sign (>) plays its role. This sign indicates the positive
direction of the series of parallel lines. Vectors like v and w which cut the lines in
this direction (rightwards in this case) count the strips positively. If the vector
cuts the strips in the opposite direction, like u, then the result is negative. The
element −f = −2e1 − e2 ∈ V would have the same series of parallel lines, but
the positive direction of the lines would be reversed.
The diagram for −f then looks like

Figure 8.25: Diagram for −f = −2e1 − e2

Finally, we note the patterns of parallel lines that correspond to the basis vectors
e1 and e2 of V ∗. They are Before going on, it might be helpful to provide a

e

e

1

2

0 e

e

1

2

0

Figure 8.26: Diagrams for e1 and e2

physical example to of how the parallel lines of a linear functional could be
interpreted. There are many ways to do this but perhaps temperature is the
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most familiar. We could interpret 〈f, v〉 as the temperature at the head end of
the vector v, or, more generally and since everything is linear, we could also say
that 〈f, v〉 gives the difference in temperature between the head and tail ends
of the vector. The parallel lines of f then can be interpreted as the isotherms of
the temperature (lines of constant temperature) and the symbol (>) indicates
the direction of increasing temperature.

Another possible interpretation would be electrostatic potential where the
parallel lines are equipotential lines.

Next we consider Λ2(V ). Let us consider a product f ∧ g where f is the
same as in the previous part of the section and g = e1 + 3e2; we diagram both
below. Hence we might reasonably represent f ∧ g by putting both sets of lines

e

e

1

2

0

f = e1+e22

e

e

1

2

0

g = e1+ e 23

Figure 8.27: Diagrams for f and g

on the same graph: The crossed lines representing f ∧ g can now be used in the

e

e

1

2

0

f ^ g

Figure 8.28: Diagram for f ∧ g

following manner. If we have a parallelogram representing v∧w in the plane, the
value of 〈f ∧ g, v ∧w〉 can be found by counting the number of areas formed by
the crossed lines which are inside the the parallelogram of v ∧w. For example,
we have shown the parallelogram for e1 ∧ e2. If we count the number of areas
formed by the crossed lines and inside the parallelogram of e1 ∧ e2 we see there
are approximately 5 such units of area. Hence 〈f ∧ g, e1 ∧ e2〉 is approximately
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5. If we explicitly compute this we have

〈f ∧ g, e1 ∧ e2〉 = 〈(e1 + 2e2) ∧ (3e1 + e2), e1 ∧ e2〉
= 〈5e1 ∧ e2, e1 ∧ e2〉
= 5

e

e

1

2 f

g

f ^ g

e

e

1

2 --f

g

--f ^ g

e

e

1

2 --f

-- g

--f ^ -- g

Figure 8.29: Diagram for f ∧ g

There is still the question of orientation to deal with. We will just deal
with this cursorially, leaving the interested reader to fill in the details. If we
want to discover whether a given system of crossed lines corresponding to f ∧ g
is positively or negatively oriented, we start with one of the lines of f and go
around a parallelopided in the direction considered positive in comparison to
the basic choice of Ω = e1 ∧ e2 (which is counterclockwise in the above picture).
As we go round the parallelopided in the proper direction (starting with an f
line) the arrows will point IN or OUT. Form the sequence of INs and OUTs
from the arrows:

left picture: I O O I
middle picture: I I O O
right picture: O I I O

The rule is this. If the first two in the sequence are the same, then f ∧ g is
negatively oriented and f ∧g = αΩ∗ with α < 0. If the first two in the sequence
are different, then f ∧ g is positively oriented and f ∧ g = αΩ∗ with α > 0.

We now turn the case of dim(V ) = 3. In this case a linear functional
f ∈ Λ1(V ∗) = V ∗ is represented by a system of equally spaced planes determined
analogously to the previous case; if

f = λ1e
1 + λ3e

3 + λ3e
3

then one of the planes generating the system goes through the three points
(1/λ1, 0, 0), (0, 1/λ2, 0), (0, 0, 1/λ3) and the second is parallel to it and through
the origin. The others are parallel and spaced at identical intervals. Figure 20
shows the planes for 2e1 + 2e2 + e3. It would be possible to use some sort of
little cone to indicate the increasing direction for the planes in analogy to the
two dimensional examples, but we will not pursue this option.

Just as in two space, it is possible to determine 〈f, v〉 by counting the
number of layers between the planes a vector passes through, as illustrated in
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e1

e2

e3

e1

e2

e3

e1

e2

e3

defining
triangles

corresponding
planes

the sequence
of planes

Figure 8.30: Diagram for f = 2e1 + 2e3 + e3

e1

e2

e3

e1

v

Figure 8.31: Calculating 〈f, v〉

Figure 21 for v = e1 + e2 + e3 where we have shifted the planes downward to
allow viewing of the vector. As is visible, the vector v cuts through 5 layers
giving the value 〈f, v〉 = 5. This is also the result of calculation:

〈f, v〉 = 〈2e1 + 2e2 + e3, e1 + e2 + e3

= 2 + 2 + 1 = 5

We now turn to representing elements of Λ2(V ∗). For example if we take
the elements f = 2e1 + 2e2 + e3 and g = 5e3 of Λ1(V ∗) illustrated in Figure
22 and form their product f ∧ g we get which shows how an element of Λ2(V ∗)
determines a system of rectangular tubes. There is an interesting historical
circumstance here; In the 1860’s James Clerk Maxwell was working on the
mathematical description of electric force fields which he referred to as “tubes
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e1

e2

e3

e1

e2

e3

f=2e +2e +e g=5e1 2 3 3

Figure 8.32: Diagrams for f and g

e1

e2

e3

f ^ g

Figure 8.33: Diagram for f ∧ g

of force”. He then described surfaces as cutting these tubes, and the “flux”
was a measure of how many tubes the surface cut. The tubes to which he was
referring are exactly the tubes visible in the above figure. Thus in some sense
none of this material is really new. We will return to this in Chapter 9.

It is important to realize that the representation of f as a picture is highly
non-unique. Also, there are issues of orientation to worry about, which are a
little difficult to represent pictorially. For example, in the above example

f ∧ g = (2e1 + 2e2 + e3) ∧ 5e3

= 10e1 ∧ e3 + 10e2 ∧ e3 + 5e3 ∧ e3

= 10e1 ∧ e3 + 10e2 ∧ e3

= (e1 + e2) ∧ 10e3

which in some ways would make for a simpler picture.
We now wish to examine the interaction 〈f, v〉 pictorially. To do this we



8.4. GEOMETRICAL INTERPRETATION OF V ∗ 175

will make the situation a bit simpler. We will take v = e2 ∧ (−e1 + e3) ∈ Λ2(V )
and f = 2e2 ∧ 3e3 ∈ Λ2(V ∗). These are illustrated in Figure 24. To illustrate

e1

e2

e3

--e1+e3

v= e2^ (--e1+e3)

v

e1

e2

e3

f =2e2
^ 3e3

Figure 8.34: Diagram for 〈f, v〉

the interaction of the two objects, we move v forward and extend the tubes so
that the just reach v. The value of 〈f, v〉 is then equal to the number of tubes

e1

e2

e3

--e1+e3

e2

v=e2^ (--e1+e3)

v

e1

e2

e3

f =2e2
^ 3e3

Figure 8.35: Better Diagram for 〈f, v〉

cut, which we see is 6. Hence 〈f, v〉 = 6 which we now verify by computation:

〈f, v〉 = 〈2e2 ∧ 3e3, e2 ∧ (−e1 + e3)〉
= −6〈e2 ∧ e3, e2 ∧ e1〉+ 6〈e2 ∧ e3, e2 ∧ e3〉
= −6δ2321 + 6δ2323 = −6 · 0 + 6 · 1 = 6 .

Our last case is concerns Λ3(V ∗) which we illustrate with f = 2e1∧2e2∧3e3.
The picture is from which we see that the value of f on the unit cube e1∧e2∧e3
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e1

e2

e3

f =2e1
^ 2e2

^3e3

Figure 8.36: Diagram for a 3-form

is 12 since the unit cube would enclose 12 of the cells of f , which is then easily
verified by computation

〈f, e1 ∧ e2 ∧ e3〉 = 〈2e1 ∧ 2e2 ∧ 3e3, e1 ∧ e2 ∧ e3〉
= 12 〈e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e3〉
= 12 〈Ω∗,Ω〉
= 12 .

This concludes our attempt to render the meaning of Λr(V ∗) visually. While
a lot of the subtleties are lost in the higher dimensional examples, I neverthe-
less feel that the geometric entities we have illustrated are are quite helpful in
understanding the action of Λr(V ∗) on Λr(V ).
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8.5 Geometrical Interpretation of ∗ : Λr(V ∗) →
Λn−r(V ) and ∗ : Λr(V )→ Λn−r(V ∗)

Figures need relabeling and maybe some repositioning

Recall from section 4.5 that the ∗-operators were defined by

∗ : Λr(V )→ Λn−r(V ∗) ℓ ∧ ∗v = 〈ℓ, v〉Ω∗

∗ : Λr(V ∗)→ Λn−r(V ) u ∧ ∗ℓ = 〈ℓ, u〉Ω

for ℓ ∈ Λr(V ∗), u, v ∈ Λr(V ) and Ω, Ω∗ satisfying the condition 〈Ω∗,Ω〉 = 1.
These basic equations make it possible to easily interpret the geometric meaning.
We begin with dim(V ) = 2 and ℓ ∈ Λ1(V ∗) = V ∗ so that ∗ℓ ∈ Λ1(V ). The basic
equation u∧∗ℓ = 〈ℓ, u〉Ω then becomes a condition on the area of a parallelogram
formed from u and ∗ℓ. We represent ℓ by the usual sequence of parallel lines

e

e

u
Ω

1

2

0

Figure 8.37: u ∧ ∗ℓ = 〈ℓ, u〉Ω

and also illustrate Ω = e1 ∧ e2 and a vector u. See figure 1. Since u crosses
exactly one stripe, we have 〈ℓ, u〉 = 1, and this is true for any vector whose arrow
end lies on the line through (the arrow end of) e2. We think of u as representing
any such vector. Finding a representation for ∗ℓ then reduces to finding a vector
∗ℓ so that the parallelogram formed from u and ∗ℓ (including orientation) will
have the same area as the parallelogram formed from Ω = e1 ∧ e2. This is
simple; it is only required to point ∗ℓ along the line of ℓ through the origin, and
adjust its length so that it will have the required area. This is illustrated below
in Figure 2. The exact position of u is of no consequence, since sliding its arrow
end up and down the line does not change the area of the parallelogram.

It is interesting to use the picture as a guide to deriving the formula for
∗ℓ. If ℓ = λ1e

1 + λ2e
2 then the series of parallel lines is generated by the line

through (the arrow ends of) 1
λ1
e1 and 1

λ2
e2. Thus ∗ℓ = α( 1

λ2
e2 − 1

λ1
e1). We

may determine α if λ2 6= 0 by multiplication by e1:

〈ℓ, e1〉Ω = e1 ∧ ∗ℓ
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e

e

u

*l

Ω

1

2

0

Figure 8.38: u ∧ ∗ℓ = 〈ℓ, u〉Ω

〈λ1e
1 + λ2e

2, e1〉Ω = e1 ∧ α(
1

λ2
e2 −

1

λ1
e1)

λ1Ω =
α

λ2
e1 ∧ e2 =

α

λ2
Ω

so that α = λ1λ2 and thus

∗ℓ = ∗(λ1e
1 + λ2e

2) = α(
1

λ2
e2 −

1

λ1
e1)

= λ1λ2(
1

λ2
e2 −

1

λ1
e1)

= λ1e2 − λ2e1

which is the formula given by the algebraic methods of section 4.5.

We now turn our attention to the opposite problem of geometrically rep-
resenting ∗v as a series of parallel lines. This is a little harder because our
intuition for families of parallel lines is not so well developed, so we use a little
algebraic help. Let

v = α1e1 + α2e2

so

∗v = α1 ∗ e1 + α2 ∗ e2
= α1e2 − α2e2 .

Our standard method for drawing the parallel lines of a linear functional ℓ =
β1e

1 + β2e
2 is to generate them by the line through the arrow ends of 1

β1
e1 and

1
β2
e2 and a parallel line through the origin. In our case these are − 1

α2 e1 and
1
α1 e2. A vector going from the first to the second is then

1

α1
e2 − (− 1

α2
e1) =

1

α1α2
(α2e2 + α1e1)
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=
1

α1α2
v .

Thus the lines of ∗v are parallel to v, and the above recipe determines the
spacing. All that remains is the orientation, which we determine as follows.
Select w so that v ∧w = αΩ = α e1 ∧ e2 with α > 0, (that is, v and w are same
handed as e1 and e2). Then we have

w ∧ ∗ℓ = 〈ℓ, w〉Ω for ℓ ∈ Λ1(V ∗)

w ∧ ∗ ∗ v = 〈∗v, w〉Ω
w ∧ (−1)1·(n−1)v =

−w ∧ v =

v ∧ w =

αΩ =

This shows that 〈∗v, w〉 = α > 0 so that w is in the increasing direction for the
parallel lines, and this determines the orientation, which we see in the following
picture:

e

ev

w

*v

1

2

Figure 8.39: u ∧ ∗ℓ = 〈ℓ, u〉Ω

The (<) always points out the side of v that e2 lies on with respect to e1. (The
above picture above uses v = −2e1 + 2e2, ∗v = −2e1 − 2e2 for an example.)

Now we present a more complete picture to illustrate the equation

ℓ ∧ ∗v = 〈ℓ, v〉Ω∗ .

The following picture includes the linear functional ℓ = e1 and shows the par-
allelogram representing Ω∗ = e1 ∧ e2 and also the parallelogram representing
ℓ ∧ ∗v. The width of the
strips between the lines representing ∗v has been set so that the parallelogram
representing ℓ∧∗v has exactly half the area of that representing Ω∗. This means
that that ℓ∧∗v = ±2Ω∗. To see why this is so, recall how an element in Λ2(V ∗)
is evaluated on an element of Λ2(V ); one counts the number of cells representing
the the first which lie in the area representing the second. Hence, if one cell is



180 CHAPTER 8. APPLICATIONS TO VECTOR ALGEBRA

e

e

v
*v

e
e^*v

Ω

1

2

1
1

*

Figure 8.40: u ∧ ∗ℓ = 〈ℓ, u〉Ω

twice as big as another, it’s value on a given area is half as big. In fact, as we
now calculate, ℓ ∧ ∗v = −2Ω∗ but we will leave it to the reader to sort out the
orientation for himself. The calculation runs
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ℓ ∧ ∗v = e1 ∧ (−2e1 − 2e2) = −2(e1 ∧ e1 + e1 ∧ e2)

= −2(0 + e1 ∧ e2)

= −2Ω∗ = 〈ℓ, v〉Ω∗ ,

since

〈ℓ, v〉 = 〈e1,−2e1 + 2e2〉 (8.1)

= −2 (8.2)

so that indeed ℓ∧∗v = 〈ℓ, v〉Ω∗. The last calculation is represented geometrically
by the parallelogram representing e1 ∧ ∗v having a side half as long as v.

Next we turn out attention to the case of dim(V ) = 3 and begin with an
ℓ ∈ Λ1(V ∗). We will draw the axes orthonormal and use the example ℓ =
e1 + e2 + e3 so that the situation will be easy to visualize. We represent ℓ as
usual as a sequence of planes,

e1

e2

e3

v

Figure 8.41: u ∧ ∗ℓ = 〈ℓ, u〉Ω

two of which are shown above. From our experience in the dim(V ) = 2 case
we suspect that ∗ℓ will be an area which we can represent (in many ways) in
the shaded plane and which, when multiplied with a vector v going from the
origin to the transparent plane (for which 〈ℓ, v〉 = 1) will form the element
Ω = e1 ∧ e2 ∧ e3. In contrast to the two dimensional case, it is not totally
obvious how to do this geometrically, although it could be so done. We will
proceed algebraically and illustrate the results geometrically.

We find ∗ℓ = ∗(e1 + e2 + e3) in the usual way:

∗ℓ = ∗(e1 + e2 + e3)

= e2 ∧ e3 − e1 ∧ e3 + e1 ∧ e2 .

It is not obvious that this element actually lies in the shaded plane, and to see
this we must make some modifications.
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∗ℓ = e2 ∧ e3 − e1 ∧ e3 + e1 ∧ e2

= (e2 − e1) ∧ e3 + e1 ∧ e2

= (e2 − e1) ∧ e3 − (e2 − e1) ∧ e2

= (e2 − e1) ∧ (e3 − e2)

In this form it is obvious that the representing parallelogram does indeed lie in
the shaded plane.
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9.1 Introduction

A very fruitful place for Grassmann’s ideas is projective geometry. Grassmann’s
original presentation of his theory was projective, but we have taken a vector
space approach as this is a more familiar environment for most mathematicians
now, and improves the flexibility of application. The two approaches are entirely
equivalent being merely different interpretations of the same symbols. However,
analytic projective geometry is extremely important, lying as it does in the
foothills of Algebraic Geometry, and every mathematician should be acquainted
with its basic ideas.

Our approach to projective geometry is slightly non-standard because our
concern is the application of Grassmann Algebra. However, the differences from
a standard treatment might be considered enrichment by a fair minded person.
Also, while the treatment might look original it is only a trivial elaboration of
the ideas of Grassmann and those of standard projection geometry; no serious
innovation is claimed.

There is no ideal way to approach this subject. Every presentation has
serious drawbacks. The approach I take keeps related ideas together and is not
overwhelming in bringing on too many ideas at once, but is seriously inefficient.
My attempt at an efficient treatment mixed up the concepts so thoroughly I
feared nothing would be clear, but I apologize to experienced persons who will
be annoyed at having to go through essentially the same material twice.
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9.2 Standard Projective Geometry

In this section I will introuduce homogeneous coordinates and simple analytica
projective geomery in two dimensions. In a later section I will relate this to the
set of lines through the origina in 3 space, but we will not use that interpre-
tation in this section. Higher dimestions are treated analogously. We need a
nodding familiarity with the standard treatment in order to see how it relates
to Grassmann’s treatment, and it is enormously interesting in its own right.

Two dimensional Euclidean Geometry, essentially R×R with the standard
inner product, is seriously asymmetric with respect to points and lines.

two points determine a line

two non parallel lines determine a point

Desargue (1591-1661) sugggested the addition of “points at infinity” so that
parallel lines would have a point at which to meet. Each family of parallel lines
determines a unique point at ∞ through which all lines of the family go. The
technical terminology is “All lines of the family are incident with the point at
∞.” This adds a “circle” of points at ∞ except that antipodal points on the
circle are identified. This is a very crude picture of the Project Plane P2(R) but
it can be helpful in getting an initial feeling for the subject. Since the “circle”
is at infinite “distance”, its radius is infinite and so its curvature is 0. Thus
it can also be thought of as the “line at ∞,” and this way of thinking is also
useful. Note that since two points determine a line, two points a ∞ determine
the line at ∞. All of this can be analytically confirmed once we bring on the
equipment. After adding in the points at ∞ and the one line at ∞ we have
much more symmetry between lines and points;

two points determine a line

two lines determine a point

The first, but not the only, casualty of adding in the new points and line are
the loss of the inner product; the new structure has no simple geometrically
understandable metric or inner product; we must forego the idea of any two
points having a finite distance between them.

Another gain is that projections from the new structure P2(R) to itself are
extraordinarly well behaved and are handled well by the familar GL(3, R) (the
3 is not a misprint) as we will later show.

However, there is another serious loss. Two dimensional Euclidean space
R2 = R×R is the direct product of R with itself, but this is not true for P2(R).
P1(R) is formed by adding a single point at ∞ to the real line, and this point,
residing as it does at either “end” of R, connects the two “ends” so that P1(R) is
topologically a circle. Thus, topologically, P1(R)×P1(R) is the direct product of
two circles and thus a torus (hollow donut, like an inner tube). It is intuitively
clear that this is not the same as P2(R):

P2(R) 6= P1(R)× P1(R)
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So there is both gain and loss in moving from R2 to P2(R); it would be
unwise to consider either of them “better” or “more natural;” mathematics
needs both. In the context of algebraic geometry P2(R) is the more natural
basic object, but even there tangent spaces to varieties are usually thought of
as R2.

Now a critical person might suggest that the whole idea of points at ∞ is
nonsense; in fact many students feel this way when introduced to this subject.
However, most of the students can be beaten into sullen acquiescence when
the points at ∞ are given coordinates. If objects have coordinates which are
numbers, it is harder to claim they make no sense. Plücker and Grassmann both
gave coordinates to the points at∞ around 1842, in slightly different ways. The
standard treatment which I will present here is closer to Plücker’s approach; we
will look at Grassmann’s approach later, and give a generalized treatment of
which both are special cases.

In the standard treatment a point in P2(R) is given by a triple [x0, x1, x2]
of real numbers. (There is an analogous theory using complex numbers which
is used in algebraic geometry; there is no difficulty in switching from P2(R) to
P2(C).) The tricky point is that any non-zero multiple of the original triple
[αx0, αx1, αx2] refers to the same point. Thus the triples

[2, 4, 6], [1, 2, 3], [ 12 , 1,
3
2 ], [100, 200, 300]

all refer to the same point. And what point is that? This question asks for
the affine coordinates (X1, X2) of the point. We find these in the x1 and x2

positions when the triple is adjusted to that x0 = 1, or put another way, if we

divide [x0, x1, x2] by x0 we get [1, x
1

x0 ,
x2

x0 ] so that we have

X1 =
x1

x0
X2 =

x2

x0

In our example the triple that begins with 1 is [1, 2, 3] and thus the point referred
to is (2, 3), which can also be obtained from the triple [100, 200, 300] by dividing
by 100. Thus we can go back and forth between the triples and the affine
coordinates with ease, the point (−7, 5) having triple [1,−7, 5].

It will be useful to have a notation for triples that refer to the same point.
We wil use ∼ for this so we write

[αx0, αx1, αx2] ∼ [x0, x1, x2]

[2, 4, 6] ∼ [100, 200, 300]

But, you say, what if x0 = 0? To investigate this question and get some
practise with the notation, let us look at the typical line in affine coordinates

4X1 + 7X2 − 3 = 0

We parametrize the line by setting X1 = 7t
4 and thus X2 = −t + 3

7 and thus
the affine coordinates are (7t4 ,−t+ 3

7 . Hence the projective coordinates are

[1,
7t

4
,−t+ 3

7
] ∼ [

1

t
,
7

4
,−1 + 3

7t
] ∼ [

4

t
, 7,−4 + 12

7t
]
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Now it is clear from the forms of the affine and projective coordinates that as
t→∞

(7t4 ,−t+ 3
7 ) −→ ∞

[ 4
t
, 7,−4 + 12

7t ] −→ [0, 7,−4]

and thus a reasonable interpretation is that [0, 7,−4] are the projective coordi-
nates of the point at ∞ on the line 4X1 + 7X2 − 3 = 0. In a similar way

[0, µ2,−µ1] is the point at ∞ on µ0 + µ1X
1 + µ2X

2 = 0

The family of lines parallel to µ0 + µ1X
1 + µ2X

2 = 0 all have the form µ̃0 +
µ1X

1 + µ2X
2 = 0 and we see that they all have the same point [0, µ2,−µ1] at

∞.
We also see that x0 = 0 is characteristic of points at ∞. Let us look at

this a little more closely. Using the equations X1 = x1

x0 , X
2 = x2

x0 we can get the
projective equation of a line easily by multiplying through by x0;

µ0 + µ1X
1 + µ2X

2 = 0

µ0 + µ1
x1

x0 + µ2
x2

x0 = 0

µ0x
0 + µ1x

1 + µ2x
2 = 0

The last is the projective equation of the line, and it has the advantage that we
can now include the line at ∞ by taking µ0 = 1 and µ1 = µ2 = 0. Thus x0 = 0
is the projective equation of the line at ∞.

Looked at another way, the intersection of the line µ0x
0 +µ1x

1 +µ2x
2 = 0

and the line at ∞ is formed by setting x0 = 0 leaving us with µ1x
1 + µ2x

2 = 0
with obvious solutions [0, µ2,−µ1] and [0,−µ2, µ1] which of course give the same
point, being non-zero multiples of one another.

The last equation suggests an extemely important idea. We note that
[µ0, µ1, µ2] and [x0, x1, x2] enter into the equation µ0x

0 + µ1x
1 + µ2x

2 = 0 in a
symmetrical manner. This suggests that the points (represented by [x0, x1, x2])
and the lines (represented by [µ0, µ1, µ2], with multiplication by a non-zero
constant giving the same line) enter into projective geometry ina symmetrical
manner, which we have already indicated by the symmetry of

two points determine a line

two lines determine a point

This is the famous Principle of Duality which is fundamental in projective ge-
ometry and can be systematized by

A theorem remains valid if the words “point” and “line”

are replaced by the words “line” and “point”.

as in the above example.
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Above we found the intersection of the line µ0x
0 + µ1x

1 + µ2x
2 = 0 with

the line at ∞. It is natural, then, to want a formula for the intersection of any
two distinct lines

µ0x
0 + µ1x

1 + µ2x
2 = 0

ν0x
0 + ν1x

1 + ν2x
2 = 0

This is very easy once we set things up correctly.
Let us set e1 = [1, 0, 0], e2 = [0, 1, 0], e3 = [0, 0, 1] so that {e1, e2, e3} is

a basis of the vector space of all [a, b, c]. Let {e1, e2, e3} be the dual basis,
Ω = e1 ∧ e2 ∧ e3 and Ω∗ = e1 ∧ e2 ∧ e3. Now recall the general formula

µ ∧ ∗z = 〈µ, z〉Ω∗ µ ∈ Λr(V ∗) z ∈ Λr(V )

Now we take µ ∈ Λ1(V ∗), µ = µie
i where µi are from the triple {µi} in µix

i = 0.
Forming ν in the same way from the triple {νi} in νix

i = 0 we set x = ∗(µ∧ν) ∈
Λ1(V ). Then, using the general formula and for some k ∈ Z whose value we
don’t need,

µ ∧ ∗ ∗ (µ ∧ ν) = 〈µ, ∗(µ ∧ ν)〉Ω∗

(−1)kµ ∧ µ ∧ ν = 〈µ, ∗(µ ∧ ν)〉Ω∗

0 = 〈µ, x〉Ω∗

Thus we have µix
i = 〈µ, x〉 = 0 for x = ∗(µ ∧ ν). In a precisely similar way we

have νix
i = 0. Thus x = ∗(µ ∧ ν) is the point of intersection of the two lines.

From these results we can produce useful computational formulas for the
intersections of two lies. Let the two lines, in projective form be

µ = µie
i ν = νje

j

and then the point of intersection x = ∗(µ ∧ ν) will be calcuated thus:

µ ∧ ν = (µ1ν2 − µ2ν1)e
1 ∧ e2 + (µ2ν0 − µ0ν2)e

2 ∧ e0 + (µ0ν1 − µ1ν0)e
0 ∧ e1

∗(µ ∧ ν) = (µ1ν2 − µ2ν1)e0 + (µ2ν0 − µ0ν2)e1 + (µ0ν1 − µ1ν0)e2

x = (µ1ν2 − µ2ν1)e0 + (µ2ν0 − µ0ν2)e1 + (µ0ν1 − µ1ν0)e2

[x0, x1, x2] = [µ1ν2 − µ2ν1, µ2ν0 − µ0ν2, µ0ν1 − µ1ν0]

=

[ ∣
∣
∣
∣

µ1 µ2

ν1 ν2

∣
∣
∣
∣ ,

∣
∣
∣
∣

µ2 µ0

ν2 ν0

∣
∣
∣
∣ ,

∣
∣
∣
∣

µ0 µ1

ν0 ν1

∣
∣
∣
∣

]

If

∣
∣
∣
∣

µ1 µ2

ν1 ν2

∣
∣
∣
∣
6= 0 (meaning the lines are not parallel) then the affine coordinates

of the intersection will be






∣
∣
∣
∣

µ2 µ0

ν2 ν0

∣
∣
∣
∣

∣
∣
∣
∣

µ1 µ2

ν1 ν2

∣
∣
∣
∣

,

∣
∣
∣
∣

µ0 µ1

ν0 ν1

∣
∣
∣
∣

∣
∣
∣
∣

µ1 µ2

ν1 ν2

∣
∣
∣
∣
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This is just Cramer’s rule in a thin disguise.

Example 1.

X1 + X2 = 4 −4x0 + x1 + x2 = 0

X1 − 2X2 = −5 5x0 + x1 − 2x2 = 0

Then using the above formulas

[x0, x1, x2] =

[ ∣
∣
∣
∣

1 1
1 −2

∣
∣
∣
∣
,

∣
∣
∣
∣

1 −4
−2 5

∣
∣
∣
∣
,

∣
∣
∣
∣

−4 1
5 1

∣
∣
∣
∣

]

= [−3,−3,−9] ∼ [1, 1, 3]

(X1, X2) = (1, 3)

Example 2.

X1 − 3X2 = 5 −5x0 + x1 − 3x2 = 0

−2X1 + 6X2 = 11 −11x0 − 2x1 + 6x2 = 0

Then using the above formulas

[x0, x1, x2] =

[ ∣
∣
∣
∣

1 −3
−2 6

∣
∣
∣
∣
,

∣
∣
∣
∣

−3 −5
6 −11

∣
∣
∣
∣
,

∣
∣
∣
∣

−5 1
−11 −2

∣
∣
∣
∣

]

= [0, 63, 21] ∼ [0, 3, 1]

which is the point at ∞ on both lines. Notice how the projective techniques
handle this case with no strain.

Now it is time to make use of the principle of duality. We want a formula
for the line through two points which is dual to the question about the point on
two lines which we just handled. Due to the algebraic duality between the two
problems, the answers must come out in a similar way. Let the two points be
[x0, x1, x2] and [y0, y1, y2]. Then the solution must be

ℓ = ∗(x ∧ y)

with coordinates

[ℓ0, ℓ1, ℓ2] =

[ ∣
∣
∣
∣

x1 y1

x2 y2

∣
∣
∣
∣
,

∣
∣
∣
∣

x2 y2

x0 y0

∣
∣
∣
∣
,

∣
∣
∣
∣

x0 y0

x1 y1

∣
∣
∣
∣

]

The really careful reader will note that in the determiant I have transposed the
rows and columns, in keeping with the idea that points have vertical vectors
and lines horizontal vectors, a convention which we have been ignoring in this
section.

Example 1. line through (1, 3) and (5,−2). The projective corrdinate are
[1, 1, 3] and [1, 5,−2]. Then the line ℓ = ∗(x ∧ y) through these two points will
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have coordinates (in the standard dual basis)

[ ∣
∣
∣
∣

1 5
3 −2

∣
∣
∣
∣

∣
∣
∣
∣

3 −2
1 1

∣
∣
∣
∣

∣
∣
∣
∣

1 1
1 5

∣
∣
∣
∣

]

= [−17, 5, 4]

−17x0 + 5x1 + 4x2 = 0

5X1 + 4X2 = 17

Example 2. line through points with projective corrdinates [0, 4, 3] and [1, 5,−2].
Then the line ℓ = ∗(x ∧ y) through these two points will have coordinates (in
the standard dual basis)

[ ∣
∣
∣
∣

4 5
3 −2

∣
∣
∣
∣

∣
∣
∣
∣

3 −2
0 1

∣
∣
∣
∣

∣
∣
∣
∣

0 1
4 5

∣
∣
∣
∣

]

= [−23, 3,−4]

−23x0 + 3x1 − 4x2 = 0

3X1 − 4X2 = 23

We end this section with a demonstration of the power of projective geom-
etry to give stubstance to our intuition and instincts. Who has not looked at a
hyperbola with it’s asymptotes and not felt that the asymptotes are tangents to
the hyperbola at ∞? 1 Projective Geometry allows us to justify this intuitive
impression. We will will now look at this in detail. Let us use

X12

22
− X22

32
= 1 Hyperbola

X1

2
− X2

3
= 0 Asymptote

Finding the projective forms of the curve by using X1 = x1

x0 and X2 = x2

x0 gives

−x02 +
x12

22
− x22

32
= 0

x1

2
− x2

3
= 0

The point at ∞ on the asymptote is

[x0, x1, x2] ∼ [0, 13 ,
1
2 ] ∼ [0, 2, 3]

and this point is also on the hyperbola as we can verify by inputting the coordi-
nates into the equation. Thus [0, 2, 3] is a point of intersection of the hyperbola
and the asymptote, as we suspected. Notice two things in passing. First, the in-
tersection point is both in the “upper right” and “lower left” of the graph; they
are the same point. (The intersection with the second asymptote is [0, 2,−3]

1The question is rhetorical; in actual fact not all that many people have this impression.
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and is found in the “lower right” and “upper left.”) In general a straight line
in projective space will hit a conic twice; the fact that an asymptote has only
one point of intersections suggests the hyperbola and asymptote are tangent.
This can be verified by using a projective transformation. Imagine the the hy-
perbola and asymptotes drawn on a transparent sheet and use a flashlight to
project the sheet on a wall. If one is clever one can arrange it so that the point
[0, 2, 3] projects into the point [1, 1, 0]. Analytically this can be done by the
linear transformation2

x0 = x̃2

x1 = x̃1

x2 = x̃0

Substituting these into the previous projective equations for the hyperbola and
asymptote one gets

−x̃2 2 +
x̃1 2

22
− x̃0 2

32
= 0

x̃1

2
− x̃0

3
= 0

Now we devide by x̃0 2 and x̃0 to get the affine equations

−X̃2 2 +
X̃1 2

22
=

1

32

X̃1

2
=

1

3

which meet at the image [x̃0, x̃1, x̃2] = [3, 2, 0] ∼ [1, 23 , 0] of the point of inter-

section [x0, x1, x2] = [0, 2, 3]. On graphing, we see that the vertical line X̃1 = 2
3

is indeed tangent to the image of the hyperbola (which is another hyperbola)
at the affine point (X̃1, X̃2) = (23 , 0). We have slid over a few details here, such
as that linear transformations preserve tangency, but the basic idea should be
clear.

Everything we have done in this section could be done just as well using
the field C instead of R or in fact any field you like. The formal manipulations
would be the same. Standard algebraic geometry is done over C.

If you would like to try this, here is a little investigation you might try.
The two circles

X12 +X22 = a2

X12 +X22 = b2

when you have switched over to projective coordinates as before, both go through
the complex points at ∞ with coordinates [0, i, 1] and [0,−i, 1]. You can show

2In actual performance it might be necessary to do a sequence of projections on the wall.
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that the circles are tangent to one another at each of these points by using the
complex linear transformation

x0 = i x̃2

x1 = x̃2

x2 = i x̃0

I ought to resist the temptation to mention one of the most beautiful results
in mathematics; Bezout’s theorem in P2(C). This is

Bezout’s Theorem A curve of degree m and a curve of degree n
intersect in exactly mn points when points at∞ (possibly complex)
and multiplicity of intersection are taken into account.

For examples of multiplicity, consider two ellipses which usually intersect
at 4 distinct points, but may intersect at two ordinary points and a point where
the ellipses are tangent (point of multiplicity 2), or two distinct points where
the ellipses are tangent at each of the two points (two points of multiplicity
2) or the ellipses do not intersect in the real plane (in which case they have
complex intersections possibly with multiplicity. In all cases the total number
of intersections, counting multiplicity is 2× 2 = 4.

A line usually hits a parabola 1 × 2 = 2 times but the X1-axis is tangent

X2 = X12 so (0, 0) is an intersection of multiplicity 2 and the vertical axis
X1 = 0 hits the parabola at (0, 0) and also at the point [0, 0, 1] at ∞. In all
cases there are thus two points of intersection.

For Bezout’s theorem to be true, it is critical to be working over the alge-
braically closed field C. If you enjoyed this excursion there are many wonderful
books you can consult to learn more. I have a particular fondness for [?] which
deals with plane curves in P2(C). If you wish to go for the full algebraic geome-
try experience two beautiful and classic texts are [Sharfarevich] (more concrete,
at least to begin with) and [Hartshorne] (more abstract). Another possiblity
is [Perrin] which is a shorter introduction and very student oriented but gets a
long way.
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9.3 Weight Functions

We now want to look at the material in the previous section in a different way.
A point in P2(R) has coordinates λ[x0, x1, x2] where λ ∈ R− 0. If we let λ run
through R, we always get the same point in P2(R) (unless λ = 0) but we get
a line in 3-space. If x0 6= 0 there will be a unique point in 3-space on the line
with x0 = 1. Thus the plane in 3-space with x0 = 1 is a model for the affine
part of P2(R). Each infinite point in P2(R) has coordinates λ[0, x1, x2] and this
is a line parallel to M = {[x0, x1, x2] | x0 = 1}. Thus the points of P2(R) are in
one to one correspondence with the lines through the origin, and indeed P2(R)
is often defined as “the set of lines through the origin in R3,” which is accurate
but confusing to beginners.

With this picture, then, a line in P2(R) (visualized as M) corresponds to
the intersection of a plane through the origin in R3 with M , plus the point at
∞ corresponding to a line in the plane through the origin and parallel to M .
Lines in R3 in the plane thus correspond one to one with the points on the line
in P2(R)

Similarly a curve in P2(R) will correspond to a set of lines going from the
origin through the curve in M. If the curve is closed this will be conelike. There
will be additional lines parallel to M if the curve has points at ∞.

Now the obvious question is “What is so special about the plane M =
{[x0, y1, y2] | x0 = 1}?” The answer is ”Nothing at all,” as we are going to
show. We are going to generalize slightly a construction of Grassmann (called
“weighted points”) by introducing a linear form for the weight function λ(x),
which will thus have the form

λ(x) = λ0x
0 + λ1x

1 + λ2x
2

This weight function will usually be kept constant during a discussion. The new
model of P2(R) will now be

M1 = {[x0, y1, y2] | λ(x) = 1}

and we will also use the notation

Mr = {[x0, y1, y2] | λ(x) = r}

We could use any Mr (plus points at∞) as a model of P2(R). However there is
no advantage in this and we will stick to M1 as the affine part of our model of
P2(R).

The points in M1 correspond as before to lines through the origin in R3

and the points at ∞ correspond to lines through the organ parallel to M1.
Notice that the plane though the origin parallel to M1, containing the lines
that correspond to points at ∞, is M0, and the triples in this plane satisfy
λ([x0, y1, y2]) = 0

Thus our new model of P2(R) consists of two parts; the points of M1 char-
acterized by λ(x) = 1 and what we shall call vectors which are triples with
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x = [x0, x1, x2] with λ(x) = 0. These correspond as usual to points at ∞ when
we identify [x0, x1, x2] with λ[x0, x1, x2]. However, in Grassmann’s picture the
points at∞ fade out, and their role is replaced by the vectors. We can of course
switch pictures in the wink of an eye whenever it is helpful. If we explicitly
define the equivalence relation ∼ by

[y0, y1, y2] ∼ [x0, x1, x2] ⇔ [y0, y1, y2] = λ[x0, x1, x2] with λ 6= 0

then we can write
P2(R) = M1 ∪ (M0/ ∼)

I mention in passing that topologically M0/ ∼ is just the unit circle with an-
tipodal points identified.

Now let us contrast the standard model of projective geometry with Grass-
mann’s which we are about to study. In the standard model we use

λ([x0, x1, x2]) = 1x0 + 0x1 + 0x2

and the only use of the vectors is to determine points at ∞.
Grassmann’s approach to the subject differs from the standard version in

that

a. λ(x) = x0 + x1 + x2

b. The value of λ(x) is used for weights

c. The infinite points are replaced by the vectors of M0

Thus Grassmann’s picture amounts to an augmentation of P2(R) with additional
structure, which makes it look a lot like R3 but interpreting the points in R3 in
a different way, and the reinterpretation is a lot like P2(R). Of course, R3 and
P2(R) are of different topological type, so if we want to go back and forth some
fancy footwork is necessary.

We are doing all our development in P2(R) and R3, but it is important
to understand that we could just as well be doing it in Pn(R) and Rn+1. The
extension is so obvious and trivial that it is not worth losing the visualization
possible here in order to deal with the more general situation.

The next phase of Grassmann’s development is to introduce the weighted
point. Each triple x = [x0, x1, x2] with λ(x) 6= 0 has a weight given by λ(x)
and is associated with a point x̃ of M1 given by x̃ = 1

λ(x) [x
0, x1, x2]. By the

construction, λ(x̃) = 1 so x̃ is in M1. Thus we say x is associated with the unit
point x̃ and that x is x̃ with weight λ(x). and we can write x = λ(x)x̃. Such
multiples of unit points are called weighted points.

If λ(x) = 0 then Grassmann calls x a free vector. (There is another kind
of vector called a line bound vector which we will discuss later.) Notice that
the point [0, 0, 0] counts as a vector in Grassmann’s system although it plays no
role whatever in the standard model of P2(R). The weighted points and the free
vectors together constitute all triples [x0, x1, x2] and they thus form a vector
space, with addition and scalar multiplication as in R3. In fact they are R3 for
all practical purposes, but we interpret the triples differently.
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We now wish to discuss the points on a line corresponding to µ ∈ R3∗, with
µ 6= λ and we assume the line goes through the distinct points x, y ∈ M1. We
have µ(x) = µ(y) = 0 and also λ(x) = λ(y) = 1. Let σ, τ ∈ (R) and

z1 = σx+ τy

z1 is not a unit point; in fact its weight is

λ(z1) = σλ(x) + τλ(y) = σ + τ

Set

z =
σx+ τy

σ + τ
=

1

σ + τ
· (σx + τy)

and now we have λ(z) = 1; hence z ∈ M1. Also, z is on the line connecting x
and y because

µ(z) = σµ(x) + τµ(y) = σ · 0 + τ · 0 = 0

Although we have no metric, it still makes sense to ask the relation between the
segments (x to z) and (z to y). This we now examine.

First note z − x is a vector since

λ(z − x) = λ(z)− λ(x) = 1− 1 = 0

This vector is parallel to M1 and also to the line µ. Similarly, y − x is parallel
to the line to we must have

z − x = κ(y − x)
σx+ τy

σ + τ
− x = κ(y − x)

1

σ + τ
[σx+ τy − (σ + τ)x] = κ(y − x)

τ

σ + τ
(y − x) = κ(y − x)

τ

σ + τ
= κ

z − x =
τ

σ + τ
(y − x)

Similarly

y − z =
σ

σ + τ
(y − x)

Suppose now that we want z to lie 1
3 of the way from x to y. Even without a

metric we can express this as

z − x = 1
3 (y − x)

For this we need τ/(σ + τ) = 1
3 which gives

z =
σx+ τy

σ + τ
=

2τx+ τy

2τ + τ
=

2x+ y

3
= 2

3x+ 1
3y
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In words, if we want z to be 1
3 of the way from x to y, we weight x twice as

heavily as y and make sure the weights add up to 1; that is 2
3 and 1

3 .
Notice that the ratio of τ

σ+τ
and σ

σ+τ
is just τ

σ

A better way to think of the previous example is as follows; we wish z to
divide the segment from x to y in the ratio 1 to 2. This gives preliminary values
σ1 = 2 and τ1 = 1 and then they must be scaled by their sum to σ = 2

3 and
τ = 1

3
More generally we wish z to divide the segment from x to y in the ratio τ to

σ. Then it is only necessary to rescale τ and σ by their sum and form z = σx+τy.
Note carefully the order, which might seem a little counterintuitive.

Grassmann’s explanation of this runs along the following lines. If we have
unit points x and y we think of these points as having 2 kilogram and 1 kg
weights attached. Then z is the balance point of the segment. This physical
interpretation can be very useful for many purposes, both for intuitive under-
standing and practical calculation.

Grassmann’s original explanation of these ideas mixed up the previous the-
ory of weighted points and the wedge product. I have separated them as they
do have separate origins. We will combine them usefully later.

To proceed further, it is useful to introduce a notation which might at first
seem somewhat alarming. Suppose we have two parallel vector u and v and
that

v = κu

Then I propose to write

κ =
v

u

The division notation for vectors is to be used only when the vectors are par-
allel in which case it makes perfect sense. We never use this notation with
vectors that are not parallel. The purpose of this is to eliminate very clumsy
circumlocutions.

We are now going to use Grassmann’s theory of weighted points to do some
geometry. We start with a simple result; The medians of a triangle meet at a
point two thirds of the way along each median.

x y

z

t

rs

Figure 9.1: Medians meet at a point

Let x, y and z be the three vertices of the triangle visualized in M1 so that
they are unit points. Let r,s and t be the midpoints of the sides xy, yz and zx
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(using x, y and z here as mere labels, not products). Then

r =
x+ y

2
s =

y + z

2
z =

z + x

2

We claim the three medians meet at a point w and additionally that

w =
x+ y + z

3

We need to show that w is a linear combination of x and s and that it divides
the segment xs in the ration 2 to 1. But 2s = y + z so

w =
x+ 2s

3
= 1

3x+ 2
3s

which is exactly the requirement for w to divide the segment in the ratio 2 to 1.
Similarly w will be a linear combination or y and t and of z and r, and divide
the segments in the proper ratio. This completes the proof.

You might wonder if there is a way to prove the similar theorem about the
angle bisectors meeting at a point. This can be done but it requires weighted
lines, not weighted points. Since the two theories are identical due to duality,
there is no difficulty.

The preceding theorem is a special case of the theorem of Ceva3: If we
connect the vertices of a triangle to the opposite sides, the three lines will be
concurrent if and only if the ratios of the divisions of the sides multiply to 1.
(We remind the reader of the terminology that three lines are concurrent if they
all meet at a point.)

x y

z

t

r
s

Figure 9.2: Theorem of Ceva

More explicitly using unit points x,y and z,

if r divides segment yz in the ratio α
β

and s divides segment zx in the ratio γ
δ

and t divides segment xy in the ratio ǫ
ζ

Then segments xr,ys and zt are concurrent ⇔ α
β

γ
δ

ǫ
ζ
= 1

3Ceva is pronounced Chayva approximately
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We will prove the ⇒ direction. The converse is left to the reader. Without
loss of generality we may assume that the coefficients have been normalized:
α+ β = γ + δ = ǫ+ ζ = 1. Then “r divides segment yz in the ratio α

β
” means

z − r

r − y
=

α

β

βz − βr = αr − αy

αy + βz = αr + βr = (α+ β)r = r

Similarly

s = γz + δx

t = ǫx+ ζy

Since w is linearly dependent on x and r, there must be constants η1 and η1 so
that

w = θ1x+ η1r

Similarly, since the lines are assume concurrent,

w = θ2y + η2s

w = θ3z + η3t

Then we have

w = θ1x+ η1r = θ2y + η2s = θ3z + η3t

= θ1x+ η1(αy + βz) = θ2y + η2(γz + δx) = θ3z + η3(ǫx+ ζy)

= θ1x+ η1αy + η1βz = θ2y + η2γz + η2δx = θ3z + η3ǫx+ η3ζy

Since x, y, z form a triangle, they must be linearly independent, so we have

θ1 = η2δ = η3ǫ

η1α = θ2 = η3ζ

η1β = η2γ = θ3

Thus
α

β
=

η1α

η1β
=

θ2
θ3

γ

δ
=

η2γ

η2δ
=

θ3
θ1

ǫ

ζ
=

η3ǫ

η3ζ
=

θ1
θ2

so
α

β
· γ
δ
· ǫ
ζ
=

θ2
θ3
· θ3
θ1
· θ1
θ2

= 1

as required. Note how the use of Grassmann’s weighted points reduces the
geometry to trivial algebraic calculations, the geometric details of which we do
not need to consider, just as in ordinary analytic geometry.

Up to this point we have been emotionally locating the point z between x
and y which then presumes that σ and τ are positive. However, if we attach a



9.3. WEIGHT FUNCTIONS 199

positive weight to x and a negative weight (τ < 0, point being pulled up) to y
then the balance point will be outside the segment xy on the same side as x is
from y as shown in the figure. This figure illustrates

z =
4

3
x+ (−1

3
)y

Then, as usual, we have
y − z

z − x
=

4
3

− 1
3

= −4

y

x z
-1/3

4/3

3 1

Figure 9.3: Point with negative weight

Let’s analyze this in terms of lever arms(torque). If we scale z − x to be 1,
then z − y = 4. The mass times the lever arm from z is − 1

3 · 4 = − 4
3 for y and

4
3 · 1 = 4

3 for x. Thus the total lever arm is thus

∑

mi(distancei) = −
4

3
+

4

3
= 0

as it should be if z is the balance point. Of course, there is no real “distance”
here; we are just counterfeiting distance with the position coordinates.

In general there is little need to think explicitly of these matters (lever
arms) as the algebra will take care of itself, was we will see in the following
theorem of Menelaos4

Theorem of Menelaos Let x, y, z be unit points forming a triangle and let t
be on line xy, r on line yz and s on line zx. Then the points r, s, t are collinear
if and only if the product of the ratios of the divisions of the the segments xy,yz
and zx equals -1.

We will prove the direction ⇒ and leave the converse to the reader. When
doing this the trick is to prove the r is a linear combination of s and t.

Suppose the three points are collinear. The ratios are

z − r

r − y
=

α

β
α+ β = 1

x− s

s− z
=

γ

δ
γ + δ = 1

y − t

t− x
=

ǫ

ζ
ǫ + ζ = 1

4Menelaos is pronounced in Greek with the accent on the second e and the la sounded as

a separate syllable: Me-nè-la-os. The spelling Menelaus is a Roman barbarism.



200 CHAPTER 9. APPLICATIONS TO PROJECTIVE GEOMETRY

and these lead, as in the Theorem of Ceva, to

r = αy + βz

s = γz + δx

t = ǫx+ ζy

x y

z

t

r
s

Figure 9.4: Theorem of Menelaos

Since the three points r, s, t are assumed collinear, they are linearly depen-
dent, so their are constants θ1, θ2, θ3 for which

θ1r + θ2s+ θ3t = 0

θ1(αy + βz) + θ2(γz + δx) + θ3(ǫx+ ζy) = 0

(θ2δ + θ3ǫ)x+ (θ1α+ θ3ζ)y + (θ1β + θ2γ)z = 0

By the linear dependence of x, y and z we now have

θ2δ + θ3ǫ = θ1α+ θ3ζ = θ1β + θ2γ = 0

thus

ǫ

δ
= −θ2

θ3

α

ζ
= −θ3

θ1

γ

β
= −θ1

θ2
α

β
· γ
δ
· ǫ
ζ

=
α

ζ
· γ
β
· ǫ
δ

= (−θ3
θ1

)(−θ1
θ2

)(−θ2
θ3

) = −1

as required.
There is the possibility that one of r,s or t might wander off to ∞, as t

would if r = (y + z)/2 and s = (z + x)/2. Nevertheless, properly interpreted
the theorem is still true. The best way to do this would be to reinterpret ratios
α/β as points in [β, α] ∈ P1(R) and work from there. However, this would
have added another level of complication to the exposition, so I refrained, since
this is not a book on projective geometry but only an illustration of how nicely
Grassmann’s weighted points perform there.

Once more I remind the reader that the notation

z − r

r − y
=

α

β
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where z − r and r − y are vectors is only a symbolic way of writing

z − r =
α

β
(r − y)

the latter being a legitimate equation between vectors. In particular z − r and
r − y are not distances since we have introduced no metric, although when
we stay on a single line through the origin they do perform rather like signed
distances.
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