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2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Heinrich Giinther Grassmann published his book Die Lineale Ausdehnungslehre
in 1842. The book contained and exposition of n—dimensional linear algebra, an
alternating product, inner products and a duality operator, among many other
things. The style of the book was roughly comparable to the more abstract
writings of the 1930’s and was perceived in its own day as being so wildly ab-
stract as to be incomprehensible. The book was not well received, although it
has always been admired by a limited number of enthusiasts.

Many of Grassmann’s ideas have been subsequently rediscovered, but gen-
erally in piecemeal fashion, and Grassmann’s imposing edifice has never received
the recognition it deserves. In addition, mathematicians are generally unaware
of how much of modern mathematics traces back to Grassmann’s ideas.

The purpose of this book is to lay out some of Grassmann’s major ideas in
a modern formulation and notation. The most serious departure from Grass-
mann’s own presentation is the recognition of the complementary roles of the
vector space V and its dual space V*, perhaps the only part of modern linear
algebra with no antecedents in Grassmann’s work.

Certain technical details, such as the use of increasing permutations or the
explicit use of determinants also do not occur in Grassmann’s original formula-
tion. I have, with some reluctance, used the modern A instead of Grassmann’s
notation, although in some circumstances I revert to Grassmann’s notation when
it is clearly more convenient for calculation.

Another departure from Grassmann is the primacy given to vectors over
points in the present exposition. In chapter eight I show that this is merely
cosmetic; the same abstract structure admits two apparently different geomet-
ric interpretations. I there show how the two interpretations are related and
how to move back and forth between them. The motivation for departing from
Grassmann’s point—based system and using vectors is the desire to introduce
Grassmann’s ideas in the most familiar possible setting. The vector interpre-
tation is more useful for applications in differential geometry and the point
interpretation is more suited for projective geometry.

One of the goals of this book is to lay out a consistent notation for Grass-
mann algebra that encompasses the majority of possible consumers. Thus we
develop the theory for indefinite (but non degenerate) inner products and com-
plex scalars. The additional effort for this level of generality over real scalars
and positive definite inner products is very modest and the way is cleared for
the use of the material in modern physics and the lower forms of algebraic ge-
ometry. We simply must be a little careful with factors of (—1)* and conjugate
bars. I have, with reluctance, not developed the theory over commutative rings,
because that level of generality might obscure Grassmann’s ideas.

While it is not possible to eliminate bases altogether from the development,
I have made a great effort to use them as little as possible and to make the proofs
as invariant as I could manage. In particular, I have given here an invariant
treatment of the * duality operator which allows the algorithmic computation of
xo% without use of bases, and this has a lot of methodological advantages. I have
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also found ways to express * algebraically so that it seems a lot more pleasant
and natural than is generally the impression. Also, I never prove anything
with orthonormal bases, which I consider a great source of confusion however
convenient they sometimes prove. The algorithmic treatment given here also
helps to avoid errors of the lost-minus-sign type.

I have adopted a modular methodology of introducing the Grassmann prod-
uct. In chapter two we introduce tensor products, define Grassmann products in
terms of them, and prove certain fundamental laws about Grassmann products.
These fundamental laws then are used as Axioms in chapter three to develop the
fundamental theory of the Grassmann product. Thus a person satisfied to go
from the axioms can skip chapter two and go directly to chapter three. Chapter
two is used again only very late in the book, in a sketch of differential geometry.

For much of the foundational material the plan is to develop the theory
invariantly, then introduce a basis and see how the theory produces objects
related to the basis, and finally to discuss the effect of changing the basis.
Naturally some of this material is a trifle dull, and the reader should feel free
to skip it and return when motivated to learn more about it.

None of the material in this book is deep in a mathematical sense. Nev-
ertheless,; I have included a vast amount of detail so that (I hope) the book is
easy to read. Feel free to skim through computations if you find them dull. I
have always erred on the side of including more rather than less detail, so the
book would be easy to read for the less experienced. My apologies to the more
experienced, who must be prepared to skip. One of the reasons for including
vast numbers of explicit formulas is for the convenience of persons who may
wish to implement one aspect or another on computers.

One further point: while none of the material in this book is deep, it is
possible to make a horrible hash of it by incorrect technique. I try to provide
the reader with suitable tools with which he can make computations easily and
happily. In particular, the x—operator is often underutilized because the more
generally known formulas for it are often infelicitous, and one of the purposes
of this book is to remedy this defect.

I have tried to make the pace of the book leisurely. In order to make
the book easily readable for persons who just dip in anywhere, I have often
repeated calculations rather than referring to previous occurrences. Another
reason for doing this is to familiarize the reader with certain tricks and devices,
so these are sometimes repeated rather than referring the reader back to previous
occurrences.

In the latter part of the book which deals with applications certain com-
promises had to be made to keep the size of the book within bounds. These
consist of intuitive descriptions of the manifold concept and some of the analytic
apparatus. To do otherwise would have meant including entire textbooks on
manifolds and analysis, which was not practical. I have tried to give the reader
a good intuitive description of what is going on in areas where great detail was
clearly inappropriate, for example the use of Sobolev spaces in the section on
harmonic forms. I apologize in advance to the cognoscenti in these areas for the
omission of favorite technical devices. The desire always was to make the book
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as accessible as possible to persons with more elementary backgrounds.

With regard to motivation, the book is perhaps not optimally organized.
One always has to choose between systematic exposition in which things are
logically organized and fully developed and then applied versus a style which
mixes applications in with theory so that the motivation for each development
is clear. I have gone with the first alternative in order to lay out the theory
more systematically.

No single critical feature in the exposition is my own invention. The two
most important technical tools are the increasing permutations and the duality
% : A"(V) — A"~ "(V*). The first was developed by Professor Alvin Swimmer
of Arizona State University. I do not know the ultimate origin of the second
item but I encountered it in the book [Sternberg]. It is my pleasure to express a
vast debt to Professor Swimmer for introducing me to Grassmann algebra and
allowing me the use of his own unpublished manuscript on the subject.
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2.1 Introduction

2.1 Introduction

In this chapter we wish to sketch the development of linear algebra. To do
this in detail would of course take a whole book. We expect that the reader has
some experience with linear algebra and we will use this chapter to remind her
of the basic definitions and theorems, and to explain the notation we will be
using. We will use standard tensor notation with superscripts and subscripts
and we will explain the rules for this.

We are greatly interested in the correlation between the objects like vectors
and the columns of numbers that represent the vector in a given basis. We are
also interested in formulas for change of basis. In order to give this chapter
at least some interest, we will lay out an interesting way of quickly deriving
these formulas, even though it is perhaps mathematically odd and may offend
the squeamish. I have noticed others using this notation in the last couple of
decades, and I do not lay any claim to novelty.
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2.2  Vector Spaces

2.2 Vector spaces

A vector space is a mathematical system involving two kinds of entities, the
scalars and the vectors. The scalars are to be thought of as numbers, and the
mathematical way of expressing this is to say that they form a field. A field is a
mathematical system with two operations + (Addition) and - (Multiplication,
generally omitted; «- 8 = @) in which every element « has an additive inverse
—a and in which every non-zero element « has an additive inverse a~! and in
which there is an additive identity 0 and a multiplicative identity 1 # 0 and
which satisfies the following laws.

Al a+B+v)=(a+8)+~ Associative law

A2 a4+0=0+a=«a Identity law

A3 a+(—a)=(—a)+a=0 Inverse law

Ad a+pB=pF+a Commutative law

M1  «a(By) = (af)y Associative law

M2 a-l=1l-a=« Identity law

M3 Ifa#0thenaa!=altla=1 Inverse law

M4 af =P« Commutative law

DI «af+7)=af+ay Left Distributive law
D2 (B+7)a=La+ya Right Distributive law

These laws are not all independent; for example D2 can be proved from
D1 and M4. They are chosen as they are for symmetry and certain other
considerations.

It is easy to prove from these laws that 0 and 1 are the unique identities
and that each element has a unique additive inverse and each z # 0 has a unique
multiplicative inverse.

We will generally think of the scalars as being the real or the complex
numbers in this book, but much of what we do will work of any field that is
not of characteristic 2, that is fields in which we do not have 1 + 1 = 0. Places
where difficulties may occur are noted in passing.

In using the complex numbers is often necessary to deal with the conjugate
z of z. This too can be generalized; the properties of conjugate we require are

r+y = T+y
Ty = Ty

T = x

Tr > Oforx#0

For this to make sense, Tx must be in a subset of the field which has a linear
ordering on it, just as in the complex numbers.
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Practically speaking, I suggest the reader think in terms of the fields of real
and complex numbers, and ignore the conjugate bar in the case of real numbers
or other fields of scalars.

Now we can define a Vector Space . A vector space is a mathematical
system with two sorts of objects, the field of scalars and the vectors. We will
use Greek letters a, 3,7, ... for the scalars and Latin letters uw,v,w, ... for the
vectors. The vectors may be added uw + v and vectors may be multiplied by
scalars cv. (It would be methodologically more correct to write the scalars to
the right of the vectors ve, but such is not the common usage.) There is an
additive identity 0 which is distinct from the 0 of the field of scalars but is
customarily written with the same symbol. There is an additive inverse —v for
each vector v. The addition and scalar multiplication satisfy the following laws.

Vi u+(v+w)=(u+v)+w Associative law

V2 v+0=0+4w Identity law

V3 v+ (—v)=(-v)+v=0 Inverse law

V4 v+w=w+v Commutative law

D1 alv4+w)=av+aw Distributive law (scalars over vectors)
D2 (a+ B)v=oav+ v Distributive law (vectors over scalars)
Ul 1l-v=vw Unitary law

The Unitary law Ul has the job of preventing cv = 0 for all « and v, a
pathology not prevented by the other laws.

We define v — w = v+ (—w). From the above basic laws for a vector space,
the following may easily be derived.

0-v=0 first O is scalar 0, second 0 is vector 0
a-0=0
(-1)-v=—v

Ifaov=0thena=0o0rv=0

It is also easy to prove that there is a unique additive identity 0 and it is the
solution w of v +w = v for any v. Also there is a unique additive inverse —wv
for each v and it is the solution w of v +w = 0, and is unique.
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2.3 Bases in a Vector Space

2.3 Bases in a Vector Space

In this section we study the concepts of span, linear independence, basis,
representation in a basis, and what happens to the representation when we
change the basis. We begin with some critical definitions.

Def If vy,vs,...v, is a set of vectors in a vector space V, then a linear
combination of the v; is any expression of the form

Ao+ A2ug + ..+ Ao,

Here the A are scalars, and the indices ¢ that look like exponents are really
just labels, like subscripts. They are called superscripts. There is a sense to
whether the labels are superscripts or subscripts, and we will eventually explain
how the position is meaningful. For the moment we want to note that in almost
all cases a sum will consist of a summation index written twice, once up, once
down. The above expression could be written

T
§ %

A (O
i=1

Albert Einstein discovered that one could conveniently leave off the sum sign
as long as the range of the summation, 1 to r, stays the same for the various
computations, which is normally the case. Hence Einstein suggested leaving the
summation sign off and writing just

)\Z’Ui

where the summation is indicated by the presence of the same index i written
once in an up position and once in a down position. This is called the Einstein
summation convention and it is extremely convenient. We will use it throughout
the book. However, it will turn out that summing from 1 to r is a special case of
summing over a certain kind of permutation, and we will extend the summation
convention in chapter three to cover this also.

Next we want to define

Def The span of a set of vectors vy, vs, ..., v, is the set of all linear combina-
tions _

)\Z’Ui
of the v; where the A\’ run through all elements of the field of scalars. The span
of any (nonempty) set of vectors is a subspace of the vector space V. We denote
it by [v1,v2,...,v,] in this chapter. We then have

Def A set of vectors {v1,va,...,v,} i linearly independent if it satisfies the
following condition. If A\!,... A" are scalars and

i )\i’UZ‘ =0
=1
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then
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This is the most difficult concept of elementary vector space theory to
understand, so we will talk a little about the concept. Suppose we are in R?
and suppose we have

2v1 + 3vg — bug =0.

Then we can solve this equation for and of the v;, for example v to get

2
V3 = 3’01 —+ 3’02 .
If we think of the way vectors are added in R? we see that this means v3 is in
the plane determined by v; and vs. Similarly, in R® the equation

2v1 4 3ve — Hvg + vy 4+ 2v5 =0

means that .
U2 = 3l + 3V3 ~ 3vs

so that vy is in the space spanned by v1,vs,vs. (Notice that from this equation
we can say nothing about v4.) Conversely, if some v; is a linear combination of
vectors v1, ..., Vi—1,Vi+1,- .., Uy then we will have an equation of type

Nu; =0 SUMMATION CONVENTION IN FORCE!

in which not all the A\* are 0. Thus linear independence is a condition that
requires that no v; in the set {v1, ..., v, } is a linear combination of the remaining
ones, and so each v; is not in the span of the remaining ones. Geometrically
speaking, each v; “sticks out” of the linear subspace generated by the remaining
ones.

Now we can define

Def A set of vectors {ey,...,e,} is a basis of the vector space V if it is

1. Linearly independent and
2. Spans the space V

A vector space is said to be finite dimensional if it has a basis with a finite
number n of vectors. We have the

Theorem The number of a vectors in a basis of a finite dimensional vector
space V' is the same no matter which basis is chosen.

Def The dimension of a finite dimensional vector space V' is the number of
vectors in any basis of the V.

In this section the dimension of V will always be n. We now want to
consider the representation of an element of a vector space in terms of a basis.
First we have

Theorem the representation v = £%e; of v € V in terms of a basis is unique.
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Proof First, v has a representation in terms of a basis since the set eq,..., e,
spans the space V. Suppose now that it has two such representations

v o= Ele;

v o= n'e
Then

0=(&—n"e;.

Since the e; are linearly independent, £ —n' = 0 so £ = 7'

We will often find it convenient to place the & in a column, that is an n x 1
matrix, with entries

é—l

52

en
in the field of scalars. There is always a danger of confusing this column with
the vector itself, which is analogous to confusing a shoe size, which measures a
shoe, with the shoe itself. The column vector measures the vector, where the
e; are somewhat analogous to units of measure. (This analogy should not be
pushed too far.)

Now just as we can change measuring units from inches to centimeters, we

can change the basis in a vector space.. Suppose {e1,...,e,} are the original
basis vectors, which we will call the old basis, and that {é1,...,é,} is another

basis, which we will call the new basis. then the vector v € V can be written in
either basis:

v o= Ele;
v = giei
and we would like the connection between the new coordinates and {¢', ... "}
the old coordinates {£1,...,£m}. For this, we express the new basis {€1,...,é,}
in terms of the old basis {ey,...,e,}. We have
s 1 2 n
er = ojertajes+...+aje,
€y = a%el + a%eg + ...+ aje,
s 1 2 n
en = Qpe1tayes+...+ae,
This can be nicely digested as
éi = a{ej
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We can then put the (a) into a matrix as follows

al o ...oal
C=(ad) = al o ... a2 NOTE TRANSPOSITION
¢ e . FROM ABOVE ARRAY!
of oy ... an

The matrix elements do not come in the order they do in €; = af e;; rows there
have changed to columns in the matrix.

Some inconvenience of this sort will always occur no matter how things are
arranged, and the way we have done it is a quite common (but not universal)
convention. The matrix C will be referred to as the change of basis matriz. It
will now be easy to find the relationship between &% and £

fjej == giéi = giagej .

Since representation in terms of a basis is unique we have

¢ =al¢
which can be written in matrix form as
¢t 13 3
=] ] =c
§" 3 §"

Notice that this is not the same as for the basis vectors. One must remember
this! Generally speaking, there are just two ways things change when bases are
changed; either like the e; (called covariant change) or like the &7 called con-
travariant change). The indices are placed up or down according to the way the
object changes. (Historically, “covariant” means “varies like the basis vectors”
and “contravariant” means “varies the other way.” It has been (repeatedly) sug-
gested that the terminology is opposite to the way it should be. However if the
terminology were opposite it would probably generate the identical suggestion.)

We now want to exploit matrix multiplication to derive the basis change
rule in a new way. We are using matrices here as a formal convenience and some
readers will find it uncomfortable. Fortunately, it will never be necessary to use
this technique of one does not like it.

First, recall that if A, B and C are matrices with the following dimensions

A = (af) mxn
B = () nxp
cC = () nxp

and C = AB, then we have

Vi = a;ﬂi SUMMATION CONVENTION IN FORCE!
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which we can also write out explicitly as a matrix equation
(Vi) = () (B} -

Now, using matrix multiplication we can write

51

v=e;& = (er,...,en) | :

é"ﬂ/

(Here is the source of the discomfort; the first matrix has vectors for entries. If

this upsets you, remember it is only for mnemonic convenience; one can always

default back to v = £'e;.)
The change of basis in terms of the old basis {e1, ..., e,}. We have

1 2
€1 = ajert+ajes+...+afey,

1 2 n
ape1 +as5es + ...+ ase,

o
()
I

~ 1 2
én = apertages+...+are,

can now be written as

o a
o af an
(61,€2,...,6,) = (e1,€2,...,€n) ) :
@ o
— (615623- 7677/)6
We then have
¢ €' ¢!
(e1,..,en) | * | =v="(E1,...,&n) | * | =C(e1,...,en)C| :
" &n &n
so that (since representation in a basis is unique)
¢! ¢!
=]
" &n

This kind of shorthand is very convenient for quick derivations once one gets
used to it. It is also fairly clear that it could be made rigorous with a little
additional effort.
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2.4 The Dual Space V* of V

2.4 The Dual Space V* of V

We will now define the space V* of linear functionals on the vector space
V', show how to represent them with a basis and calculate what happens when
the basis changes. Let F be the field of scalars of our vector space. A linear
functional on the vector space V is a function f : V — F satisfying the property

Def Forallu,veV, a,8€F
flau+ Bv) = af(u) + Bf(v).
this is equivalent to the two properties

flutv) = flu)+ f(v)
flauw) = af(u)

The property is called linearity and f is said to be linear on V.
The set of linear functionals on V is itself a vector space, denoted by V*.
Addition is defined by

(f+9)(w) = f(v) +g(v)
and scalar multiplication by
(af)(w) = a- (f(v)).

Since V* is a vector space we naturally want to find a basis. Define a linear
functional e’ by the rule, for v = &le; € V,

e'(v) = ei(fjej) = e(fler+.. . & e+ e+ EMei +1 4.+ &%,
&
It is trivial to verify that e’ is a linear functional and that
; 1 ifi=yj
1 N —
c'(e;) {0 ifi g

This situation occurs so frequently that it is useful to have a notation for it:

Det 53‘_{0 if i £

This §% is called the Kronecker delta, after the German mathematician Leopold
Kronecker (1823-1891), and we may now write

e'(ej) =4

i fore; eV, e e V™.
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We claim the set {e!,...e"} is a basis of V*. Indeed, suppose f € V* and
f(ej) = Aj. Then

Nel(v) = Ajel () = NElel (eq) = NjE'S;
= N& = fle) = f(€e))
= f(v).

Thus Aje/ and f have the same value on any vector v € V, and thus \je/ = f.
Hence the set {e',...,e"} spans V*. Now suppose A;e/ = 0. The for any v € V,
Ajel (v) = 0. Hence we have

)\jej(ei) = 0 i:l,...,n
Aol =0
A = 0
Thus {e,...,e"} is a linearly independent set and therefore is a basis of V*. The
basis {el,...,e"} of V* has a very special relationship with the basis {e1,...,e,}

of V given by €'(e;) = 6; We define

Def The set of linear functionals {e!,...,e"} defined above and satisfying

e'(ej) =6,

is called the dual basis of V*.

It will play a supremely important role in our work.

As we saw above, any f € v* can be represented in the dual basis as
f=Ne where \; = f(e;).
We will represent f by the 1 x n matrix
(A, A2, An).

The value of f(v) can now be found from the representatives of f and v (in the
dual basis of V* and V') by matrix multiplication:

fo) = (ne!)(fej) = Niglel (e)
= NS =\
51
= (A, ) :
é"n

In tensor theory \;&(summing over a repeated index) is called contraction.
Naturally we want to know how (A1, ..., A,) changes when we change the
basis. The productive way to approach this is via the question: when the basis
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{e1,...,e,} is changed to {€1,...,€,}, how do {el,...,e"} and (\1,...,\,)
change? We have

N = (&) = flole;) = ol fleg) = ol

which shows how the (A1,...,\,) changes:

Ay ) = 1, ) (@) = (Mg, .. A (@) €

so that the representation of a linear functional changes ezxactly like the basis
vectors, that is, covariantly. R
To find the formula for the change in the dual basis, recall that if f(€;) = \;
then f = \;é'. Now
e = él(afer) =alel(er)

_ ksj _
= oo =0

SO

and the dual basis vectors change contravariantly. We can write this in matrix

form as L o _
e é é

:(aﬂf) Cl=¢

which is a contravariant change.
The reader will by now have noted that when the indices are high they
count by the row, and when low they count by column. For example

first row — /el
2

second row — | e

th

n'* row — \e”

An object with a single high index will then be written as a column and an
object with a single low index will be written as a row.

We will now introduce a method of obtaining the change of basis equations
by matrix methods. To do this we introduce an action of the linear functional
f € V* on a row matrix of vectors

flo1,...,0) = (f(vl),...,f(vr)).

Then we have

Aiseesdn) = (FE1),e o fEn) = FE1, .. En)
= f(el,...,en)CZ(f(el);---af(en))c
= (M., M)C.



18 CHAPTER 2. LINEAR ALGEBRA

This is the same result we previously obtained. Note the quiet use here of the
associativity of matrix multiplication which corresponds to the use of linearity

in the original derivation.
From this we can easily derive the the change for the e* with this method;

for feV*

el et el
O sd) [ P ) =Ff=00 00 [ 5 =00,
e en e
and since this is true for all A{,..., A, we must have
el et
=C
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2.5 Inner Products on V

2.5 Inner Products on V

This section is a little more complex than the last two because we wish to
simultaneously accommodate the symmetric and Hermitian inner products. To
do this we require conjugation on the base field F. Conjugation commutes with
addition and multiplication

B

Ql

a+p
af

Ql

+
and we assume it to involutive
a=«

and we also assume it is one to one and onto, which has as a consequence that
a#0=aa#0.

The obvious example is conjugation for complex numbers; another example is
in the field of rational numbers with v/3 adjoined, called Q[\/g] where

a+BV3=a-pV3 a,Be€Q.

This example is important in number theory. The most important example
which is not the complex numbers is the case of an arbitrary field F where
conjugation does not have any effect; @ = a. For example, this is the natural
definition for the real numbers F = R and and the rational numbers F = Q

With conjugation under control we proceed to the definition of the inner
product

Def An inner product on a vector space V' is a function ( , ): V xV = F
satisfying

1.

3.
4. if (vy,u)=0forallu eV thenv=0.

If conjugation does nothing, (@ = «), then numbers 1 and 2 are called bilinearity.
They are also sometimes called bilinearity when conjugation has an effect, and
sometimes by a similar name like semi—linearity or Hermitian linearity. Number
3 is called symmetric when @ = a and the Hermitian property when conjugation
has an effect. Number 4 is called non—degeneracy.

A slight variant of the above definition where number two is replaced by
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1. (u,v+w) = (u,v) + (u, w)
2. (u,av) =a(u,v)

3. (au,v) = a(u,v)

is also called an inner product. The difference is cosmetic but we must be
careful about it because one way of “exporting” an inner product on V to an
inner product on V* gives 2’ on V*.

A special case of an inner product is one that replaces number 4 by

1. (u,v +w) = (u,v) + (u,w)
4. u#0= (u,u) >0 Positive Definite

Clearly for 4’ to function the subset {(u,u)|u € V} C F must have an order
relation < on it. This is the case when F = R or when F = C and conjugation
is ordinary complex conjugation. Clearly 4’ = 4 so that this is indeed a special
case. We say when 4’ holds that we have a positive definite inner product.
(Definite here means that if u # 0 then (u,u) cannot be 0, so the word is a bit
redundant in this context, but customary.)

Inner products are often used to introduce a concept with some of the
properties of length into a vector space. If the inner product is positive definite
and the field has square roots of positive elements then this length has the
properties we expect of length, and it is defined by

lul = v/ (u,u).

If the inner product is not positive definite but the field F is C and the inner
product has the property that (u,u) is real then we may define “length” by

[ul = VI(u, w)].

This “length” is used in the theory of relativity and though it has some unusual
properties (there are non-zero vectors whose “lengths” are 0) it is still quite
useful. However, we will not make extensive use of this length concept in this
book.

We now wish to represent the inner product in terms of matrices. We first
introduce the operation * matrices:

* -
Qi1 Q2 0 Qip Qi1 Q21 Quml

Q21 Q2 Qap Qi2 Q22 - Q2

Qo ot Omn

S‘
3

Am1  Qm2 - Qmp

so that * results in both the transposing and conjugation of the elements of the
matrix. (If @ = « then * is merely the transpose.) It is easy to check that

(AB)* = B A*
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‘We now define

Def A is Hermitian <= A* = A

We remind the reader that if conjugation does nothing (@ = «) then Hermitian
means simply symmetric (AT = A). We now form the matrix

g1 g12 - din

g21 g22 -+ gon
(gs5) = ) ) )

gn1  Gn2 cr Gnn

of the inner product with respect to the basis {e1, -, e,} of V by
9ij = (i ¢j) .-

Note that
Gii = (ej,€i) = (ei,€5) = gij
so that (g;;) is a Hermitian (or symmetric) matrix. Note also that our former
convention whereby the row of a matrix is counted by an upper index is here
not applicable. For the matrix (g;;) the first index counts the row and the
second indexr counts the column.
Let now v = £'e; and w = n/e;. We then have

(v,w) = (Eein’e;)
= §i77j (ei, ej)
= gi&ny’
which gives the inner product (v, w) in terms of the coefficients £ and 77 of the
vectors v and w in the basis representation and the matrix representation (g;;)

of the inner product in the same basis. This will be most important for the
entire book. In matrix form we can write this as

(u,0) = (&1,-+,6n) (945)

n

n
If we wish, we can compress this further by setting
¢! n
G = (9ij) E=1 : n=1\ :
é"n nn
and then
(ua U) = ﬂ* g§ :
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To find what happens to (g;;) under change of basis we recall
éi = a{ej
so that

gij = (8,€) = (afex,afer)
= @faﬁ(ek, €r) = @faﬁgkl )
When the field is R and @ = « this looks like a covariant index change but when
the field is C things are perturbed slightly and the first index has a conjugation.

We can write this in matrix form as
(gij) = C*(gij)c-

The transpose is necessary because in C* the summing index k counts rows in
(gr1) and rows in af, so for the matrix multiplication to function correctly the
rows of C must be switched to columns. More explicitly we need

gin gi2 ' GJin

g21 g22 - Gg2n

gnl gn? e gnn
=1 =2 —n 1 1
ap oy 0 g gir 912 - Gin ap Qg
=1 =2 —n 2 2
Qo QG -0 Ay g21 922 - Gon a1 Qay
—1 =2 — 2
A Qe O‘Z gnl 9Gn2 *°° Gnn OZ? o

We can get this basis change formula more simply by matrix methods. If v =
Ele; = €EF¢, and w = njej = ﬁlég then

~%

€ (@)i = (viw) =& (gij)n (2.1)
= (C&)*(9:)(Ci) (2.2
= £(C(955)0)i (2.3)

and since this much be true for all §~ and 7, we must have
(Gr1) = C*(gij)c-

Next we must investigate certain facts about the matrix (g;;) of the inner
product. We use here certain facts from the theory of determinants. We will
develop these facts systematically and in detail in Chapter 2 which is indepen-
dent of the inner product concept, but probably most readers are familiar with
them already.

I3 =
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The most important property of (g;;) is

det(gi;) # 0,

which means that it (g;;) has an inverse, (which we will denote by (g*') ). To
prove det(g;;) # 0, let us assume det(g;;) = 0. This means, as we show in
chapter 2, that the columns of (g;;) are linearly dependent: 3¢!,...,£™ not all
0 for which

g11 g12 Jin 0
g21 1 g22 9 gan n 0
. &+ . &+ : &=
gni gn2 Inn 0
or L

3 0
& 0
(gij) : = | :
§" 0

Now let v = £'e; and u = 7e; be any vector in V. We have

Thus (u,v) = 0 for all © and a non-zero v, which contradicts number 4 in the
definition of an inner product.

We can extract a little more out of this result. Suppose {v1,...,v,} is a
set of vectors in V. Consider the determinant of the matrix of (v;, v;):

(vi,v1) -+ (v1,0p)
det

(vp,v1) - (v, vr)

If the v; are linearly dependent, then for some & not all 0 we have &'v; = 0.
This will force a linear dependence

(v1,v1) (v1,v2) (v1,vr) 0
S I N i I
(vr,v1) (vr, v2) (v, vr) 0
and hence the determinant is 0. If, however, {vy,...,v,} are linearly indepen-

dent, then W = (spanof{v1,...,v,}) is a subspace of V and it inherits the inner
product. However, sadly, number 4 (nondegeneracy) in the definition of inner
product may fail on W. However, if the inner product remains nondegenerate
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on W, as must happen for example if it is positive definite, then {v1,..., v} is
a basis for W and by our previous result

det((v;,v;)) #0.

This determinant is called the Grassmanian of {v1,...,v,}. Digesting, we have
Theorem If the inner product restricted to spanfvy, ..., v,] is non-degenerate
then

{v1,...,v,} is linearly independent <= det((v;,v;)) #0.

A basic theorem in the theory of inner product spaces is the following;:

Theorem Let f:V — F be a linear functional on V. Then there is a unique
u € V for which, for all v € V,

f(v) = (u,v).
Proof We will prove this using coordinates. A coordinate free proof can be
found in section 5.1. Let f = \je’ € V* and set &7 = g7*\; where (g") = (g;;) 1.
Then setting u = £e; we have, with v = /e,
(w,v) = guéin®
= gjkgji/\_ink
= gig” A"
97 g Ain®
= g
= "
= f(v)

Thus the required u exists. If there were two such u we would have

(u1,0) = f(v) = (uz,v)

for all v € V, and then
(ug —ug,v) =0 forallveV.

Thus u; — ug = 0 by non-degeneracy, and u; = us.

Corollary The mapping ®(u) = f using the u and f of the last theorem is an
anti-isomorphism from V to V*. (Anti-isomorphism means ®(au) = a®(u).)

Thus, an inner product sets up a canonical anti-isomorphism (canonical
means it does not depend upon the basis) between V' and V*. We can see it is
canonical because it is fully specified by the equation

(u,v) = [@(w)](v).

Conversely, some persons like to define an inner product by starting with such
a canonical anti-isomorphism and defining an inner product by this formula.
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2.6 Linear Transformations

2.6 Linear Transformations

Let V and W be vector spaces with dim(V) = n and dim(W) = m. A
Linear Transformation or Linear Operator is a function from V' to W satisfying

T(au+ Bv) = oT'(u) + BT (v)

There is a huge amount of theory about linear operators in finite dimensional
spaces and we are going to present only some elementary results, and some
results without proofs. For more details the reader should consult any good
linear algebra book, for example, [Gelfand]

The Range

RIT={weW|FueV)w=Tw) CW
of the linear operator is a subspace of W and we denote its dimension by
r(t) = dim R[T].
We define the nullspace or kernel of T as the set
NT)={veV|Tv=0}.
N(T) is a subspace of V and we denote its dimension by
n(T) = dim N(T).

The operator T defined on the factor space v/N (T') onto R[T] is an isomorphism
and is defined by

Tw+ NT)))=T(v).
Counting dimensions we have
n(T) 4+ r(T) = dim(V).

Next we define the Matrix of T'. Let ey, ...,e, beabasisin V and fy,..., fn

be a basis in W. Then there exits unique scalars T; so that

Tej = T]lf1
or, more explicitly,
Tey =mfi + 7ifo + - + 'fm

Te; =73f1 + 73f2 + - + T5fm

Te, =7fi + 72f2 + -+ + .
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Then the matriz of T in the bases ey, ...,e, of V and f1,..., f, of W is

oo 7l
2 2 2
X T T T,
(Tl-): 1 2 n
J . .
A TR

Carefully note that the matrix of T is the transpose of the array of coefficients
in Te; = 7'; fi- Much of the theory of linear operators and matrices consists in
finding bases in which (T;) has some desirable form, for example upper triangular
or diagonal. This amounts to basis change in V' and W. Suppose €1, ...¢é, is a

new basis in V' and fl, ... fm is a new basis in W, so that
& = e, C=()
fk = azjej ) D= (azj)

These basis change matrices are invertible, so let
D7l =(()-

We now have
~ _ ~if
Te;=7;fi new bases

and we want the relationship between (77) and (7). This is easily computed:

T(é) = #fe
T(Viej) = ﬁfaéfi
T(e;) =

Wit =

Since representation in the basis {f1 ... f;n} is unique,
riod = 17,
which can be written in matrix form as
(m})C = D(7})

D) = (7)

J
As an application of this, the Gauss reduction process gives a process whereby
i

(T;) — Gauss Reduction — (7

) in reduced row eschelon form.

Since each action in the Gauss reduction process can be accomplished by mul-
tiplication on the left by an invertible elementary matrix £ we have

5T5T_1 5251(7’}) = (f‘;)
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and setting _
D=(&...a) =&t =()
we have _ _
D7) = (7).

Thus there is a new basis fl . fm in W where

fi=0]f;
relative to which 7" has a matrix in row echelon form. If w € W is expressed in
this basis it is trivial to solve Twv = w, if it is solvable.

Example In the e; and f; bases T is represented by

1 -2 -1 £t n'
-1 -1 3 , vby | €|, andwby | n?
5 —1 -—11 &3 n>

Then Tv = w becomes

51 _252 _63 — 771
_El _52 +3§3 — 772
5&-1 752 71153 — 773

Following the Gauss Reduction process we find D~ to be

1 -2 0
Dl'=|-1/3 -1/3 0
—2 3 1
and
1 2 -1 1 0 -7/3
D'l -1 -1 3 |=(0 1 -2/3
5 -1 -11 0 0 0
Thus with the new basis for W and the old basis (no change) for V' we have
10 —7/3\ (¢ U it
01 23| |e]=D 2] =|#
0 0 0 53 773 773

This is solvable if and only if 72 = —2n! + 3% + 1n® = 0 and the solution is
then

' it 7/3
El=|7|+&|2/3
IS 0 1

An important special case is an operator that goes from V to itself. In this
case, there is (usually) only one basis change involved, from old e; to new é;, so
that D = C and the basis change rule has the form

() =c (e,

J
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)

It is much more difficult to arrange a ”nice” matrix by selecting the new ¢;
under these circumstances. The standard method is to use eigenvalues and
eigenvectors, and we will now give a sketch of this process and its various pitfalls.

Def An eigenvalue and eigenvector of T are a pair A € F and v € V so that
Tv=\v.

Def The eigenspace of X is N(T — \I).

This is the space of eigenvectors for the eigenvalue A

The eigenvalues are solutions of det(T" — AI) = 0. This is a polynomial
equation with coefficients in ' and so the solutions may not be in F. However,
assume they are in F, which is the case for example when F = C, the complex
numbers. In this case we have n not necessarily distinct eigenvalues. Eigen-
vectors belonging to distinct eigenvalues are linearly independent, so if we do
happen to have n distinct eigenvalues then the corresponding eigenvectors form
a basis for the space.

If the eigenvalues are not distinct then the eigenvectors span the space
(that is there are still n linearly independent eigenvectors) if and only if, for
each multiple eigenvalue, we have

N(T — \)?) = N((T — \I).

(This condition is automatically satisfied for those A\ which are not repeated,
that is A is a simple root of det(T — AI) = 0.)

Suppose the condition to be fulfilled, and {v1,...,v,} to be a basis of
eigenvectors with T'v; = \;v;, then with

vi=rle; and  C=(y)

we have
M O -0
o 0 Ao 0
¢ 1(75) =1 : : ’
0 0 - M\

a diagonal matrix. This is the optimal situation. Under suboptimal conditions
where we have all the roots A1,..., A, of det(T"— AI) = 0 in F but not enough
eigenvectors, we may find ”generalized eigenvectors” which are in N (T — \I)*
and arrange a (7}) consisting of blocks

A1 0 -+ 0
0 A 1 0
0 0 A 0
0 0 O 1
0 0 O A
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with ones above the diagonal. This is the Jordan Canonical Form. If the
roots A1, ..., A, are not in the field of scalars F then more complex blocks are
necessary. We refer the reader to advanced books on linear algebra, for example
[Malcev] for the details, which are extremely interesting.

To complete this section we would like to show how to get the change
of basis equations by matrix methods. To do this it is necessary to introduce
matrices whose elements are themselves vectors. For example, for a set of vectors
v1,...,0, we may create the row "matrix” (in an extended sense of the word
matrix)

(’Ul,’Ug,...’UT)

and it would be possible to create a column of vectors also, though not natural
to do so in the present context. We now define an ”action” of the linear operator
T on the row of vectors by

T(v1,v2,...0.) = (Tv1,Tva,...Tv,).
We then have, for the change of bases in V and W,

(él,...,én) = (61,...,€n>c

(flv"'an) = (flaaan>D
and then
T(e1,...,en) = (Te1,...,Teyn)
= (T{fj,...,’l’,ﬂl.fj-)
= (fi,oos fm)(7))

and similarly
T(E1s - 8n) = (fire-es fn)(Fh).

Next we put these together
T@r,...ven) = (frooeos fn)(7)
T(e1,...,en)C = (f1,.- s fm)
(Fro- o S @) = (fryeees fi)

Since the fi,..., fi, are linearly independent, we must have
(r])C =D (#)
and thus ‘
D7) C = (7).
We now turn to the conjugate operator. Our treatment is not quite stan-

dard because we will write the matrices representing linear functionals as row
matrices.
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We also want to write f(v) in a new way to emphasize the symmetry
between V' and V*. Henceforth, we will often write

< f,u> instead of f(v).

If T:V — W is a linear operator, then there is a dual operator 7% : W* — V*
defined by the equation

<T*g,v>=<g,Tv> .

Let now ey, ...e, be a basis in V and e'...e™ be the dual basis in V*. Notice
that, for f € V* and f = \;e’

< f, e >=< /\jej,ei >= Aj < ej,ei >= Aj(Sf =\

so that the coefficient \; of e’ in f = \je? may be found by taking f’s value on
e;. Now let f1,...fm be a basis of W and f!,... f™ the dual basis in W*. We
have _

T*f = ple’
for some coefficients pg and we would like the relationship between the matrix
p?) and the matrix (/) of T in the bases ey, ...e, of V and fi,... fm of W.
We have

pl = ploF =pl <efep >=<pleF e >
= <T*fl e >=< fI,Te; >

= < flrffp>=1F < I, fr >=7F6] =17 .
Thus T* and T have matrices which are conjugates of one another. (If one
writes the matrices representing linear functionals as columns, then there would
also be a transpose of the matrix of T" involved, but this is not convenient for
us.)
We can now represent the action of 7 on an element of g € W* in the
usual way; if g = \jf/ and T*g = ure® € V, we have

pre® =T g =T (N ) = N\ T (f7) = Njrie®

SO _

r = ATy
or in matrix form _

(1, pin) = (A1, Am) (1) -

Once again, no transpose is involved because we are representing the elements
of the dual spaces W* and V* as row matrices. If we were to use columns for
this representation, then the above would be written

1 A1

i Am
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Notice that if we have v = £’e; € V and g = \; f/ € W* then we calculate
< g,Tv >= g(Tv) using matrix representatives by

51
O ) (@) |
gn
and this is exactly what one would use to calculate < T*g,v >= [T*(g)](v);
51
Ay dm)( ) |
gn

(P.A.M. Dirac used a notation
<g|T|v>

for < g,Tv > and < T*g,v >, removing the need to distinguish 7" and T'; Tv
is then written as T'|u> and T*g as <g|T thus indicating the proper one of T*
and T by the symbolism.)
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3.1 Introduction

Tensor products are not at all necessary for the understanding or use of Grass-
mann Algebra. As we shall show, it is possible to build Grassmann Algebra
using tensor products as a tool, but this is by no means necessary. If follows
that the reader may completely skip this chapter if he has no interest in tensor
products.

Then why do we include this chapter? There are several reasons which we
discuss in the following paragraphs.

First, many people, especially in differential geometry, like to build Grass-
mann Algebra from tensor products. This is, after all, a matter of taste, and
we want persons of this persuasion to feel at home in this book.

Second, for purposes of generalization in algebra, for example to modules
over a commutative ring, the method has advantages, in that tensor products
are well understood in that context.

Third, in differential geometry there are many contexts in which tensor
products are the natural mode of expression. In such a context it is natural
to want to know how tensor products and Grassmann products interact. If
Grassmann products are defined as certain combinations of tensor products,
the interaction becomes clear.

There is a mild use of permutations and their signs sgn(7) in this chapter.
Readers completely unfamiliar with permutations might profitably read a por-
tion of section 4.3 on permutations (up to increasing permutations). Section
4.3 is independent of other material and may be read at any time.
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3.2 Multilinear Forms and the Tensor Product

One way to build the Grassmann Algebra is by use of the tensor product, whose
theory we develop in this section. We will also need some of the theory of
multilinear algebra, which we construct simultaneously.

There are several ways to construct the tensor product. The one we use
here is the usual method in commutative algebra.

Let Vi, 2 =1,...,r be vector spaces. We construct V1®, Vo®, ..., V,, the
tensor product of the vector spaces, as follows. We form the (very large) vector
space V(V4,...,V,) with basis the elements of V1 x, Vax, ..., xV,. Elements of
this space may be represented by

l
Z Oéi(’Uli, V2gy v - 7U’I‘i)
=1

where v;; € V. This space is an infinite dimensional space. We will now form
a subspace Vp(V4,...,V,) generated by all elements of the form

(’Ul,...,’l}i_l,OéUi,Ui+1,...,UT) — a(’Ul,...,’UT)

(V15 ooy Vi1, U A Wy Vi 1y ooy Ur) — (V14 ooy Vi1, Uy Vi 1y ooy Up ) — (V14 00y Vim 1, W, Vi1 y oy U )

If one prefers a single type of generator one could define V4 (V1,..., V) to be
generated by elements of the form

(V15 ey Vi1, QUA LW, Vi1 ooy Up )= (V14 ooy Vim 1y Uy Vg 1y ey Uy )= B(U1 4 ooy Vim 1, Wy Vi1 ooy U )

The image of (v1,...,v,) in the space V(V4,...,V.)/Vo(V1,...,V;) will be
denoted by v1®,v2®, ..., ®v,, and

QVi =, %e,...,aV, =V(A,...,V;)/Vo(W,..., ;)

=1

will denote the Factor Space. Because of the form of the generators of V4 (V1, ..., V,.)

we will have
VR...0UV_1 Qa0 QU1 ®...0,v, =afv1 ®...Qv,)

(since the first type of generator is sent to 0 by the factoring process). Also, we
will have

M.V 1QU+wW) QU1 ®...0U) = (VO...0V_1QURV4+1®...Q V)
+ (N®..0V_1QVQVi+1®...Q0V,)
because of the second type of generator.
The fundamental abstract principle underlying tensor products concerns
their interaction with multilinear functionals, which we now define. Let V1,..., V., W

be vector spaces over a given field F. Then
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Def Let F': Vi x...x V., — W. F is multilinear if and only if it has the
following two properties:

F(vr,.. 021, QUL Vg1, 0p) = aF(vy,...,0)
Fui, oy 0im1, U+ W, 041, -+ ,0r) = F(v1,.0 0,021, U, Vig1,y oo, Up)
+ F(Ula---an—lawan-l-l;---;'Ur)

The connection between multilinear functionals and tensor products is
through the following basic theorem.

Theorem Given a mu}tilinear functional F' : Vi x ... x V. — W there exists
a UNIQUE mapping F' : V1 ® ... ® V.. = W so that the following diagram
commutes:

Vix...xV, — w
pY /
Viw...V,
Proof The elements (v1,...,v,) are a basis of V(V4, ..., V,) and the multilinear

functional F extends to a linear functional Fy : V(V4,...,V,) = W by defining
Fi((v1,...,v.)) = F(vy,...,v,) and extending by linearity. We further note
the F is identically 0 on V5 (Vi,...,V,). For example,

Fi((v1,...auiy..v0) —avr,...,vp)) = Fi((vi,...aui, ..o 00)) — aFi((v1,...,0:))
= F(vi,...aui,...,0.) — aF(vi,...,0.)
= aF(v1,...0...,0.) — aF(v1,...,0.)
0

and the same for the other type of generator.
By the fundamental theorem on factor spaces we know that there is a
mapping
F:V(Vi.. . V))/Vo(Vi... V) = W

defined by

Fn®...@v.)=F(v...v)
as desired.

The mapping is clearly unique, because elements of the form v1 ® ... ® v,
generate V1 ® ... ® V,. and the previous equation determines the value of F on
these elements.

We will now, in s somewhat mystical manner, explain the significance of the
last theorem. This paragraph is not part of the logical development and may be
skipped with no loss of continuity. It is intended for psychological orientation
only. The purpose of the tensor product is to give a product of vectors subject
only to the bilinear restrictions

MR..Aw; ®...0,v, = av1®...Q0u,)
MR..U+W)R...0V, = V1®...0UR...QU,
+ M1KQ...0WR...RQ V.
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These restrictions are essential for a meaningful product of vectors, and we want
no other algebraic rules than these. For example, we do not want 11 ®...®v, =0
unless some v; = 0. If such a thing were to happen (as indeed it may when the
vector spaces are generalized to modules, we might say we have “collapse” of
the product. But we want no collapse except that which occurs through the
action of the above two laws (which means none whatever for vector spaces.)
The theorem is supposed to guarantee this lack of collapse; if an element is 0,
then no multilinear functional applied to it is non—zero. This insures that the
tensor product is “big enough” to accommodate the action of it all multilinear
functionals. We say then that the tensor product has a universal property with
respect to multilinear functionals. In situations like vector spaces this whole
matter can be simply controlled by finding a basis, but in the relatively simple
generalization to modules the basis method is generally not available, and the
universal construction is the best tool we have. Naturally we will show the
equivalence of the two approaches in our case of vector spaces. We return now
to the systematic development.

Since V1 ® ... ® V,. is a vector space we will eventually have to deal with
its dual space. Here we will define an interaction between V; ® ... ® V,. and
V' ®...® V}? which will eventually be used to show that one is the dual of the
other. We begin with an action of V(V{*...V¥) on V(V;...V,) defined on basis
elements (f',..., "), f € V* and (vi,...,v,.), v; € V; by

Def (fl,...,fT)(’Ul,...,’UT) = fl(vl)fQ(Ug)...fT(vT).

The action is extended from the basis elements to both spaces by linearity:

Qo (e INQ B vd) = Yo Bi(fh e D] )
i J ij

Sl ed) )
ij

we now notice that the action of any element of V(V;*... V) is multilinear on
V(Vi...V,). Tt suffices to check this on a basis:

Qo' (e INQ B vd) = Bl D] )
i J ij

B fiwl) . S ()

ij

Thus there is a mapping, again denoted by (f!,...,f") from V; ® ... ® V, to
the field given by

oo Y01 @@ 0,) = FH01) . [ ().
Next, we note that the mapping

Fog.gu(f1®...0f)
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is bilinear; the proof being repeat of the previous one, so that there is a mapping,
again denoted by Fy, .. .®v,., of Vi ® ... ® V' to the field given by

FU1®---®'U7‘(f1 ®..0f")= fl(vl)---fT('UT)-

We now regard this as a pairing between elements of a vector space and its dual.
That is, we regard F, ...9v, t0 be an element of (Vi* ® ... ®@ V;¥)*, and define
the interaction by

Def (fle.. . fMue..0u)=f(u)... f(v)

which the above analysis shows is well defined.

We now ask the natural question, since V1 ®...®V,. is a vector space what is
its dimension and what is a basis for it? First, it is clear that v ®...Quv,, v; € V;
generate V1 ®...®V,, and the, since v; = ag eij (where e;1, €50, ..., €, is a basis
for V;,) we have ey j, ®...®e,;,., 1 < j; <n; =dimV; is also a set of generators
for V1 ®...®V,. So everything turns on the linear independence of all elements
of the form

1 ® ... @ €i1;€i2; - --,€in, basis of V;
1,51 e T Jr 1 S .71 S n;

To establish this we assume a linear dependence

Z Oéjl’]émjrelyj1 ®"'®6T7jr =0
Ji,J2---Jr
and show the coefficients are 0. To this end, we consider the multilinear func-
tional F' defined by

F(vy...v.) = e (v1)e*2(vg)...e"" (v,)

where e7% is selected from the dual basis e/l ell ... €™ of V. By the basic
theorem there is an B
F;Vi®...0V, — Field

satisfying

Fluu®...Qu.)=F(vi,...,v,) forall v, € V.

Applying the linear transformation F' to the above supposed linear dependence,
we have

Z Ozjl’]é"'jrp(eljl ®...Q eTjr) =0
J1.d2.-dr
Z Qlidzdr el (eljl)e2i2 (e2j,) - - e (erj,) =0
J1,J2---3r
oitsizeie —
because in the penultimate equation all terms will be 0 except the single term

in which j; = i1, jo = 42, ... Jr = i, by the definition of the dual basis. This
proves the linear independence of the indicated terms.
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From this it is clear that
dim(Vi ® ... ®@ V) =dim(V1) - dim(V3) - - - dim(V;.)

and that the elements
e1j; ® ... % erj,

form a basis of V1 ® ... ® V..

39
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3.3 Grassmann Products from Tensor Products

The intent of this section is to derive the basic laws of Grassmann algebra from
the definition of Grassmann products in terms of tensor products. We start
with a vector space V and form the r*" tensor power

Vi=Ve...eV

r terms

We will now define a projection operator I : V™ — V" by the formula

1
M ®...Q0v,) = 3 Z SgN(T) V(1) ® Vr(2) @ - .. ® Un(r)
" TES,

Here, S, is the symmetric group of all permutations of r letters and sgn(w) =
+1 or — 1 according to whether 7 is an even or odd permutations. (Readers
unfamiliar with these concepts may read the initial part of section 3.2 where
the exposition has been crafted to be readable at this point. Read up to the
beginning of increasing permutations and then return to this point.)

We now give some examples

(v ®vg) = %(01@)1}2702@1)1)
v @v1) = 2(va®@v—v1 ®@v2) = —I(v1 @ v2)
IMI(v; @ va) = %H(Ul ® v9) — %H(’Ug ®v1)
= 2I(v1 ®v2) + 21(v1 ® v2) = [(v1 @ v2)

(This property, I1? = II, is the reason II was referred to as a projection). Con-
tinuing now with products of three vectors

v @2 ®@v3) = (11 Qv ®v3— V1 ® V3OV — V2 RV ® V3
+v2 ®U3 @ — V3@V ®U1 + V3 @ v @ Va)
Mve @vs @vs) = %(1)2@03@1)5*02®U5®03*U3®U2®U5

+U3 QU5 Q@ Uy — U5 QU3 @ U2 + Us @ U2 @ U3)

This last example has been included to make an important point; the permuta-
tions act on the slot index (the position of the element in the row of tensored
vectors) and not the index to the element that happens to be in the slot. Thus,
for a 0 € S3, we have

H(ve(1) ® Vo(2) @ Vo(3)) = %( Us(1) @ Vg(2) @ Vg (3) — VUs(1) @ Vg (3) @ VUgs(2)
= Vg(2) @ Vg(1) D Vg (3) T Vg (2) @ Vs(3) @ Vg(1)
— Ve(3) ® Vo (2) @ Vg(1) + Vo (3) ® Vo(1) @ Vg (2))
= § D s80(1) Uo(n(1)) @ Vo (n(2) @ Vo(n(3))
TES3

where is the last line m € S3. Note the order of the permutations in the indices.
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We are now in a position to prove that in general II? = II, so that II is
a projection. Recall that if o, 7 € S, then sgn(om) = sgn(o) - sgn(w) and that
sgn(o) = + so [sgn(o)]?> = +1. Also note that, since S, is a group, if o is a
fixed element of S, and 7 runs through all the elements of S, once each, then
om runs through all the elements of S, once each. Keeping all this in mind, we
first have, for o, € S,

H(va'(l) Q... Q& va’(r)) = % Z Sgn(ﬂ-) UUﬂ'(l) K...Q vo’ﬂ'(’!‘)
= % [Sgn(o)]Q Z Sgn(ﬂ-) Vor(1) D...0 Vor(r)

= sgn(o)% Z SEN(0T) Vor(1) @ -+ @ Vor(r)

= sgn(o)(v; ®... R v,).

Next we see IT2 =TI, for

(v ®...0v,) = (4 Z SgN(0)Vo(1) @ - .. @ Vg(r))
g€S,

= % Z Sgn(J)H(va(l) ®...® ’UU(T))

= 1 [sen(o)* (v @ ... ® v,.)

r!
o

= un®...0u)
We now define A”(V), the r** exterior power of V.

Def A'(V)={Aec RV |TIA = A}
=1

In fact, this is simply the range of 11, since II is a projection.

Since A"(V') is the image of @)._, V under II, A"(V) is generated by ele-
ments of the form I(v; ® ... ® v,). However, before we can go on a technical
consideration intrudes.

It is most important for us that we be able to treat the Grassmann Alge-
bras, which we are about to define, on a vector space and it’s dual space in a
wholly symmetric manner. In general, this is not completely possible, because
it requires the introduction of 4/1/r! into the formulas at this point and this
quantity may not exist in the base field being used. For most of the book we are
going to insist that the base field contain this quantity, but for the rest of this
section we are going to compromise in order to define the Grassmann Algebra
over any field. Thus we introduce a function S(a) where S : F — F from the
field into itself satisfying

S(a) - S(8) = S(aB)

The two most common choices for S are

Sla) = «
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or

and after the end of this section we will definitely settle on the second alternative.
The first alternative is useful because it is applicable to any field, but as we
mentioned it makes it impossible to maintain a complete symmetry between a
vector space and its dual.

Having, in any specific circumstance, chosen an S-function, we can now
proceed to define the wedge or exterior product.

Def
v A Ay = SENI(n Q... Qv,)
S(r!)
Y ZS sgn(0) V(1) @ - .- © Vg (r)
oeS,y

These elements clearly generate A™(V).

It is worth noting at this point that if the number of elements in the product
v1 A ... A v, exceeds the characteristic of the field, the exterior product will be
0 for most choices of S.

Next note that

Vo) N oo o AUy = S(T!)H(Ug(l) &...Q UU(T))
= sgn(o)S(rNH(v1 ®@ ... v.)
= sgn(o)vy A... Ay
We now wish to define a product
A AT (V) x A5(V) — A"T5(V).
We do this as follows
Def For f € A"(V) and g € A*(V)

S((r+s)!)

TN = =gt

I(f ®g)

To clarify this definition, we prove first that for f € @;_,(V) and ¢ €
®;_, (V) we have

H(f ®g)=HIf ®g) = I(f ®g) = I(ILf @ Ig).

It suffices to prove the first equality where f and g are generators. Let f =
VI®...Q0Up, § =0Upy1 Q... Vp1s. Then

H(Hf ® g) = %H[( Z Vr(1) &...Q Uﬂ"(’l“)) & U (r+1) X... Q0 U,T(T+S)].
TES,



3.3. GRASSMANN PRODUCTS FROM TENSOR PRODUCTS 43

Now define 7 € S,45 for m € S, by the equations

i fw(@) iti=1,...r
”(’)_{z‘ fi=r+1,...,r+s

Then, clearly, sgn 7™ = sgnm, and

NIlf®g) = %H{ Z sgn(T) vz(1) ® -+ @ Vz(r) @ V(1) @ ... ® Ufr(r+s)}
TES,

= %ﬁ Z Z sgn(o)sgn(fr) Vig(1) @ .- @ Vig(r) @ ... @ Vig(r+ts)
TES, 0ES, 45

= %ﬁ Z Z SEN(TO)Vig(1) @ -+ @ Vio(rts)
TES, 0ES 45

= % M ®... R Vrys)
TES,

= M1 ®... 0 Uprts)

= I(f®yg)

The equality II(f ® g) = II(f ® IIg) is proved in the same way and the last
equality follows from the first two.

We may now compute f A g when f and ¢ are generators of A"(V) and
A*(V). For we have

f=uAn...Av, = SEDNII(n ®...Q@v,)
g=Urp1 Ao AUpps = S(SNII(v141 ® ... @ Upts)
and thus
fAg = H (SNII(01 @ ... @ v,) @ S(EHI(Vys1 @ -.. @ Vyps)
= S(( S)') (( '®UT)®(UT+1®---®UT+S)
= S((r+s)NII(vy LRV QU1 ® .. @ VUpgs)

= UVIA...Nv, /\vr+1/\ N\ Upgs

From the above we separate out specifically

Corollary For elements v1 A...Av,. € A"(V) and v,41 A ... Avpps € A5(V)
(V1 Ao AU A (Up g1 A e e e A Upgs) = VLA o AV AUpp1 Ao A Upgg

Based on the above, we are now in a position to prove the basic Axioms of
Grassmann Algebra. We refer to these results as Axioms because they can be
used to build the remainder of the theory of Grassmann Algebra on an axiomatic
basis with no further use of the tensor product. This is more elegant than falling
back on the tensor definition from time to time.

Axiom 1 The Grassmann product is associative.
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Proof Let f = v A...Av. € A™(V), g = vpp1 Ao Avpgs € A5(V) and
h=vrgs41 Ao Avpysey € AY(V). Then, utilizing the previous equation,

(FADAh = [(t A Avp) AUrgr Ao AUrg) | A [Vrgst Ao AUy
= [UIA AU AV AL A V] A [Vpgsgt A A U]
= Ul/\---/\’UT/\’UT-‘,-l/\---/\’UT-‘,-s/\U'r-i-s-i-l/\---/\v'r-‘,-s-‘,-t

and clearly we will also have f A (g A h) equal to the same value, so that

(fNg)Nh = fNAg(Ah)

and the Grassmann Algebra is associative on its generators, and hence associa-
tive.

Axiom 2 The Grassmann Product is multilinear:

v A A (P ur P ug AL A = (Ui AL AU AL A) R (v AL AU AL A)

Proof This is trivially true because the tensor product is multilinear and II is
a linear transformation.

Axiom 3 ForanyveV, vAv=0
Proof

V1 Nvy = S(2!)H(’U1 ®’U2)

2!

— % Z sgN(T)Vr(1) @ Un(1)
T neS,

(2

= 20 (v1 ® V2 — V2 ® V1)

n

n

Hence, substituting v; = vs = v,

vAU = (v®v—v®v)
= 0

We next formulate Axiom 4a. Axiom 4 comes in two equivalent forms, and
in this section we introduce only 4a. We will discuss the equivalent form 4b
later.

To formulate Axiom 4a, we must introduce the concept of an alternating
multilinear functional, which is a multilinear functional satisfying one additional
property.

Def A multilinear functional is alternating if and only if
F(’Ul, ey Vi—1,0;, Ui+1,’()i+2, . 7U7‘) = —F(’Ul, e 7Ui—1avi+1; Vi, ’UH_Q, e ,’UT)

fori=1,...,r—1.
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Note The condition for a multilinear functional to be alternating is that inter-
changing two adjacent arguments changes the sign of the functional. In fact, it
is easily proved that interchanging any two arguments, adjacent or not, changes
the sign of the functional. Since we go into this matter in detail in section 4.3
we will not discuss it further here, but the reader is urged to try a couple of
examples to see how it works.

Axiom 4a Given an alternating multilinear functional F'(v1, ..., v,), there ex-
ists a linear functional F' : A"(V') — W so that the following diagram commutes:

Vix...xV, i w

I\, NF
AT(V)

which is to say that F(vy A...Av,) = F(v1,...,v,) for every v1,...,v, € V.
Proof This is easy. Since F' is multilinear there is a multilinear functional
Fi:V®...QV — W satisfying Fi (11 ®...Qv,) = F(vy,...,v,). Since A" (V) C
V®...®V, there is a restriction of Fy to F: A"(V) — W which naturally remains
linear. The reader will easily convince himself that for any permutation the
alternating property implies that

F(vo(1)s -+ Vo(ry) = sgn(o) F(vy,...,v,)

since sgn(o) is equal to —1 raised to a power equal to the number of adjacent in-

terchanges necessary to restore the sequence o(1),0(2),...,0(r) to the sequence
1,...,r (This is handled more exhaustively in section 3.2) Hence
F(’Ul/\.../\’UT) = Fn®...Q0uv)
= Fl(% Z sgn(o)va(l) ®...xR0 Ua(r))
oeF,
= 5 Z sgn(0) F1(Vy(1) @ -+ . @ Vg(r))
oeF,

= % Sgn(J)F(vU(l), e ,’UU(T))

oeF,

= 4 Z sgn(o)sgn(o)F(v1,...,v,)
oeF,

= 4 Z F(vi,...,vp)
oeF,

= F(vi,...,v)

as desired.
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4.1 Introduction

In this chapter we develop the elementary theory of Grassmann Algebra on an
axiomatic basis. The axioms we will use were proved as theorems in Chapter 2
on the basis of the tensor product, but we do not wish tensor products to play a
role in the systematic development of Grassmann Algebra in this chapter, and
therefore base our development on the axioms. This has the effect of breaking
the theory into modular units.

As we will see, determinants appear naturally as the coefficients in Grass-
mann Algebra, and this accounts for the tendency of determinants to appear
sporadically throughout mathematics. As a general rule, the presence of a de-
terminant signals an underlying Grassmann Algebra which is seldom exploited
to its full potential.

There is an alternate way of realizing the Grassmann Algebra by building it
on Cartesian products in analogy to the way tensor products are built as factor
spaces of the vector space generated by Vi,...,V,. There are some cumbersome
features to this method but many people like to do it this way and it is important
that it can be done, so we will lay out this construction in detail in the last
section of this chapter. This may be read immediately after section 4.2 .
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4.2 Axioms

Let V be a vector space over a field F. The Grassmann algebra of V', denoted
by A(V) or AV, is the linear span (over F) of products

(AN WA AN I

where v; € V. Each term in a member of AV has a degree, which is the number
of vectors in the product: deg(vi AvaA...Av,) =r We agree that, by definition,
the elements of the field F' will have degree equal to 0. We subject the product
to the following laws or Axioms.

Axiom 1 The product is associative: for 1 <r < s <t

(Vi Ao AVR) A (Opgr Ao AVs)) A (Vg1 Ao Ayg)
=01 A AU A ((Urgt Ao AU A (Vsgt AL A wy))

so that each of the above terms may be written

VIA oAU AUpgp1 Ao AN Us AUsy1 Ao A .

Axiom 2 The product is bilinear:

V1A A1 A (tug + @Pug) Avepr AL A v
=tV A AV AU AV AL A D)
+a?(V1 A AV AUug AVpgg AL A D)

for any r,s with 1 <r < s.

Axiom 3 The product is very nilpotent:
vAv=0 forallveV

As a consequence of Axiom 3 and bilinearity, we have

w+w)AN(v4+w) = vAv+vAwt+wAv+wAw
0 = 0+twAhw+wAv+0
so that
VAW=—wAv for all v,w € V.

We will refer to this as the anti-commutativity property.

We remark that Axiom 3 is preferable to the equation v Aw = —wAw as an
axiom because, for a field of characteristic 2, the axiom implies the equation but
not conversely. For any characteristic other than 2, the axiom and the equation
v Aw = —w A v are equivalent.

The terms of the Grassmann Algebra can always be rewritten into sums of
terms of homogeneous degree; for example

V1 4+ 201 Ava +va Avg +vg4 —3vg Avg Avg + 7
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can be rewritten as
7+ (’U1 + ’1)4) + (2’()1 N\ Vg + Vg /\’Ug) + (—3’1}1 A v3 A ’U4)

with terms of degree 0,1,2 and 3. The Grassmann Algebra is a vector space and
the set of products of degree r form a subspace A"(V).

Up to now, there has been nothing to prevent the complete or partial
“collapse” of the Grassmann Algebra; for example the axioms would all be true if
vAw = 0 for all v, w € V, or this might be true for some v, w and not others. We
wish this phenomenon to be reduced to a minimum. There are two equivalent
ways to do this. The first form of Axiom 4 is methodologically preferable because
it does not involve a basis, whereas the second form is psychologically preferable
because the content is clear. We will eventually prove the two are equivalent.

To formulate Axiom 4 in a basis free way, we define the concept of an
alternating multilinear functional. (We did this in chapter 2 also, but we want
to keep this chapter independent of chapter 2.)

Def Let V and W be vector spaces. A function
G:VeVe..eV W
—_—————
s factors

is an alternating multilinear functional if and only if

1 2 1
Gv1,.. . vp—1(@ ug + @®ug), Vpg1, .. ,0s) = @ GU1,. .., Vp1, UL, Vpg1, - -«
2
+ « G(’Ul,...,Ur_l,’LLQ,UT+1,...
G(Ula"'vava+17"'7vS) = 7G(/U17"'7UT+17’UT7"'avS)'

We may now formulate Axiom 4 quite simply.

Axiom 4a Let G(vy,...,v,) be an alternating multilinear function from V ®
...®@V to W. Let ® be the map ®:V®...@V — A"(V) given by

D(vy,...,v) =v1 AL Avy

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G: A"(V) — W so that the following diagram commutes:

Vix...xV, N w

N, NG
A" (V)

The commutativity of the the diagram says that G = G o .

In section 3.2 we explained how a similar condition forced tensor products
to be "as large as possible.” Axiom 4 insured the the Grassmann Algebras is as
large as possible, consistent with Axioms 1,2,3. This same end can be achieved
more simply but less elegantly by introducing a basis into V. Let ey, ..., e, be
a basis for V. Then we may achieve the same end by the axiom
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Axiom 4b The set of all products

1<r<
eil/\.../\eir { =r=n

i <ig...<1p
is linearly independent.

The equivalence of Axioms 4a and 4b is not immediately obvious but will
be demonstrated in due course.

We now address the point that the expressions of Axiom 4b form a basis for
A(V). The question of involves only the spanning property of a basis; line inde-
pendence is guaranteed by Axiom 4b. It is sufficient to show that expressions
of the form

ei, N...Nej, r fixed, h<ig...<i,

span A"(V'). To see this, let vy, ..., v, be given in terms of the basis by
v = aéei
Then by Axioms 1-3,
VIA... NV :offa?...a?eil ANVANCT R

The product on the right hand side may be rearranged by the anticommutative
property so that the indices increase in each term (with possible sign changes).
This shows that v1 A...Av, is a linear combination of the terms of the specified
form, proving that these terms span A" (V)

By taking the direct sum of the vector spaces A" (V) we get an algebra. If
AeA"(V)and B € A*(V) then A- B € A"5(V). To complete the Grassmann
Algebra, however, we must put in the basement. We define A°(V') to be the
Field of constants, and we define for a € A°(V) and A € A"(V), the Grassmann
product a A A to be be simply scalar multiplicaton aA.

The reader may be bothered by the fact that multiplication aA 8 for a, 8 €
A°(V) = F is not anticommutative. This gives us an opportunity to point out
that while multiplication of elements of V' is anticommutative, vo Avy = —v1 Ava,
this does not hold in general for the Grassmann Algebra. Indeed, consider in
a four dimensional space the element A = e; A ez + e3 A eq € A%2(V). Then we
have

ANA = (e1Nea+esNeg)Alet ANea+esAey)
= (e1Nea)A(er Aea)+ (e1 Ae2) A(es Aes)
+ (esAeq) A(er Aea)+ (esAeq) Aes Aey)
= 0+ (e1Nea)A(esNeq)+(esNeg)A(erAe2)+0
= et NeagNegNeg+e3NegNep N\es
= ept Neg Nes/Neg+ep Nex ANeg N\ey
= 2e1 Nea Neg Aey

where we have used e3 Aeg Aej Aes = —eg Aegr ANegNes = +ep AesANegNeg =
—ei1NegANea Aeg = +e1 AeagAezAey. Thus, while it is true that if A = viA. .. Av,
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then A A A = 0, this need not be true when A is not a pure product, or when
Ae NoV).
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4.3 Permutations and Increasing Permutations

For efficient computations in the Grassmann Algebra and for use in the theory
of determinants we must develop some efficient notations for permutations. We
regard a permutation as a one to one onto function from the set 1,...,r onto
itself. We can diagram this by a symbol that puts the ordered pairs of the
permutation function in vertical columns:

(1 2 3 45

77\ 3 2 1 4
When the top row of the matrix (the domain) is arranged in increasing order
it is clearly redundant. However, omitting it would clash with another popular
way of writing permutations, (cycle notation, which we will not use,) and this

way of writing may also have slight benefits in clarity. Also we have the option
of rearranging the upper row, for example,

(4 3 2 5 1
7=\1 2 3 4 5

which can occasionally be useful. In either case, the symbol represents the
function ¢ whose values are:

oc(l)=5 0(2)=3 o(3)=2
cd)=1 o(5)=4

All the permutations of n letters (called permutations of order n) form a
group, the symmetric group &,,. If we use the o above and introduce here:

/1 23 45
T\2 145 3

we can then form the permutation
(1 2 3 4 5 12 3 4 5\ (1 2 3 45
T=\5 321 4)J\21453)7\35 142
The permutations are here composed as functions would be; first 7 and then o.
Thus we have 07(4) = 0(5) = 4. It is most important to understand the order
used here, especially since some people use the opposite order.
It is easy to see that the permutations form a group. Since they compose

like functions and function composition is associative, we know the composition
is associative. The identity is clearly

1 2 3 4 5
1 2 3 45
and the inverse of o can be found by rearranging o:

(1 2 3 4 5\ (43251
7=\5 321 4)7\1 2 3 4 5
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and then ”swapping the rows”:
(12345
\4 3 2 5 1)°
The order of the group S, is clearly n!, for there are n choices for o(1), and
then n — 1 choices for ¢(2), n — 2 choices for ¢(3),..., and finally 1 choice for
o(1), giving a total of n.- (n — 1) - (n — 2)...1 = n! choices in total.

The next concept we introduce is the sign of a permutation which is abso-
lutely critical in all that follows. Let f(z1,...,2,) be given by

flay,. ... z,) = H (xj — ;)

1<i<j<r
Then define o f, for o € S, by

Def () (@1, 20) = f(Xo(1) -+ s Ta(n))
and then define sgn(co) by

Def (cf)(@1,...,20) =sgn(o) - f(z1,...,2,).

This makes sense, and sgn(o) = £1, because

(@f) (@1, mn) = f(To@),- - Ta(n))
= (o) = Toi))
1<i<j<n
= sgn(o) - f(x1,...,2n)

and the product in the second line contains the same entries (z; — x;) as the
product for f except for possible reversals of order. Each reversal of order
contributes a (—1) to the product, so the final result is the same as the original
product except possibly for sign.

We are now going to look at an example so there will be no confusion about
the way products of permutations act on f. We regard o as acting on f to give
of,and 7 as acting similarly on o f to give 7(c f) which ideally should be (70)f.
To be concrete, let

(1 2 3 4 (1234
9=\2 3 4 1) M 7= 2 1 3 4
(1 2 3 4
TT=\1 3 4 2

Now the action of o on the arguments of f is for all arguments except the first
to march forward in the line, and for the last to go to the end of the line:

so that

(O'f)(fﬂl, T2, (Eg,.’L'4) = f('ra'(l)axa'(l)axa'(4)a ) 71;0'(4)) = f(-TQ, zs3, $43-T1)
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and similarly 7 reverses the first two arguments of f:

(Tf)(.’L'l,(EQ,.’L'3,.’L'4) = f(-’L'Q,(El,(Eg,.’L];).

From this we can see that

(rlef)(w,z,y,2) = (o f)(z,w,y,2) = f(w,y,z,z).
On the other hand,

((ro) f)(@1, 72, 23,74) = f(Tro(1), Tro(1)s Tro(d), - - - s Tro(a)) = f(21,73, 24, 72)

so that, making the substitution,

((TO’)f)(’LU,.T,y,Z) = f(w,y,z,x)

which coincides with what we found above for (7(o f))(w, z,y, z). Hence we have

shown that indeed we have 7(cf) = (70)f as we desired. We have gone into

this in such detail because experience shows the likelihood of confusion here.
To return to the general case then, we have

(t(of)(x1,...,2n) = (Jf)(zT(l),...,xT(n))
= @) Trom))
= f@Eoa) - Traym)
= ((ro)f)(x1,...,2pn).

The surprising thing here is the way the o jumps inside the 7(-) in the second
line, but this is the way it must work, because o rearranges the arguments
according to their slot, not according to what is in them. Hence o must operate
on the slot argument inside the 7(-). If the reader finds this confusing, he should
compare the general calculation with the example above.

With these details under control, we now have, using 7(o f) = (70)f,

[sgn(ro)lf = (ro)f
= 7(of)
= 7(sgn(0)f)
= sgn(o) - (7f)
= sgn(o) -sgn(7) - f
so we have
sgn(ro) = sgn(r) - sgn(o)
and sgn is a homomorphism of S,, onto {1, —1} regarded as a multiplicative

group.
Next note that since o - 0~! = identity, we have sgn(o) - sgn(c~!) =
sgn(identity) = 1. Thus we have

sgn(o™!) = sgn(o)
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While the foregoing definition of sgn(o) is elegant and useful for theory,
we will need a more convenient method for the calculation of sgn(o) for actual
cases. To this end we first note that a permutation that has the form

(1 2 3 ... r—1 r r+1 r+2 ... n
9=\1 23 ... r=1 r4+1 r r+2 ... n

has sgn(o,) = —1. Indeed, in the function f used to define sgn(c), the terms
(x;—z,) and (z;—x,+1) will be exchanged into one another by o, forr+2 <i <n
and similarly for the terms (z, — x;), (xr41 — x;), 1 <i <r — 1. The only real
effect will be through the term z, 1 —x, which will be transformed into x, —z, 1,

and this one sign reversal gives sgn(o,) = —1.
Next we are concerned with the permutation
B O B R A N I A A SRR
G\ =1 i+l . =1 4 j4+1 ... on
which exchanges the i and j'" entries. The permutations oy, oj41,...,05-1
will successively move i to positions i+1, i+2, ..., j forcing j into position i —1.
Then permutation oj_s, 0;_3,...,0; will back up j to positions j—2, j—3,...,1,

completing the exchange of ¢ and j. The permutations strung out in the proper
order are
Oij =04...05-305-2°04-1...044104

j—i—1terms j—iterms

so that

sgn(oi;) = sgn(o;)...sgn(o;—3)sgn(o,—2) - sgn(oj_1 ...sgn(o+1) sgn(o;)
(—1)F= 1. (—1)i—F = _120-)=1 — _q,

Finally, for any permutation o

( 1 ... i-1 i i+1 ... j-—1 j j+1 L n)
o) ... o(i—=1) o) o(i+1) ... o(f—-1) o@j) o(G+1) ... oln)

1 ooo i1 i i41 . j—1 j§ j+1 ... n
X(1 ceo =1 § 4l -1 i j+1 n)
(1 .. i—-1 i i+l .. =1 G j+1 ... n
o (0(1) ceooo(i=1) o(y) o(@i+1) ... o(j—-1) o(t) o(j+1) ... J(n))

so that o’ is almost o but the i*" and j** entries are interchanged. Thus
sgn(c’) = sgn(o) - sgn(oy;)
sgn(o’) = —sgn(o)

Thus, if any two elements of a permutation are interchanged, it reverses the
sign of the permutation. Now any permutation can, by means of interchanges
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(of adjacent elements if you like), be brought back to the identity permutation,
whose sign is +1. Hence, the sign of the permutation is equal to the number of
interchanges which return it to the identity. Here are some examples.

O,:(12345)_}(12345)_}(12345)_>
2 5 4 3 1 2 1 4 3 5 1 2 4 3 5
_>(12345

1 2 3 4 5

or, using only adjacent interchanges, which takes longer

*12345%12345%12345%
= \2 5 431 2 4 5 31 2 4 3 51
%12345%12345%12345%
2 4 3 1 5 2 41 3 5 21 4 3 5
%12345%12345
1 2 4 3 5 1 2 3 4 5

so that
sgn(o) = (—1)° = (—1)".

Thus we can find the sign of a permutation by counting the number of (possibly
but not necessarily) adjacent interchanges necessary to return the permutation
to the identity and raising (—1) to that power. The various ways of doing the
interchanges will always produce the same final result.

Having dealt with these preliminary general considerations, we turn our
attention to the increasing permutations. The reason for our interest in these
will appear shortly.

Def Let
1 2 3 e T r+1 e n
7= <o(1) o(2) o(3) ... o(r) o(r+1) ... a(n)>
Then o is an increasing r—permutation if and only if
c(l)<o(2) <o) <...<0o(r)

and
or+1)<o(r+2)<...<o(n).

We will denote the set of all increasing r—permutations by Sy, and we will use
the notation

(1 2 3 ... | r+1 n)
o) o(2) o3) ... o(r)|o(r+1) ... oln)

Here are some examples:

1 213 4 5 1 2 3|4 5 1 2 3|4 5 6
3 5|1 2 4 1 2 4|3 5 2 4 6(1 3 5
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112 3 4 5 1 2 3 4|1
3|11 2 4 5 1 2 4 5|3
Our interest in increasing permutations is due to their role acting as the
indices for the basis elements in the Grassmann Algebra.

For example, the basis elements for A%(V) where V is a vector space of
dimension 5 with basis {e1, €2, e3,e4, €5} are

e1 Nea Aes e1 Nea ey e1 Nea N\es e1 Nesg /ey
e1 NesgNes e1 NegN\es ea Nesg /ey ex Nes ey
62/\64/\65 63/\64/\65

and we will write these as
€o = €4(1) A €o(2) A €o(3)

where o € S5 3. The corresponding o are given by:

1 2 3|4 5 1 2 3|4 5 1 2 3|4 5 1 2 3
1 2 3/4 5 1 2 413 5 1 2 5|3 4 1 3 4
1 2 3/4 5 1 2 3/4 5 1 2 3|4 5 1 2 3
1 3 5|2 4 1 4 5(2 3 2 3 1 5 2 3 5

1 2 3|4 5 1 2 3|4 5
(2 4 5‘1 3) (3 4 5‘1 2)

This is the method we will use to index basis elements of the Grassmann
Algebra for the remainder of the book. Although it may look cumbersome at
first, it is in fact quite efficient and elegant in practise. The indexing problem
has always caused difficulty in the use of Grassmann Algebra and this method
essentially removes the difficulty. It has been known for a long time, but the
knowledge has not been widely disseminated, and it is greatly superior to the
many horribly messy systems used when people invent an indexing system on
site, so to speak.

We note in passing that an alternate way of forming the basis of A"(V)
which has certain advantages is to use

e~

sgn(a) €o(1) N Neg(r) instead of o) N Negr)

However, we will not do this in this book except in certain special circumstances.
Note that when o(1),...,0(r) areknown for o € S,, ., then o(r+1),...,0(n)

are uniquely determined. Since there are n elements to choose from and r are

chosen to form o, we see that S, , contains (:) = #LT), elements. Thus

The dimension of A"(V) is <n>
r
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We note that the scalers A are one-dimensional; dim A° = 1. Thus the total
dimension of the entire Grassmann Algebra is

1+(7)+(g)+...(n“1)+(g)

= (141"
= 2”

i dim A"(V)
r=0

Our next project is determining the sign of an increasing permutation which
is considerably easier than determining the sign of an arbitrary permutation.
First it is clear that o(j) > j for j < r, because in

1 2 3 e r r+1 n
(0(1) a2) o) ... o(r)|olr+1) ... a(n))
we have 0(1) > 1 and o(1) < 0(2) < ... < o(r). Consider now o(r). It is in
position r, and we would like it returned to position o(r). This requires o(r) —r
adjacent interchanges. Moreover, the elements o(r 4+ 1),...,0(n), whatever
their positions, retain their increasing order. Now repeat the process with o (r —
1),0(r —2),...,0(1). These elements having returned to their positions in the
identity permutation, and o(r+1),...,o(n) having remained in increasing order,
the final result must be the identity. The total number of interchanges is

T T T

S =)= 0l) =Y i=> oG -T
j=1 j=1 j=1 j=1
where T} = Z;Zl j= @ is the r*" triangular number. Thus we have

if 0e€8,, then sgn(o)=(—1)i=17W=Tr

Examples:

o = (; i 2}411 g 2) Sgn(g):(,1)2+4+57T3:(71)1176:(71)5:71
o = (é é’? ;L i g) sgn(g):(_1)3+6—T2:(_1)9—3:(_1)6:+1
N S R R S

Our next concept is the reverse of a permutation, which is important when
dealing with the dualizing operator *. Let o be given as usual by

= 1 2 r r+1 n
0<o(1) o(2) ... o(r)|o(r+1) ... U(n)>68”ﬂ“'

The reverse of ¢, which we denote by &, is given by

1 2 N N
olr+1) o(r+1) ... o)

n—r+1 ... n

Def o = ( o) ... 0(7’)> € Snin-r-
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Example

(1 2 3|4 5 _ (1 2|3 4 5

7= \2 4 5|1 3 7={1 3|2 4 5

To determine the sign of &, which will be of great importance in our future
development, we need to know the value of T}, — (T;. + T),—,) This is found by

nn+1) r(r+1) m-r)(n—r+1)

2 2 2

Tn - (TT + Tnfr)

= 3[r+n—-r)(n+1)—r(r+1)—(n—r)(n—r+1)]
= i[rn+1—-r—-1)—(n—r)(n+1—n+r—1)]

= %[T(TL*T)+(TL77’)T]

= r(n—r)

This fact also has a geometrical demonstration:

To+2-44+ Ty =Tg.

We note also that for any permutation o € S,

so that we have
1) 2= 0@)-Tr (71)3;“ () —Tn—r
—1 Z;:l a(j)_(TT+Tn,—r)

s(o)sen(@) = (1)
)
71)Tn_(TT+Tn7T)
)

Thus we see that
sgn(5) = (—1)" ™ Msgn(o).

This completes our study of increasing permutations.
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4.4 Determinants

in this section we will discuss the computational aspects of Grassmann Algebra
which are inextricably linked with the theory of determinants. Because we be-
lieve that determinants are important precisely because they are the coefficients
of Grassmann Algebra, we will develop their theory as if the reader had never
seen them before.

There is a definition of determinants (due to Weierstrass) that bases the
theory on certain axioms. We will prove these axioms, (and point out the axioms
in passing) but we will not develop the theory in this way.

The theory of determinants, since it involves permutations, cannot be made
totally comfortable. The following treatment, while requiring close attention, is
about as pleasant as possible. Readers who find the going rough in spots might
profitably compare it with more traditional developments of the theory.

The principal problem in elementary computations in Grassmann Algebra
involves the rearrangement of terms in a product, with consequent possible
change in sign. Consider the product

’Uil/\’l)iz/\.../\’l)ir

where 1,19, .. .1, are integers between 1 and m = dim V. As we will see, it is
essential to rearrange the product into one in which the indices increase. For
example, suppose 7 = 4 and iy < 74 < i3 < 1. Since v; Av; = v; A v; we have
Vig N Uiy NV NV = =055 NV AU NV = Uiy N Ui; AUy AUy
= U AN Vis AN Vi, A Vi, = Uiy AN Vi, A Vig A Uiy

The process corresponds exactly to the interchange of adjacent elements turning
1,2, 3, 4 into 2, 4, 3, 1, which determines the sign of the permutation

1 2 3 4
2 4 3 1)°

1 2 3 4
2 4 3 1

Hence,

Viy N\ Uiy N Viz ANV, = 8gN ( > Viy N\ Uiy N Uiz NV .

Exactly the same reasoning establishes that, in general,
Vig A AN = sgn(T)vi gy A A
In particular if 4; = [ we have, for 7 € S,
VI AL A =8gN(T) Uy A A Uy
Since sgn(7) = sgn(r~1) = 1/sgn(r), these equations may also be written

Vipy Nee - Ay = sgn(m)vi, Ao A,

ey Ao ANUn(ry = sgn(m)vr AL Aoy
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As Axiom 4b of section 3.1 states, a basis of A(V) is given by
€s = €g(1) N €g(2) N .- N eg(r) o€ Spr
This suggests that we show interest in elements of the form
Vo = V(1) NVg(2) N -+« AVg(r) € Snr o€ Sy

where the v; € V but vy, v9, ... do not necessarily form a basis. As an example,
let us consider

w1 = 2’[)1 + 4’02 — U3

wy = v — v+ 2u3

where w;,v; € Sy, and we make no explicit assumptions about he dimension
of the space V. Then

w1 Aws = 201 Avp — 2v1 Avg + 4vg A vg
+  4dvy Avy — 4vg A vg + 8vs A g
- 1’[)3/\’0171’[)3/\’024’21)3/\’03

Since v; A v; = 0 and v; A v; = —v; Av;, we have

wl/\wg == (7274)’01 /\’02+(4+1)’01/\’03+(871)’02/\’03
= —6v1 Avg + Bvi Avsg + Tvg A vg

The problem is how to come up with these coefficients without writing out all
the intermediate steps. If we arrange the original coefficients as columns in a
matrix

then the coefficient of v; A v3 is formed from the 1%* and 3"¢ row, that is, from
the square submatrix
2 1
(42)

by forming 2-2—(—1)-1 = 5, and similarly for v; Ave and ve Avs. The important
thing is that for each square matrix the same arithmetic process

a b
(c d) — ad — bc

solves the coefficient problem. Clearly, the next problem is to increase the
number of factors in the product and clarify the formation of the coefficients
from the square submatrices. (The clever reader will have deduced that we are
sneaking up on determinants).
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To this end, suppose that (summation convention now in effect)
wj:aévi j=1...,r i=1,...,m.

(We are still not making any assumptions about the dimension of the space or
whether vy, ..., v, is a basis.) We now form

wi A oAU =altag g vy A A

It will now be necessary to rearrange the terms on the right hand side
from 7 simple sums into a sum whose form is much better adapted to further
computation. The methodology here is quite important wand will recur in a
number of critical places.

We must rewrite the last sum in the following way. We select an element
0 € Sp,r and group together those sets of indices which are rearrangements of

o(1),...,0(r). We then sum over all o € S, . In this way, we get all possible
sets of values of i1, ...,%,.

For a fixed o0 € S, the terms in the previous sum whose indices are
rearrangements of o(1),...,0(r) can be rewritten using a 7 € S,. (This is
actually the key point in the derivation.) Thus 41,i2,...,i, when rearranged
in increasing order become ir(1),%x(2),---;%r(r) Which then coincide with the
increasing o(1),0(2),...,0(r) where ir;) = o(j) and i, = o(7~*(k)). We then

have, using our previous knowledge of rearrangements,

Vi, Ny Aeov A = sgn(n) Vi) NVipay N AV

r

= 8gn(7) Vo(1) A Vg(2) Ao AUg(r)

All the terms which are rearrangements of o(1),...,0(r) then sum to

Z af(ﬂil(l))ag(wil(m) .. .af(“fl(r))sgn(ﬂ) Vo(1) N Vo(2) A+ A VUg(r)
TES,

and the final sum will be

wiA...\Nw, = a?,...o/{vil ARTAN
—1 —
= Z Z 04'17(77 S af(“ 1(T))sgn(w) V(1) N AUg(r)
0ESm,» TES,

We will soon introduce the concept of determinant to conveniently express the
inner sum. This method of breaking up a multiple sum 41,...,%, into a sum
over Sy, » and S, will be called resolving a sum by permutations.

If we now write the coefficients in an m X r matrix

1 1 1
a% a% e 045
af  ay ... oy

m m
o' aj o

ﬂs
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then the coefficient of v,(1) A .. AVs(r), 0 € Sm r is associated with the square
matrix

04({(1) ag(l) o ag(l)
04'17(2) ag@) RN A
aclf(r) ag(r) ag(r)

in the sense that the coefficient associated with it,

Z sgn(7) 04'17(7771(1)) . af(“fl(r)),
TES,

is a function of the entries of this particular square matrix. Suppose we now
rearrange the a’s so that, instead of coming in the order 1,2, ...r they come in
the order (1), 7(2),...,m(r) Since the a’s are mere scalars, this will not effect
the value and we will have

o(x tx(1 o(x ta(r o(1l o(r
> sen(m) o7y "ol T = 3 sen(n) arfl) a0,
TES, TES,

We now observe that the (i) are functioning as mere labels in to distinguish
the rows of the coefficient matrix, and we can specialize the last expression
without losing generality. Since the last expression determines the value of the
coefficient in the Grassmann Algebra as a function of the coefficients of the
vectors, we define

Def The determinant of the square matrix

1 1 1
a% ag .. ag
a7 a5 ... a;

' '
Qp Qg Q.

is

We will write

det(a}) = Z sgn(m) a}r(l) O -
TES,

The more general formula with the o’s results from this by mere substitution:

det(a?(i)) = Z sgn(7) a:EB o azgg
TES,
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and the final formula for the Grassmann product with our new notation for the
coefficients becomes

w1 A .. AW = Z det(a;(i))va(l) Ao AN Vg (ry, 1<i,j<r
0€ESm,r

We can now begin to exploit these formulas to derive properties of the de-
terminant function from properties of the Grassmann Algebra. Let ey, es,.. ., e,
be a basis for the vector space V. Axiom 4b tells us that e; A ... Ae, is a basis
of A"(V) (and hence not 0). Let

‘e 1<i,j<r

w; =«
Since Sy, consists solely of the identity, we have
wi A ... A\ wy :det(oz;)el/\.../\en.

This formula allows us to derive the more elementary properties of determinants.
For example

Theorem 1 The determinant is a multilinear function of its columns.

Proof Let u= fB%,;, v=oc'e; and w; = a§ ei, j=2,...,n. Then
gt ook L al
puAhwe Ao Awy,) = pdet | ..o oo o Lo et AL Ae,
B ap . an
ytoad oo Al
vioAwa A Awy) = wvdet| ... ... .. Lo ]er AL Ae,
Y'oay oo o
uBt+uvyt a0 Al
(uu+vv) ANwa Ao Aw, = det T - A =,
upt + vyt oy .. al

Since the sum of the first two expressions on the left is the third, and since
e1 N ...Aep is a basis for A, we must have

gt oad Al Yoad L al
pdet | ... .. Lo Ll + wvdet .
8" ay ar ol al
pBt+vyt ol ... ol

= det
upr vyt oy ... an

which shows that the determinant is linear in the first column. Similarly, it is
linear in all the other columns.

Theorem 2a If a determinant has two identical columns then its value is zero.
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Proof Let w; = a;'-ei. If w; = w; then the i'" and the j* columns of the

determinant will be be identical. Also w1 Aws Aws A ... Aw, = 0 and we have

al oy ol ... al

O=wi Awas AwgA...ANw,=det | ... ... ... ... ... |letA...Nep
n n n n
ol oy of al

and since e A ... A e, is a basis for A"(V') we must have

1 1 1 1
ay Qi az ... Q

det | ... ... ... ... ...]1=0
n n n n
ay of aof ... al

Theorem 2b Interchanging two adjacent columns of a determinant alters its
sign. (We express this by saying that a determinant is an alternating function
of its columns.)

Proof Let w; = ae;. Then

ol al al ... ol

wy Aws Aws A...ANw, = det| ... ... ... ... ... ]letAN...Ne,
o oy oy o,
ay ol af ... ol

wo Ay Aws A...ANw, = det| ... ... ... ... ...]letAN...Ne,
oy of o ... ap

Since wy A we = —ws A wi, the two determinants, with the first two columns

switched, are negatives of one another. The result is clearly identical for inter-
changing any two adjacent columns.

Corollary

I

P al ..«
det | ... ... = sgn(o) det

ag(l) ag(n) ol

33 .

Proof The sign of the determinant on the left is related to that on the
right according to the number of adjacent interchanges necessary to return
a(1),...,0(n) to 1,...,n. But this is also a way to determine sgn(o).

Corollary If two columns of a determinant are equal, the determinant is 0.
Theorem 3 Let (o) be the identity matrix; o = 0 for i # j and o = 1 for
i = j. Then det(a}) = 1.

ie;. Thus

Proof It is clear that e; = o

61/\.../\en:det(a})el/\.../\en
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by the basic formula, and this gives det(a}) = 1.

Theorems 1,2b,3 are the basic axioms of Weierstrass for the determinant func-
tion on square matrices. From these three basic theorems the entire theory of
determinants can be developed provided the characteristic of the Field is not 2.
It is preferable to substitute Theorems 1,2a,3 for Weierstrass’s Theorems 1,2b,3
because, if the characteristic of the Field is 2 then Theorem 2b can be derived
from Theorem 2a but not vice versa. If the characteristic is not 2 then Theorem
2a and 2b can each be derived from the other. We leave it as an instructive
exercise for the reader to derive Theorem 2b from Theorem 2a without using
Grassmann products.

We will not follow the Weierstrass procedure however, because we wish to
exploit the associative law for Grassmann products which makes the Laplace
expansion (next section) much easier than deriving it from the Weierstrass ax-
ioms. Similarly, we did not derive Theorem 2b from Theorem 2a because our
main goal is to illustrate that determinants are the coefficients in Grassmann
algebra calculations and so we use Grassmann techniques where possible.

Next we prove one of the most important theorems of determinant the-
ory. This is relatively easy for us to do using the properties of the Grassmann
product. In fact, the ease and naturalness of this proof is an example of how
productive the use of the Grassmann product can be. Without it, this theo-
rem requires some sort of artifice, and this reflects the essential nature of the
Grassmann product; without it one must resort to tricky procedures.

Theorem 3 Let A and B be square matrices. Then det(AB) = det(A) det(B)

Proof Let A = (a}), B = (B}) and C = (v}) where 1 < i,j < n. Then
7} =a} Bf since this is the definition of matrix multiplication. Let V' be an n—

dimensional vector space with basis e1,...,e,. Let vy = a};ei and w; = ﬁ]’?vk.
Then
wi A AW, = det(ﬁf)vl/\.../\vn
VIA. AU, = det(a};)el/\.../\en
SO
wi A Aw, = det(B)ur AL Ay,

= det(B8})det(ag)er A... Aey
On the other hand
wj = Bion = Bf (age:) = (B aj)ei = vjei

SO
wl/\.../\wn:det('y;:)el/\.../\en

Comparing the two expressions for wi A. . .Aw,,, we see that det (7;) = det(a} ) det (ﬁ]k)
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Next we wish to discover how to compute a determinant by using its sub-
determinants. This is done via the associative law for products. We will need
to know the value of

(60(1) VANRAN ea(T)) A (ep(l) VANIRAAN ep(n_T))

for 0 € S, and p € S, —r. This will be 0 unless the p(1),...,p(n —r) are all
distinct from all the o(1),...,0(n—r). Thus the p(1),..., p(n —r) must be the
same numbers as the o(r + 1),...,0(n). Since both are increasing sequences,
o(r+j) = p(j). Similarly, p(n — r + j) = o(j). But then p = &, the reverse of
o, and the non-zero elements of this form are

o) N Negiry Negrr1) N oo Neg(n) = €o1) N - N €g(n)

With this in mind, if v; = ale; we have, for 7 € Sn.r

J
det(«a )61 ANoooNey =
(O AN AN O
= 8gn(T) Vr(1) Ao AUr(n)
= Sgn( ) (U (1) TARRRA U'r(r)) ('U'r(rJrl) ARERWA 'U'r(n))
= sgn(r ( Z det( TEJ)))eg(l) AN ey T) Z det(« l) Jep)y Ave A ep(n,r))

gE€ESn,r PESn,n—r

= sgn(r) Z det(ajg.))) det(a ((l))) eo) N Negry Nepay N o ANepn—r)
.

= sgn(7) Z sgn(o) det(« E ))) det(a:g;rk)) e1N...Ney
ocESn,r

where 1 <i,j<rand 1<kl <n-—r.
This may be simplified slightly since

T T T

SNo() - T+ > 7))~ T =Y _(0i) + 7(5)) — 2T,

i=1 j=1 i=1

so that, using the formula for sgn(o) when o € S,,

sen(o)sgn(r) = (_1)Ezzl(a<i>+7<j>)—2TT _ (_1)Ezzl(a(i>+r(j>)

and thus
o(1) o(1) o(r+1) o(r+1)
: v Ao (D) br (i o ar(r) Y1) Yr(n)
det(a?) :Z(,l)zizl(ommn) det oo fder|
€Sy, » Oé_r(l) . ‘r(r) OAT(T+1) . (n)

This is called Laplace’s expansion by complementary minors. For later purposes,
we will need to express all this with less writing, so we introduce some notation.
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First we write

1 T 1 s
Oél Oél Oél Oél
Def cer e oo =det ..
1 s 1 s
oy ... o o Q.

Next we write, for a not necessarily square matrix (a;-),

o

o(in.i) _| TV T

Def T(1-d) 1.7.(1'.1) o a(lz)
wGo o Y

where if o and 7 are the identity we abbreviate

atl atl

L J1 Ju
1.0
= e
o o af
and if é1,...,4; and j1,...,j; are just 1,...,1 (and this is the common situation)
we abbreviate with
o(1) o(1)
i i B
e’ cee e
o(1) o(l)
algy e Ay

With these abbreviations in mind and recalling that o(r + k) = &(k) for
o € S, and G the reverse of o, we have Laplace’s expansion written in the
relatively benign forms

det(a)) = 3 (—1)Tinlr0er0) grllingolritemn
c€Sn r
S -1 N CORIO) IR
c€Sn r
Z sgn(or)a’al
c€Sn r

Note that the 7 here is some fized member of S,, , which the expander chooses
at his own convenience. It amounts to selecting a set of r columns. For example
in the expansion of

let us select

(1 2]3 4
=1 3l2 4
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which amounts to selecting the first and third column. Using the formula and
writing each o € S, below the corresponding term, we have

det(a}) =

= (—1)1t2H143 a; ajlle3 of £ (—1)tEE ap ajlle3  af
o aofllad ol o oo} ol

(1 2[3 4 (1 2[3 4

—\1 2|3 4 \1 3|2 4
1 2 2 2 2 1 1
_1)1+4+143 Q1 Qg (|Gp Qg _1)2+3+143 Q1 Q3 |Gy Ay
+Hh of ofled of| T Y of ofllof of

(1 2[3 4 (1 2[3 4

\1 4|12 3 \2 3|1 4
2 2 1 1 3 3 1 1
1\2+4+143 |07 Q3 ||y Oy 1\3+4+143 |7 Q3 [y gy
sl Gl o el al a

s (1 2[3 4 oo (1 2]3 4

2 411 3 T \3 4|1 2

An important special case of the foregoing occurs when r = 1 which means
that only a single column is selected. Then

~(1]2
T—]2

and the o have the same form. The formula then reduces to

j—1 j j+1 n
j—1 74+1 j+2 ... n

n
det(aj) = > (=)™ ajor TG,

i=1
where the second factor is the determinant of the matrix obtained by eliminat-
ing the row and column in which aé lies. This is the familiar expansion of a
determinant by the cofactors of a column.

Naturally, since det AT = det A, we may do the expansion by selecting a

set of rows instead of a set of columns.
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4.5 Extending a Linear Transformation to the
Grassmann Algebra and the Cauchy—Binet
Theorem

Our next effort will be to extend a linear transformation T : V' — W so that it
maps A”(V) to A"(W). Consider the transformation f:V x...xV — W given
by

flor,ve, .. 0.) =Tvy ATva A ... AT,

Clearly f is multilinear and alternating, so that by Axiom 4b there is a map
T:A"(V) — A"(W) which makes the following diagram commute.

Vix..xV, -5 AT(W)

A AF
A"(V)
By construction T(vl A...Avp) =Tog Ao . ATv,.. We will omit the tilde in the
future, writing
T A...Av) =T A AT,

and consider that we have extended T to A"(V). We have shown that a linear
transformation 7:V — W may be lifted to a transformation (also called T)
from T : A"(V) — A"(W). For the case r = 0, which is not covered by the
previous conditions, we make the extension of T' equal to the identity, which is
easily seen to be consistent with our requirement that a A v = aw.

We ask, what is the matrix of 7 on A"(V)? To this end, let e, ..., e, be a
basis for V and fi,..., f,n be a basis for W, and

Tej:oez»fi forj=1,...,n

so that the m x n matrix (%) is the matrix of T in the bases e; of V and f; of
w.
Since €5 = €,(1) A ... A €y(r) 0 € Sp,r form a basis of A"(V'), we have

Te, = Teo(l) AN Teo(r)
(aj;(l fi) Ao Al fir)
= 0(1 a'a")le '/\fir
_ p(r = (1)).p(x ™ (1))
= Z (Z ao’(l) ......... 5(7‘) )fp(l) Ao A for)
PESm,r TES,
p(1) p(1)

o(1) o(r)
= Z det PR fo
PESm,r p(l) Ce OzZ(T)
X
- 0(1 r)

PESm,r

= Z alb fp

PESm,r
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where we are using the abbreviations for the subdeterminants of (o) introduced
in section 3.3. The fourth equation is derived from the third equation by the
method of resolving a sum by permutations also introduced in section 3.3.

Thus we see that the matrix coefficients for the extension of T to A"(V)
are the subdeterminants of order r of the matrix of 7'

It now seems reasonable in view of the form of the last equation to use the
summation convention for summing over increasing permutations, so the last
equation, using this convention, can be rewritten as

Te, =af f,.
For consistency, we remark that the former type of summation convention
Tej = a;- fz

may be looked on as a special case of the more general indexing by increasing
permutations, in which we take ¢ to stand for the o € Sy ,,, given by

2 ... ) i+1 ... m
1 ... i—1 i+1 ... m)/)’

This interpretation of subdeterminants as elements in the matrix of the
linear transformation T: A"(V) — A"(W) may be used to prove the Cauchy-
Binet theorem relating the determinants of a product to the subdeterminants
of each of the factors. Indeed, Let S:U — V and T:V — W. Let g1,...gp be a
basis for U, e1,...e, a basis for V, and fi,... f;, a basis for W. We form the
matrices for S and 7"

Sgr = 6}; e; and Te; = ag £

If we now set ('yjk) = (a)(BL) then ('yjk) will be the matrix of 7S in the bases
g1,.--gp of Vand f1,... f, of W. Going over to the spaces A"(U), A"(V') and
A" (W), the above analysis shows that (summation convention active)

(Ts)ga' = IY(lT)fP fOr p S 8777,77‘, (S Sp,’!‘
Sg, = pBlrer for 7€S8,,
Te, = olfy
so that
'Ygfp = (TS)QG = T(Sgo) = T(ﬂ;er) = B:Te,

= Bralfo = (a7B5) ],
and, since f, is a basis of A"(W),
Ve = arfs

This is the Cauchy Binet theorem: The minors of the product of two matrices
are the sums of products of the minors of the matrices.
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There are certain rules useful for the computation of determinants which
we state below. These are simply restatements of theorems and a corollary from
the previous section.

Type I Multiplying a single column of a square matrix by a scalar results in
multiplying the determinant of the matrix by the same scalar.

Type II Interchanging the columns of a matrix changes the sign of the deter-
minant.

Type III Adding a multiple of a column to another column does not effect
the value of a determinant.

We are restating these rules here because we now want to prove that these
rules are valid also for rows. This is most easily verified by showing that the
determinant of a square matrix is equal to the determinant of its transpose.

Def If a matrix A = (aé), then the transpose of A, denoted by AT is given by
det AT = (8/)  where B/ =ad}

We now have the extremely important theorem

Theorem det(A") = det(A)

I do not know of a proof of this theorem in the present context which uses
the properties of Grassmann products in an intelligent manner. The following
proof, while certainly adequate, uses the properties of permutations in an in-
elegant way. To clarify the proof, we will look at an example first. Let r = 4

and
(1 2 3 4 4 (1 2 3 4
7r<2 41 3) so that = <3 1 4 2)

Then a typical term of the determinant calculation will be
sgn(m) 5717(1)5727(2)52(3)5;‘;(4) = sgn(m) ﬂ%ﬂiﬂi”ﬂé‘
and we can rearrange the terms so that they come out
a1 a1 rt T—
sgn(m) ﬂ?ﬂ%ﬂéﬂf = sgn(m) B (1)52 (2)53 (3)54 e
This is done in the general case in the following proof of the theorem.
Proof of the Theorem By definition

TES,

Rearranging the elements in the product as we did in the example we have

det(AT) = > sgn(m)py W.pr 0

TES,

= Z sgn(r~ 1) ﬁfil(l) L since sgn(r~!) = sgn(m)
TES,

= Z sgn(r) BTV ... g™ where 7= 71

TES,
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1

because 7 = 77" runs through S, when 7 does. But then

det(AT) = Z sgn(T) ﬁf(l) . prm)

TES,

Z sgn(7) ai(l) O
TES,

= det(A).

It should now be obvious that the above three rules of computation are
valid for rows as well as columns, because the rows of A are the columns of AT .
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4.6 The Equivalence of Axioms 4a and 4b

In this section we are going to prove the equivalence of the three natural ways
of guaranteeing that the Grassmann Algebra is as large as possible consistent
with bilinearity and anticommutativity. This is not difficult, but also not very
interesting, so the reader might want to consider carefully reading over the
material until the proofs start and reserving the perusal of the proofs to a
second reading.

For convenience of reference we repeat here Axioms 4a and 4b and in ad-
dition Axiom 4a* which is a variant of Axiom 4a and will be included in the
equivalence discussion.

Axiom 4a Let G(vy,...,v,) be an alternating multilinear function from V' x
...xXV = W. Let ® be the map ®:V x ... x V — A"(V) given by

D(vg,...,0r) 2 VLA AU

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G: A"(V) — W so that the following diagram commutes:

Vix...xV, i> 14

N NG
A"(V)

The commutativity of the the diagram says that G = God.

We next present Axiom 4a* which differs from Axiom 4a only by having the
range of the multilinear function be the field over which the vectors spaces are
defined instead of the vector space W. This looks weaker than Axiom 4a but is
really almost trivially equivalent.

Axiom 4a* Let G(v1,...,v,) be an alternating multilinear function from
V x...xV — Field. Let ® be the map ®:V x ... xV — A"(V) given by

D(vy,...,v.) 2 V1A ... A,

(which is alternating and multilinear by Axioms 2 and 3.) Then there exists a
unique map G: A"(V') — Field so that the following diagram commutes:

Vix...xV, % Field
N, pale

A"(V)
The commutativity of the the diagram says that G = G o .
Finally, we present again Axiom 4b
Axiom 4b The set of all products

1<r<n
e, N...Nej, { - .

1 <tg...<1p
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is linearly independent, where ey, ..., e, is a basis for V.

We now begin the proof of the equivalence of the three Axioms. The scheme
will be Axiom 4b=—-Axiom 4a* = Axiom4a =—=Axiom4b. Persons without
interest in these details may now safely skip to the next section, as the material
worked through in these proofs in not of great interest for applications.

Proof that Axiom 4b =—Axiom 4a*

Let F(v1,....v,) be an alternating multilinear function from V to the Field. It
should be clear from previous work that

F(vray, .- Un(r)) = sgn(m) F(vi, ..., vp) for m € S,

(This is so because sgn(w) is —1 raised to the power equal to the number of
interchanges necessary to restore m(1),...,m(r) to 1,...,r.) We now define
F:A"(V) — Field by defining it on a basis of A”(V). By Axiom 4b such a basis
isec = €51y N--- Neg(r), 0 € Sp . Define F by

F(eo') = F(eg(l) VAYAN eg(r)) = F(eg(l), . ,eg(r))

Since F is defined on the basis elements, it is uniquely defined on all of AT(V).

It remains to show that for any vy,...,v,. € V| we have F(v1,...,v,) = F(v1 A
... Avp). Let v; = aj e;. Then

F(vi,...,v,) = F(ale;,,...,alre;)

— i1 i
= aof,...,a0 F(ei,...,ei,)

We now resolve the sum by permutations as in Section 3.3

F(vi,...,0p) = Z ( Z off(ﬂil(l)), . ,af(“il(r))sgn(ﬂ))F(ea(l), c s €a(r))

0€ESn,r TES,

where we have rearranged the arguments of F'(e;,, . . ., €;,) into sgn(m) F'(€;, s - -+ €r () =
sgn(m) F(eg(1); - - - €o(r)) 0 that the indices of the arguments increase. We now

replace F(eq(1),---»€o(r)) Dy Flega) A ... A ey(r)) and, reversing the process,
we get

1 _1 -
F(vy,...,v.) = Z (Z oflr(ﬂ u”,...,af(” (T))sgn(ﬁ))F(eU(l)/\.../\ea(r))
UESn,T TES,
= o, ol Fei, Al Nes,)

F(aite, N...ANalre;,)

= FuyA...Avp)

as desired. Thus Axiom 4b implies Axiom 4a*.
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Proof that Axiom 4a* =—>Axiom 4a

Assume that we have a multilinear function G: V x...xV — W. Let f1,..., fm
be a basis for W and let f1,..., f™ be the dual basis for W, which means that
if we W and w = B7f; then f{(w) = B'. Each f? is a linear functional from
W to the Field, and G* = f?o G for each i is then a multilinear functional from
V...,V to the Field.

By Axiom 4a* there is a linear functional G from V A ... AV to the Field
satisfying

Gl A...Av) = Givr, ..., 0p).

We may now reconstitute G from the G as follows. Set

Gui A...Av) = éi(vl Ao Ao fi
G is obviously a linear function from V' A ... AV to W. Then we have

G(vr,...,vp) = [fY(G(vr,...,v))fi
= ((f'o@)(v1,...,v.))fi
== Gi(vl,...,vT)fi
= G'(oiA.. Ao fi

= G1A...Nvy)
as desired. We have shown that Axiom 4a* implies Axiom 4a.

Proof that Axiom 4a —>Axiom 4b

Before doing the proof itself, we will prove a lemma which has a certain interest
of its own.

Lemma Given any r linear functionals f*:V — Field where 1 < i < r we
can construct an alternating multilinear functional F:V x ... XV — Field and,
given Axiom 4a, a linear functional F:V A ... AV — Field by

F(vlv s 7UT> - Z Sgn(”)fl(vﬂ(1)>f2(v7r(2)> ce fr(vfr(r))
TES,

and then

Flou A...Avy) = F(v1,...,0p)

Proof It is clear that the F' given by the above formula is multilinear, so the
only thing left to prove is that F is alternating. Indeed, let 0 € S,.. Then

Fugty,- Vo) = 3 s80(m)f (0no))f> Wn(o(2)) - - " Wr(o(r)))
TES,
= sgn(0) > sgn(m0) f! (vr(e(1)) > Wn(o(2)) - - " Wr(o(r)))
TES,
= Sgn(O') Z Sgn(p)fl(vp(l))fQ(Up(Q)) R fT(Up(r))
PESr

= sgn(o)F(vi,...,v,)
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because mo runs through all the elements of S, once when 7 runs through all
the elements of S, once. This suffices to show that F' is alternating.

Now let ey, ..., e, be a basis of V and e!,...,e" its dual basis. We must
show that the e,;(1y A... Aey), 0 € Sp, are linearly independent in A™(V').
(This is Axiom 4b). To this end, assume

Z a’e, = Z ag(l)"'a(r)ea(l) AN.oooNegiry =0

ocESy,» 0ESn,r

We must prove that all a” are 0. We form the alternating linear functional (as
in the Lemma)

FP(vy,...,v.) = Z sgn(ﬂ)ep(l)(vﬂ(l))ep@)(vw(g)) .. ep(r)(vﬂ(r))
TES,

with some fixed p € S, . By Axiom 4a, there exists a unique FP:A"(V) — Field
satisfying }
FPoy Ao Awvp) = FP(vg,...,0p)

for all vy, ...,v. € V. Applying this to the supposed linear dependence, we have

Z:“p( Z a’eq)

0€ESh,

= Z aaﬁ‘p(eg(l) VANIAWAN eg(r))

€Sy, »

= 3 aFesys- o)

€Sy, »

= > a”( > sgn(m)e’ M (eqn(1))e” (€o(n(2))) --€p(r)(€a(w(r))))

UESn,T TES,

0

= ap

because the interior sum in the next to the last equality will be 0 unless p(k) =
o(n(k)) for k =1,...,r by the definition of the dual basis. This can only occur
if 7 = identity (so that o(m(k)) will increase with k as p does) and then o = p
(because o,p € S, , are both determined by the first r values). But in this
single nonzero case, the interior sum is equal to 1. This completes the the proof
that Axiom 4a implies Axiom 4b.
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4.7 Products and Linear Dependence

In this section we are going to develop certain relationships between products
in the Grassmann algebra, and indicate the connections between products and
to linear algebra concepts of independence and span.

Let us fix some notations which, with minor later modifications, will be in
effect for the remainder of the book. We define

Def An element of the Grassmann algebra A(V) is simple if and only if it can
be expressed as a product of vectors vy,...,v,. When we discuss Grassmann
algebra in general, we will use the upper case Latin letters F, G, H to denote
simple elements.

Of course, not all elements are simple. Let ey, ez, e3,e4 be a basis of R%.
The the element

61/\€2+€3/\64

is not simple.

Furthermore, in general elements of the Grassmann algebra will be denoted
the upper case Latin letters A, B, C, D. These elements are, of course, sums of
simple elements.

Def The degree of a simple element is the of vectors in the product:

deg(vy Ava Ao Avp) =T

Def An element A € A(V) is homogeneous if all the terms (simple summands)
of A have the same degree r, in which case A € A(V).

The following theorem is basic to the application of Grassmann algebra

Theorem v; Ava A...Av, =0 <= the set of vectors {vy,...,v,} is linearly
dependent.

Proof <«<: Suppose, for example, that v, = Z::_ll v;. Then

r—1
VIN...NV = VIN...NUV_1 AN (Zo/vi)
i=1
r—1
= Zaivl AN AN Vp_1 N V;
1=1
= 0

because the sum contains a repeated factor.
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=: Suppose that the set {v1, ..., v, } is linearly independent. The vy, ..., v, may
be extended to a basis vy, ..., Vp, Upt1,...,0, of V. Axiom 4b then guarantees
that the products

Uo(1) N - e AVg(r)s (S Sn,r

form a basis of A"(V'). But setting o equal to the identity, we see that vy A...Av,
is a basis element, and hence cannot be 0.

We now note a trivial but important corollary.

Corollary Suppose dim(V) = n and r < n and deg(F) = r where F # 0 is
simple. Let s be given with s < n —r. The there is a simple G with deg(G) = s
and FFAG # 0.

Proof Let F =wvi A...Av. # 0. Then by the previous theorem vq,...,v, are
linearly independent. Complete vy,...,v, to a basis with vectors v,41,...,v,.
Then vy A...Avy, # 0. Let G = vp31A. .. AV1s. We have FAG = v A. .. AUpys
and r+ s <r+mn—r =n and thus FF A G # 0 since v1 A v, # 0.
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5.1 Introduction

In this chapter we develop Grassmann Algebra on the conjugate or dual space.
Grassmann Algebra derives much of its power from the interaction of A" (V') with
its dual which can be identified with A”(V*). The fundamental interrelationship
is through a certain determinant. We will call this result Grassmann’s theorem,
although from some points of view it is more like a definition than a theorem.
It is

Theorem Ifvy,...,v, € Vand f!,..., f7 € V* then the action of f'A.. . Af" €
A"(V*)on v A... Av. € A"(V) is given by

(e A FY A ) = | 00 F02) - )
fror) fr(va) ... [f"(v)

How do we prove this result? We will look at three ways of deriving this
result in the next three sections. First, we may more or less define it to be true.
Second, we may derive the result from previous results on tensor products.
Thirdly we may derive it by specifying an action of the dual basis of A"(V*) on
a basis of A"(V).

Because of the way we write elements of V* there are some matrix triviali-
ties to discuss. For f* € V* we write f* = fie’, i=1,...,7, where {¢/} is the
dual basis in V* of the basis {e;} of V. To maintain consistency with matrix
notation, the coefficients of the f* are thought of as rows of the matrix

Bi By ... By
st B ... Bi
BB B

and the expression of f! A ... A f” would then, if we repeated the analysis of
section 3.3, come out as

Yo D By Brran ST A A D

0ESy,r TES,

where the permutations are now acting on the lower indices. Fortunately, in
view of the fact that det(A ") = det(A), it is irrelevant whether the permutations
act on upper or lower indices, so that all the determinental identities remain
valid for V* as for V.
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5.2 Grassmann’s Theorem by Fiat

Nothing prevents us from taking Grassmann’s theorem as simply a definition of
the action of A”(V*) on A"(V). However, it would be necessary to show that
the action is well defined;

if viA. AU = wiA L AWT then  (FUACLCAF) (A A = (FEALC AT (wiA. L Aw,)

and similarly for f* A... A f" = g' A... A g". This would be extremely te-
dious, and to reduce the tedium authors who use this method generally omit
the verification.

A much better method is as follows. Define a function

(AN A ) (e, 00) = det(f(v;))

and show, which is trivial, that it is an alternating bilinear function on V x
... x V. By Axiom 4a, this induces the map required by Grassmann’s theorem.
This still leaves the question of whether the map is well defined on f'A...A f7,
but this becomes obvious if we remember that V** = V., so that the roles of
f* and v; may be interchanged. We may now regard Grassmann’s theorem as
proved, but for many a sense of unease will remain, in that no derivation of
Grassmann’s theorem has been provided. While this would not be a drawback
in, for example, number theory, it is more uncomfortable in Linear Algebra or
Differential Geometry. Therefore, in the next two sections we will present two
methods for deriving Grassmann’s theorem. It is worth noting that already we
know that

dim A" (V*) = (T

") = dim A"(V)

and this is sufficient to guarantee that there is an isomorphism of A"(V*) and
AT(V)*.
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5.3 Grassmann’s Theorem by Tensor Products

The easiest derivation of Grassmann’s theorem is by the use of tensor products,
since we already know the action of f1 ®...® f" on v ® ... ® v, which is

(floffe0.. 0 M eun®...0v) = f'(v)f (v)...f(v).

The drawback is that this method is not available if Grassmann products are
approached without use of tensor products, as for example, would be done in
an axiomatic treatment.

We recall that we left unspecified the multiplicative function S(r!) in the
definition

S(r!)
VIA...\v. = —T Z SEN(T)Vr(1) @ ... @ Un(y) (1)

TES,

At this point, as we will see, the most natural choice is to set

S(r!) = /7!

and thus

[ IVANAN Uy = # Z Sgn(ﬂ.)vﬂ'(l) ®...0 ’Uﬂ'(r) (2)
TES,

We will then have

(SN A (01 AL Ay
T e o) 5 o e o

TES, oES,
= 5 Z sgn(m) Z sgn(@) ("M @ ... @ ) (Vg1) @ ... ® Up(ry)
TES, oES,
= i sgn(m) > sgn(0) D (ve1) F7 P (Vo2) - - FT (Vo))
TES, oES,

@) ... T ()
= %ngn(ﬂ')det
TES, ) o f ()

) o fY(v)

= % rldet . . .
fro) o ()
= det(f*(v;))
Notice here the critical role played by the factor ——. Its presence in both

!
definitions of Grassmann products in terms of tenso\r/i)roducts contributes the
critical factor % which cancels out near the end. To be more precise, if we
wish to use a formula like (2) to define Grassmann products in terms of tensor
products, and if we wish to use the same factor for both the space V and the

dual space V*, then the choice of S(r!) in formula (1) must be S(r!) = /7!
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5.4 Grassmann’s Theorem by Use of a Basis

To derive Grassmann’s theorem in a plausible way without tensor products we
may proceed by insisting that the relationship between basis and dual basis
persist in A"(V) and A"(V*) in analogy to the way it works in AY(V) = V
and A1(V*) = V* Essentially, we are again defining Grassmann’s theorem to be
true, but we are doing so in a more plausible way than in section 5.2.

Let e;, o0 € S, be a basis for A"(V) and €7, 7 € S, be a basis for
AY(V*), where
"= WA Ae™™

and el,e?, ..., e" € V* is the dual basis to e, es,...,e, € V. By definition of

the dual basis we have
210 ifi#y

We regard the index ¢ to be a way of writing

2 ... ) i+1 ... n
1 ... i—1 i+1 ... n

and similarly for j, so that a reasonable generalization becomes
e”(er):{1 ?fJ:T for o,7€8,,.
0 ifeo=r ’

This define the action of the basis element e” € A"(V*) on the basis element
er € A"(V), and hence defines e? uniquely on all of A™(V'). Once the action of
the basis elements of A”(V*) have been defined, the action of any element of
A"(V*) is uniquely defined by linearity.

With the action of A™(V*) on A"(V) defined for basis elements, we may
derive the general formulas as follows. Let v; = aje; and ft = Bie*, where
j=1,...,nandl=1,...,n. Then

(A A A A = ( Z det( i(j))e")( Z det(af(l))ep)

0c€ESn,r PESn

= Y det(B;) det(af e (e,)

U7P€Snm

= Y det(Bl;) det(al?)

c€Sn r
= det( fa;)
by the Cauchy—Binet theorem. We now note that
det(f'(vy)) = det((ﬂ,lcek)(oz;ei))
= det (ﬂfca;ek(ei))
= det( fa;)
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so that we have Grassmann’s theorem

(FEA A A Ay) = det(f(vy)) -
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5.5 The Space of Multilinear Functionals

We now wish to consider the space of r-multilinear functionals F(x1,...,2,) on
V. We first note that if eq,..., e, is a basis for V then , with v; = aje;, we
have
F(vi,...,v;) = F(a'e;,,...,a"e;)
= o ... A" Fle,...,e).

Thus two things become obvious. First, a multilinear functional is completely
determined by its values on r-tuples of basis elements for inputs. Second, if the
values are specified on all r-tuples of basis elements as inputs then the above
equation, using these values, will generate a multilinear functional.
Since the multilinear functionals are clearly a vector space, it is reasonable
to seek a basis and determine the dimension. A basis is easily found; we set
Fil"'ir(vl,...,vr){l ifvjzeijv 1§j'§7" ' '
0 for any other combination of basis-vector inputs.

By the above formula, this determines a unique multilinear functional F#
and we may then write any multilinear functional F' in terms of the F"t-'r by

%

the following method. First, with v; = aje;,
Fivsir(uy, o oony) = ol alrFain(eg, ... e;)
= al'...alr
since the term with subscripts i1,...,%, is the only non-zero term. Then it
follows that
F(vi,...v.) = o ... a"Fley,... e;)

F“mir(’Ula . 7UT)F(€i17 . "eir) ’

from which we see that the F? v span the space of multilinear functionals.
These are clearly linearly independent, for if we have a linear combination

(e 7P Frtr =

T

then, applying it to the arguments e;,, ..., e;. , we will have
Qg = 0.

We can now clearly see that the dimension of the space of multilinear
functionals is [dim(V)]" = n".

Readers familiar with chapter 2 (tensor products) will have noticed a sim-
ilarity
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between the space of multilinear functionals and @);_, V*. Essentially, they are
the same:

Theorem @);_, V* and the space of multilinear functionals are isomorphic.

Proof Consider the mapping F : V* x ... x V* — (space of multilinear
functionals) given by

[F(fY . O], 00) = L) P (v) .. 7 (vr)

F is clearly multilinear. Hence by the fundamental theorem on tensor products,
there is a map

F:V*"®... V" — (space of multilinear functionals)
so that B
F(f'@...0 ) =F(f'....f").
I claim F is an isomorphism. For consider the image F(e"* ® ... ® e'r) of the
element ¢! @ ... ® er. We have

Fle"®...0e")(v1,...,v.) = e (v1)e2(va) ... e (vy).

This will be non-zero for precisely one set of basis vector inputs, namely v; = e;;,
and for that set of inputs it well be 1. Hence

F(ei1 ® ...®e”) = i

which we previously defined. Since these elements are a basis, and therefore
generate the space of Linear functionals, F' is onto. But

dim(® V*) =n" = dim(space of multilinear functionals)
i=1

Hence F is one-to-one, and thus an isomorphism

Since the Grassmann products A”(V*) may be constructed inside );_; V*
as shown in chapter 2, it must, by the last theorem, be possible to construct
a copy of A"(V*) inside the space of r-multilinear functionals. Guided by the
above isomorphism F, we have the correspondence

e ®...Qe'" = Ut

But then, as shown in chapter 2, we may take

TN ANET = Vrlllsgn(w) et @ ... @ elrm
= V! L Z sgn(m)ei" M ® ... @ el
TES,

PEIN \/ﬁ% Z sgn(ﬂ')Fi"U)'“i“(T)

TES,
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This suggests the introduction of an operator II on the space of multilinear
functionals that duplicates the activity of II on ®2:1 V*. We define

F(vy,...,0p) = % Z sgn(m)F(vr(1y, - -+ Vn(r))

TES,
and note
HF(’UG(l), ce ,’UU(T)) = % Sgn(ﬂ')F(’Uﬂ,(g(l)), cee avw(a(r)))
TES,

= sgn(o) & Z sgn(7)sgn(0) F(V(ro)(1)5 - - » V(mo)(r))
TES,

= sgn(0) & Y sen(10) F (Vo)1) - > Vro)(r))
TES,

= sgn(o) F (vi,...,v.)

since wo runs through all the permutations of S, exactly once when 7 runs
through all the permutations of S, exactly once.

Thus for any F', I F' is an alternating multilinear functional. Moreover, all
alternating multilinear functionals arise in this way since

MF (v1,...,0,) = % Z sgn(m)ILF (vr(1y, - -5 Va(r))
TES,
= 4 Z sgn(m)? IF(vy, ..., v,)
TES,
= IIF(v1,...,v,)

The alternating multilinear functionals thus constitute a subspace, the
range of II, of the space of all multilinear functionals.
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5.6 The Star Operator and Duality

The star operator sets up a duality between AP(V) and A"~P(V*). It is one of
Grassmann’s most fundamental contributions because it algebraizes the princi-
ple of duality in projective geometry and elsewhere. It also expresses the dual
tensor in differential geometry.

The star operator is not absolute; it requires some additional structure on
V to define. This can be done in a variety of ways, but the simplest seems to
be to choose a basis for the 1-dimensional space A™(V*) (where n = dim(V)).
Once this is chosen, the star operator is uniquely determined. If the basis of
A™(V*) is changed, the * operator accumulates a constant factor but is otherwise
unaffected. In the presence of a metric, more stability is possible, as we will
discuss in the next chapter. Suppose we have selected a fixed basis element
O € A"(V*). Let m € A" P(V*) be fixed and [ € AP(V*). We have [Am €
A" (V*) which is 1-dimensional. Given our basis element Q* we have, for some
element f,(1)

Inm = fr(H)Q

where fp,(1), as a function of I € AP(V*), is clearly a linear functional of A?(V*)
to the Field. Since the dual space of AP(V*) can be identified with AP(V), we
can find a element v, € AP(V) so that we have

fm(l) = <lavm>
Inm = (lu,)Q"

Now the map m +— f,, — v, is clearly linear as a function from A" P(V*) to
AP(V). We will show that this map is injective. Indeed, suppose that m — 0
for some m. Then [ Am = 0 for all [, so we know that m = 0 by section
(% % * % % % % % *k). Since dimAP(V) = (Z) = dim A""P(V*), the mapping
m +— Uy, is an isomorphism of A" 7P(V*) onto AP(V) and thus has an inverse
x: AP(V') — A"~P(V*) satisfying

IA*v = (l,0)Q* for 1€ AP(V*), wveAP(V)

which is the primary equation for the % operator. Similarly, we can define an
operator *: AP(V*) — A""P(V) defined by the dual equation

u A xl = (l,u)Q for we AP(V), leAP(V7¥)

where  is a basis element of A™(V).

Either * may be used in isolation with the selection of an appropriate Q*
or ). However, they will not interact properly unless we have the additional
condition

Q) =1

From now on we will always assume this condition is satisfied.
Note that a choice of either Q2* or 2 together with the above condition
determines the other uniquely.
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The * operator depends on the choice of Q* (or Q). If a new choice is made,
the * operator will accumulate a constant factor. B
Indeed, let us suppose that we make another choice 2 of €, so that

Q = k.
Then the condition (Q*, Q) =1 will force
QO = %Q*

Let * be the corresponding * operator for O* and Q. Then

INF = (o) for 1€AP(Vx) wveAP(V)
= (l,v}%Q*
= 1({,0)Q*
= %l/\ *V
= IA(Lx0)
which shows that
v =1 xv, for v e AP(V).

Similarly, for [ € AP(V*) and u € AP(V)

uANF = (Lu)Q = (1,0)sQ = k{l,0)Q = ku A *l
= uA(kxl)
so that
= k(*l) for 1€ AP(V*).
Now suppose we are given a basis e, ..., e, of V and we set {2 = e1 A.. . Ae,.

Let e',...,e" be the dual basis and set Q* =e! A...Ae™ Then
() =(e" Ao ne" e AL Aey) =det((e'ej)) =1

by Grassmann’s theorem, so Q* and € satisfy the required condition (Q*, Q) = 1.

We now wish a formula for xe, where e, € S, ;, is a basis element of AP(V).
We recall that for basis elements ™, 7 € Sy, , of AP(V*) and e, p € Sy, p—p, Of
A""P(V*) we have

P T
ew/\ep{o for e” #£ e

sgn(m)Q*  for e = €™

where 7 is the reverse of 7 (see section 3.2). Let (summation convention!)
xes = a,pef. Then
<67T7 €G>Q* = " N*e, m,0o € Sn,p
= e" Naye’ pEShnp
o = sgn(mazQ”
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since the only value of p in the second line to contribute a non zero value is
p = 7. From the last equation we see that az = 0 when 7 # o and az = sgn(7)
when m = ¢. Thus, since 7 runs through S, ,—, when 7 runs through S, , we
have

*eg = apef = aze™ = sgn(o)e’

which is the desired formula. Similarly
xe? = sgn(o)es .
Now we want to compute * x v. Recall from our work on permutations in
section 3.2 that if T}, = @ is the n'”" triangular number then
T+ Thp+pn—p) =T,
and
sgn(m) = (—1)2k=1 k) =Ty for me S,
and thus
)k (R =T (,1)27;” #(1)=Tn—p

sgn(m)sgn(7) )

,1)22:1 (k) =Tp—Tn—p
)
)

|

—~ o~~~
I
—

From this we easily derive

Theorem The formulas for ** are

X%V = (fl)p(nfp)v for ve AP(V)
wxl = (=1)PP)y for 1€ AP(V™)

Proof It suffices to prove the formula for v, the proof for [ being identical. It
also suffices to prove the formula for basis elements e,, 7 € S, , since it will
then follow for general v by linearity.

xxe, = xsgn(m)e”
= sgn(m) *e”
= sgn(m)sgn(7)ez
- (71)p(n*p)eﬂ

It would be preferable to derive the formula xxv = (—1)’”("”’) without the
use of a basis, but I have not been able to find a way to do this. However, from
the definitions the following related formulas are easily derivable:

(x0,+m)Q* = svAxxm = (=P ssxm A sv = (=1)PO7P) (s 5 m, 0)Q*

(0, ¥m)Q = smAxxv=(—1)P"P) sxp Asm = (=1)PM P (m, % 0)Q
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and thus

(xv,*m) = (fl)p("fp) (x x m,v) = (—1)”(”7’”) (m, % * v)

Corollary For v € AP(V) and | € AP(V*) we have

(v, %1y = (I, v)
Proof From the above formula and the Theorem

(xv,*m) = (m, (_1)p(n_p) **v) = (m, v)

In the foregoing discussion we have tacitly assumed that 1 <p <n—1. We
now wish to complete the discussion for the cases p = 0 and p = n. Recall that
A°(V) is the Field of scalars, and that for « € A°(V), A € A?(V), 0<p<nwe
defined a A A = AAa = aA. Also, (\,a) = \a for A € A°(V*) by definition.
Thus we can rewrite the basic equation

LA *u = (l,u)Q* for 1€ AP(V*), ueAP(V)

as
Axa = (A\a)Q*  for A€ A%V*), ueA%V)
Axa = dAaQd”
which gives us that
ko = af)”
S0
*1 =QF
and then

1= (1)1 —4x1=xQ*.

Similarly, when 1 is regarded as a member of A°(V*), we derive
x1=Q and 1=x*0.

Notice that %1 depends on which * is being used.

The foregoing formula for * on the basis elements, e, = sgn(c)e? is actu-
ally valid for a wider class of products than just the basis elements e,. In fact,

we have for any o € S,
#(ea() Ao Neg(p) = sgn(o)e? P A A er™

This formula may be derived by examining interchanges of elements, but the
following technique is much more interesting and may have applications in other
contexts.



94 CHAPTER 5. GRASSMANN ALGEBRA ON THE SPACE V*

The general concept is perhaps clearer if illustrated by an example. We
take n = 7 and p = 4 and

(1 23 45 6 7
=\4 2 6 3 71 5

Since p = 4 we will now arrange the first four elements in ¢ in increasing order,
and then the last three elements also in increasing order to get

o — 2 413 6 75
“\2 346 157
Now the central point is the rearrangement of the top level of the permutation

o can be accomplished by another permutation 7 which clearly is (compare top
line of last equation for o with outputs for )

(1234567
“\2 4136 75

<1 2 3 4‘5 6 7>
T=o0m= €Sr4

We then have

2 3 4 6|1 5 7

because the first four and last three elements were arranged in increasing order,
as required to be in S74. It is worth noting that we could have formed 7
immediately from o by rearrangement of the first four and last three elements
in increasing order, and then found 7 as

T=0"1T.
The permutation 7 has the interesting property that it exchanges the first four
elements among themselves and last three elements among themselves. To see
this, note that for 1 < j < 4 we have o(7(j)) = 7(j) € {c(1),0(2),0(3),0(4)}
so we must have 7(j) € {1,2, 3,4}, and similarly for 5 < j < 7. Thus 7 can be
written as a product m = myme where

7T_1234567 and 7T_1234567
'"\2 413567 > \1 2 3 46 75
Now all this reasoning is perfectly general; we can for any ¢ € S, and any p
with 1 < p < n a permutation 7 € S,, and a7 € S, and any p with 1 <p <n

a permutation m € S, , so that
T=om

and 7 has the property that
T =TT

where for p+1 < j < n we have m1(j) = j and for 1 < k < p we have ma(k) = k.
We then have, since 7 € S, p,

xe, = sgn(7)e’
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or, more explicitly,
fery Ao Nerp)) = sgn(r)e” P A Aem(™)

We now replace 7 by om and using the elementary properties of permutations
as they relate to products of vectors we have
*(€on(1) Nvv- Negr(py) = sgn(om)e’™ ) A A e
mp)e?PFD A A e” (M)
mo)sgn(my e PHD AL A e? (™)

)
)
= sgn(o)sgn(m )sg (ma)sgn(my )e?PH) A L A 7™
)
Je

2]
o]
B
—~
2
wn
o]
=
—~

sgn(m1) * (eq1) A Aegp)) = sgn
(60(1) VANIRAN eg(p))

Il
w0
o
fm}
w0
o
fm}
—~
2
w0
a3
jm}
—~

m
q

o (P+1) A A ()

Il
92}
0
=
R)
W
0
=
A

= sgn(o)e ”(pH) A e”(")

as desired.

It is worth noting here that all we require of ey, ..., e, is that it be a basis,
that is that it be a linearly independent set. Thus the formula will work for any
permutation and any set of linearly independent vectors. Of course, the catch
is one must first find the dual set of elements in the dual space V*.
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5.7 The ¢ systems and ¢ systems

For computations of various quantities in coordinates it is useful to define certain
quantities which act more like what we are accustomed to in linear algebra. The
quantities also make it easier to interact the Grassmann product with other
types of quantities. On the other hand, these quantities can be used to obscure
the role of increasing permutations on Grassmann algebra, with the result that
the theory looks much more complicated than it really is.

Let V be an n-dimensional vector space, e1,...e, a basisof V and el,...e
the dual basis of V*. To maintain symmetry we will express the value of a linear
functional f € V* on an element v € V by (f, v) rather than f(v) and similarly
for elements of A"(V*) and A" (V). We now define

n

Def Sl = (e AL NET e, N Nej,).

As a special case we have . _

5 = (e, e5)
This is the ordinary Kronecker delta. The above represents a generalization.
Next, by Grassmann’s theorem we have

o (eher) ... (eler)
ooy = det
(e e1) ... (e, e

5t ... 6}

= det| ... ... ...

o7 ... o

This last equation is used as a definition of 6;1;: when this quantity is required
and no Grassmann algebra is available. _

These equations allow us to discuss d;,""""
tice that if jx is not among i1,...,%, then 5;; =0foralll =1,...,r so the
determinant has the value 0. From this we see that

5;1;::0 if {i1,...ir} # {j1,...4r} as sets.

We also notice that 6;1;: = 0 if 41 ...4, are not all distinct (since the de-
terminant would then have a repeated column) and similarly for the indices
J1 e e

Next we have for 7 € S,

sir

in more detail. First we no-

Lr(1) -+ (r) <eiﬂ(1) ) €j1> <o <€iw(1) ) eﬁ)
o = det
J1 e Ir . .
(e e5) oo (im0, e;)
( ) <ei1 ) €j1> s <ei1 ) ejr>
= sgn(m)det . e
(e ej) .. (e, ej,)

= sgn(m)diy
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Setting i, = jx =k for k =1,...,7 gives

870 = sgn(m)dtr = sgn(),

Here are some examples:

Examples: 1 = &6 = -0 = 632
0 = 5136
137

We now derive some computational formulas useful from time to time. The
reader may wish to skim this material until she has reason to want to understand
the proofs, which are straightforward but not very interesting.

We wish to contract 85177 on the last two indices, which means that we
make the last upper and lower indices equal and then sum from 1 to n. To do
this, we must first expand by the last column the determinant

7:1 7:1 7:1
S
. . . 12 12 12
siieaie |02 8 ot
Jlj’!‘flj’!‘ PR e . . e
- - T
R 1

which gives

(O R (1) R e ()

Ji-.

We now identify ¢, and j, and sum over the repeated index

T T G Dt M o G Dt A ol S DU i

+.oo 4+ (- )’“*’“5“5“ ;;i

= ()T A (ST (TR
4.+ n&ﬁ:::;:fl

= (=)= () ()R
+(=1)"2(=1)"~ 35“”“??% ;: 4 +n5“ ;:11

= (r—1)(=1)8 T gt

= (nfr+1)5 ;:11

We can now repeat this process;

ST P PRTIE Y 2
J1eeJstls41-020p

= (71“'7"F 1)5?1»~?5§5+1._§T,1

J1.-Jsts+1.tr—1

— i1 lslst 1.0 b2
= (n—r+1)(n—r+2)50

Jsls41elr—2

= oagh

Tp—1

Jr—1
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If we set r = s + ¢, this can be rewritten as

6i1...i5i3+1...i3+t . (n—s)! 611...’L5
J1eJstst1ebstt  (n—s—8) J1...Js
Setting s = 1 gives
11928841 (n—1)! 511
Jrio..dgip1 ~ (n—1—0)!

and contracting ¢; and j; gives

5i1i2--~itit+1 . (n-1) 511 — (n-1)
11%2...0¢%¢4+1  (n—1—t)! — (n—1-t)!

n =

n!
(n—1—1)!

so that, more simply,
e
51'1...1; — (a—r)!

and

1. ln — n!
5 T (n—n)!

=nl.

Now let A;, . ;. be any system of scalars indexed by r indices. Then
T A = D s i

since the § term is 0 unless i1, . ..,14, is a permutation 7 of j1, ..., j,, and if this
is the case the value is then sgn(w). Applying this formula to

ki...kr
Ail...ir = 6“11T
gives

i ko ki ... kr
61 T(Sli A T Z Sgn(ﬂ)éj;u)mjn(r)
TES,

_ 2 cki...ky
= Z [sgn(m)] 53‘1..4;
TES,

= |k1
7’5 ]T.

It will occasionally prove useful to have a variant of the generalized Kro-
necker delta for use with increasing permutations. Let o,7 € S,. Then we
define

o(i1,..,0r) _ co(i1)o(i2)...o(ir)
Def Og(iarmgn) = Or(G)r(a)r(in)

If, in addition, 0,7 € S,,, we will define

Def 57 — 6a(i1,...,¢r) _ 50(@)0(@)...0(@)

™ = % (1yenge) = Or ()T (G2) T (i) for 0,7 €S,

We then notice the interesting circumstance that

50:{0 ifo#T

for o,7€S
i 1 ifeo=71 ’ mr
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because if o # 7 then {o(1),...,0(r)} and {7(1),...,7(r)} are distinct as sets
and the Kronecker delta must be 0.
Clearly, if A, is a quantity indexed by o € S, ;» then

07A, = Ar.
We will find the following formula occasionally useful:

Z 571'(1)#(7‘)5 J1 e Gr _ 5111T

1t w(1).m(r) Jie-gr”
TESH,r

This formula is almost obvious; we go into detail only to illustrate some tech-
nique. Fir, we note that unless {i1,...,i,} and {j1,...,Jn} coincide as sets,
both sides are 0. Supposing now that {i1,...,i,} and {j1,...,jn} coincide as
sets there will be exactly one my € S, having these sets as value, so that for
k=1,...,r

. _ . _ 71
to(k) = mo(k) k= WO(Ufl(k)) for some o,p €S, .
oy = mo(l) Ji=mo(p~'(1))
Then
7(1)..7w(r) ¢ 41 ... jr _ o (1)...mo(r) ¢ j1 oo Jr
Z 6i1 U 6#(1)_,_7T(7‘) - 6i1 e g 67‘(0(1)...71’0(7‘)
TESn,r
_ sle)lo(r) £ 41 e Jr
= 00 5J‘p<1)~~~jp<r>
= sgn(o)sgn(p)

= sgn(osen(p1)eT) T

— 57T0(P’1(1))~»7ro(p’1(r))
- mo(e=1(1))...mo (=1 (7))
— 1.0y

05,5,
as desired. We have gone into the matter in such detail to illustrate that bridging
the gap between a set of indices {i1,...,i,} and a 7 € S,,, may be rigorously
accomplished through the action of a ¢ € S,.. This is seldom necessary but it is
comforting to know the technique exists.

Closely related to the generalized Kronecker deltas are the computationally
useful e-systems.

_sl...n

Def Eiy.oiin = O3 i
R T v S

€ "= 51 .. n

Notice that an e-system has n = dim(V') indices whereas the generalized

Kronecker deltas may have any number of indices. Second, notice that i1, ...,
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must be a permutation of 1,...,n or the e-symbol has the value 0. Finally, from
the properties of the d-symbol we see

€l.m = 1

X _ 1 ... n
Cin(1)rrm(n) (1)l (n)

= sgn(m)d, "
= sgn(mei,. i, -

Setting i; = j we have

E€r(1)..m(n) = Sgn(ﬂ)(sifffﬁ
= sgn(m).
The calculations are similar for €*-i». Thus we have

_ iiin_J0O if 41,...,1, is not a permutation of 1,...,n
Firin =€ ~ | sgu(m) if i; = w(j) for some T € S, .
We now establish that o o
ette g, = 05T
Both sides are 0 if iy,...,4, are not all distinct. Similarly for ji,...,j,. Thus
to have a non-zero result we must have ji, ..., j, a permutation of 1,...,n and

similarly with ¢1,...,4,. Hence there are permutations m,o € S,, for which
’ik = F(k)
o= o)

Then we will have

Gy = G = sen(ma,
= Sgn(ﬂ)(%a)'ﬁla(g) = sgn(m)sgn(0)d;
= sgn(m)sgn(o)
w(1)...m(

= ¢ "e(1)...o(m)

= £ nEJl---Jn

We note that

1 ..n _ 5i1...in =l

Eu...zn 1. bn

The e-systems express the same idea as the sign of a permutation with the
added advantage that if the indices are repeated then the e-symbol gives the
value 0. The disadvantage is that it is very hard to keep control of any ideas

when one is manipulating e-systems.
An important use of the e-systems is in the theory of determinants. We

recall that

al ...«

det | ... ... ... :ZSgn(W)a}T(l)"'a:(ny

o ...« TESH

I

33
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We can replace sgn(w) by an e-symbol, and introduce 0 terms for repeated

indices, so that

0 st 12 n
det(aj) =e""rag ai, -y

We can now rearrange the factors with a permutation 7 € §,, and rewrite

(1) 72 m )
Tr(1)  tm(2) Tr(n)
(1) 7@ m)

_ Sgn(ﬂ)siﬂ(l)iﬂ(z)...iﬂ(n)ai ) Vi N
s s T(n

det(a}) = e2ma

We can now relable the i) = jr and get

(1) 7(2) | r()

det(aé) = sgn(7r)5j1j2"'j"oaj1 o in

Summing this last equation over 7 € §,, we have

n! det(aé-) = Z sgn(w)sjlj?"'j"'a;rl(l)of@) RPN

J2 In
TESR

and introducing another e-symbol for sgn(m) we have

i 1. . gJij2eedn i1l i
dot(al) = Aens el ain
— A ghdzedngin L e
- n!511...ln a]1 In "

We want now to use the generalized Kronecker deltas to describe Grass-
mann algebra coefficients. We can derive all this from previous material, but
will first introduce the basic idea from first principles.

Let wy = ajvy + afvs + ajvs and wy = adv; + a2vs + advs. Then

3 3

w1 N\ wy = a%a2 - alagvl A vy + two other terms.

The coefficient of v A vy is

23 i . j
5ij Q105

In a similar way, if w; = ozgvj then the coefficient of v, (1) A... Avgy, ™€ Spr

n wey Ao AWy, 0 € Sp,r is

577(1)»»»77(T)ai1 ir

i1 e iy o(l) " CYa'(a") :

We have treated this problem before, in section 3.3, where we found that the
coefficient was

m(1) m(1)

o(1) o(r)

ay = det FARIEEE
aa(l) e CYO_(T)

so that the above expression coincides with this determinant:

o om(1)..w(r) 4y i
Ay = 51'1 g aa(l) o 'aa(r) :
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We now wish to rewrite the product itself with generalized Kronecker deltas.
First, notice that the last equation will remain valid if 7 (¢) and o(j) are replaced
by sets of distinct (not necessarily increasing) indices:

i1 7:1
Yk Yk j J i
— 1- ™ . s
det SRR 5 ak1 oy
ay ay’

because both sides will undergo similar changes in sign if the j;...j. and
ki...k. are permuted into increasing sequences of indices. Next notice that
if j1...7, are not all distinct then both sides are 0, and similarly if & ...k,
are not all distinct. Thus the relationship is true for any valued of j; ... j, and
k1 ...k,.. Now notice that

V(1) N+ Ao(ry = SBU(T) Vg(r(1)) A+ AVs(r(r))
= o Z SEN(T) Vo (r(1)) A+ A Vo (n(r))
TES,

= Oty A A,
where all the summands in the sums are equal to v,(1) A+ A Vg(r), 0 € Sp -
We are now in a position to write the Grassmann product with the generalized
Kronecker deltas. Indeed

_ 71'(1) Tr(l) i i
We(1) A A Wo(r) = Z 5 S 01(1) .. .aa(T) V(1) A A Vr(r)
TESn,r
_ 1 (1)...m(1) Z i i1 e Jr ) )
- Z 611 e i 01(1) () 57?(1)...75(1) Vi A A,
TESn,r
= 5]1 ZJ: ;1(1) .. af;(r) v, A A,

where we have used the formula from earlier in the section to eliminate the sum.
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Inner Products on V and V*

103



104 CHAPTER 6. INNER PRODUCTS ONV AND V*

6.1 Introduction

In this chapter we develop Inner Products on the Grassmann algebra. On any
vector space, an inner product can be correlated with an isomorphism between
the vector space V and its dual space V*. We can extend this isomorphic
mapping ® : V. — V* to an isomorphic mapping ® : A?(V) — AP(V*) in a
natural way, and this can be reinterpreted to give an inner product. In classical
Tensor Analysis, this is the content behind raising and lowering indices.

The basic tool to develop the formulas for the inner product will be Grass-
mann’s theorem. It would be possible to simply define the inner product to be
the final formula, but the definition then looks rather arbitrary.

We will also develop the x-operator in a metric setting. Clasically, *
is usually developed by the use of an orthonormal basis, which I feel is im-
proper methodology. The reason for the orthonormal basis is that the metric
x-operators are really combinations of the x-operator of Chapter 5 and the above
isomorphisms generated by the inner product. When the basis is orthonormal,
the isomorphisms become very well behaved and can be virtually ignored, but
this methodology does not work well if the bases are not orthogonal. We show
in this chapter that quite natural formulas for * can be developed for any basis
and that the difficulties can be completely overcome by separating the roles in
the metric versions of * of the above isomorphisms and the * of chapter 5. This
leads to the derivation of doublets of formulas for * which then can be used to
good advantage, since if one of the doublet is not acting productively the other
often will.

We will also see that in the metric setting and real scalars the metric form
of x is almost uniquely defined; it can do no more than change sign when the
basis is changed (and we know when the sign change will occur). In the case of
complez scalars things are less satisfactory and it will turn out that the metric *
operator may accumulate a unimodular (|A] = 1) complex factor when the basis
is changed. There appears no obvious satisfactory way to insulate * from basis
changes in the case of complex scalars.
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6.2 Exporting the Inner Product on V to V*,
A"(V) and A"(V¥)

We first remind the reader of certain of our conventions. If V' is a complex
vector space with an inner product (u,v), we specify that the inner product is
linear in the second variable and anti-linear in the first variable:

(Au,v) = Au, ) (u, W) = Au,v).

You may prefer it the opposite way, and it turns out that it will be the opposite
way for the inner product we will create for V*. I have tried various alternatives
here and since there is no way to please everyone I have selected this alternative
as being as good as any and better than some.

As with any inner product, we assume it is Hermitian ( (v,u) = (u,v) )
if the scalars are the complex numbers and symmetric ( (v,u) = (u,v) ) if the
scalars are the real numbers. We can handle both cases at once but considering
the conjugate bar to have no effect in the second (real) case. We also assume
the inner product is non-degenerate, which means

if (u,v)=0 forallveV then u=0.
if (u,v)=0 forallueV then v=0.

(By the Hermitian or symmetric property, it suffices to assume just one of these.)
An inner product on V creates an anti-isomorphism between V and V*.
We recall that a function ® is anti-linear if it satisfies

D(Nu + pv) = A0 (u) + ad(v).

An anti-isomorphism is an anti-linear map which is one-to-one and onto. The
mapping ¢ determined by the inner product is defined as follows:

Def (®(u),v) = (u,v) for all u,v € V.
®(u) is clearly in V* and we also have

(P(Au + po),w) = (A

Since this is true for all w € V', we have
D(\u + pv) = A (u) + ad(v) for all u,v € V.

‘We now have the basic theorem:
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Theorem @ :V — V* defined by
(®(u),v) = (u,v) for all u,v € V

is an anti-isomorphism. Proof We have already verified the anti-linearity. We

next show that ® is one-to-one. Suppose ®(u) = 0. Then for all v € V
(u,v) = (®(u),v) = (0,v) =0.

Since the inner product is non-degenerate, (and this is the place where we really
need it,) we have u = 0. Thus ® is one-to-one.

To show it is onto, we note the obvious fact that the image ®[V] is a
subspace of V*. Because ® is one-to-one, it is an n-dimensional subspace of V*.
But dim(V*) = dim(V) = n, so that V* must be the image of ® and thus ® is
onto.

Exporting the Inner Product from V to V*

We can use ®~! to export the inner product on V to an inner product on
V* in the obvious way; Def For ¢,m € V* we set

(6,m) = (71 (£), @~ (m))

where the inner product on the right side of the equation is taken in V. This
inner product is linear in the first variable and anti-linear in the second variable;
for {,m,n e V*

M+ pm,n) = (PHN A+ pm), " (n))
MA@ () +E® ™ (m), 7 (n))
AN@7H(E), @7 (n)) + p(@ ™
= A, n)+ u(m,n)

~—

and
Cdm+pn) = (@71, (Am + un))
= (27'(0), @ (m) + @@~} (n))
= M2TH0), 27 (m)) + (@71 (6), 27 (n))
= A¢,m) +T7(l,n)

The Hermitian or symmetric property is obvious. The non-degeneracy is checked
as follows: if (¢, m) = 0 for all m € V* then

(@~1(0), @ (m)) = (£,m) =0
and since ®~! is onto we then have

(®@~1(0),v) =0 forallveV
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so ®~1(¢) = 0 by the non-degeneracy of the inner product in V and since ®~!
is one to one, £ = 0. Thus (¢, m) is an inner product in V*.

To maintain the symmetry between V and V* we want to derive one other
formula:

(tm) = (@1(0), " (m))
= (2(271(0)), 27" (m))
= (6,7 (m)).

Thus we have the two symmetric equations

(u,v) = (P(u),v) for u,v € V
(¢,m) (0, ®=1(m)) for {,m e V*.

Exporting the Inner Product from V to A" (V) We recall Grassmann’s

Theorem: ((*A...AL",v1 A...Av.) = det((£%,v;)). We also recall that a linear
operator ® : V — V* may be extended to an operator ® : A"(V) — A"(V*) by
means of the formula ®(vi A... Av,) = ®(v1) A... A P(v,). We use these to
export the inner product from V to A"(V') by insisting that the formula

(wo) = B(u)o)  wweV
remain valid for all AP(V):
Def (U A v o AU, 01 Ao AD) = (P(ug Ao Ay ), 1 Ao A D).

We then have immediately Grassmann’s Theorem; inner product form

(ur Ao A, o1 AL Avy) = det((ug,v5))
Proof

(ur Ao AU Ao AYy) = (Pur Ao Auy), 1 AL A
(P(ur) A ADP(ur),v1 A .. Awy)
det((®(ui),v5))

= det((us,vy)).

The inner product is now extended by linearity from products of r vectors to
the whole of A™(V).

This covers all of the Grassmann algebra of V except A°(V') which is defined
to be the set of scalars. In this case we define

Def (A1) = A for A\, € A°(V).

It is sometimes convenient to extend the inner product from each A™(V') to the
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entire Grassmann Algebra
AWV) =EPA"(V)

This is easily done by setting
Def (A,B)=0 ifAcA"(V)and B A°(V) and r # s.

It is also sometimes convenient to extend the definition of ® to the entire
Grassmann algebra. We have already defined A"(V') for all positive r. It only
remains to define ® : A°(V) — A°(V*). We first define, for 1 € A°(V)

d(1) =1€ A%(V*)
and then to preserve the usual antilinearity define
PN =d\-1)=AP(1)=A-1= X
and similarly we have ®~1 : A°(V*) — A%(V) defined by
O\ = ).

We now have defined the isomorphism ® of Grassmann algebras completely:
o AV)=PA (V) > PA (V) =A1).
r=0 r=0

Exporting the Inner Product from V* to A"(V*)

There are several equivalent ways to extend the inner product to A" (V*)
all leading to the same result. We will do it in analogy to the method we used
to go from V to A"(V'), but here we will use the formula

(€,m) = (£, (m)).

We now insist this formula hold in A”(V*), and for £*,... 0", m', ... .m" € V*
we define

Def ((*A. AL mEAAMTY) = ALL AT AL AMT)) .
One then has the expected result

(A A MmN AMT) = AL AT mE AL AmT))
= det((£*, d*(m?))
= det((¢,m?)).
We then extend by linearity to all of A™(V*), and finally to all of A(V*) =
@D, _A"(V*) by (A,B)) =0for Aec A"(V*), B A*(V*) and r # s. We now
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derive some variants of the basic formulas. By definition, for u,v € A™(V)

(u,v) = (P(u),v).

But then

= (2(),uw).
Now, setting £ = ®(u), m = ®(v), we have £,m € A"(V*) and

(Lvy = (27H0),v)
= (2(v), 2~1(4))

giving us the interesting formula

(@(v), 27H(0) = (I v).

Before moving on, we wish to note that the the formulas used for defining
the inner products on A"™(V) and on A"(V*) also extend by linearity to all
elements of the Grassmann algebra, giving

(A,B) = (®(A),B) for all A, B € A" (V)
(A,B) = (A, '(B)) for all A, B € A"(V*).

We have defined @ on all of the Grassmann algebras A(V') and A(V*) except
for the bottom levels A°(V) and A°(V*). Recall that the bottom level A°(V) is
just the scalars, and similarly for A°(V*). A basis in either case is the number
1. The reasonable definition in the circumstances is for 1 € A°(V) we define

Def d(1) =1 A%(V™)

Recalling that ® has always been an anti-isomorphism, it is reasonable to extend
this by _ _
P(A)=P(A-1) =AP(1) = \.
We then naturally also have _
N =X,

Formulas for ® and the Inner Products in Coordinates

Now that we have all the necessary formulas in hand, we wish to find the
coordinate forms of the formulas. There are several things to find. We need
matrices which express ® and ®~! and we want matrices for the various inner
products.

First we find the matrix of the inner product for V. We have eq,..., e,
a_basis for_ V and _el, ...,€e" the dual basis of V*. (Recall this means that
e'(ej) = (¢',e;) = 05.) The matrix g;; is made from

Def 9ij = (eir€))
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so that gj; = Gi;, and (g;;) is a Hermitian (or symmetric if V' is a real vector
space) matrix. Since the inner product is non-degenerate, det(g;;) # 0 and we
can form ¢k = gigl. Now if u = p'e; and u = 07¢; we have

(’U,,’U) = (pieivojej) = ;oj(eiaej)
= gz‘jEU ]
Our next job is to find the formula for ® in coordinates, which is easy. The

"matrix” of ® can now be found, using the bases ey, ...,e, for V and e!,...,e"
for V* in the following way:

Ple;) = aijej for some o
(P(ei),ex) = (eirex) def of ®
<0<w€ ex) = Gik
Qi (¢ er) = gin

alj(sk = ik

Qi = Gik

so that

D(e;) = gine® .
If now we set u = p’e; € V then

O(u) = ®(p'e;) = p'®(e;) = ginple” .

Since ® is an anti-isomorphism we would also like to have the formula in coor-
dinates for ®~!. We have

D(e;) = gine”
so that

ei = O (gie*

)
gin® ' (e")
gri® " (er)
g ei = grig"® (e
— st
G

and thus for £ = \;e’ € V* we have
()

(>\ ¢')
= )\ d1(eh)
= g"Nex.
If one wishes to work entirely in coordinates we can set £ = \;e’ and u = ple;
and the formulas that reflect £ = ®(u) and u = ®~1(¢) are
N = gjiﬁ Lower with Left index
o= g\ Raise with Right index
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These are the formulas for ”raising and lowering indices” so familiar from clas-
sical tensor analysis. The meaning behind the activity is representing u € V' by
the element ®(u) € V* or vice-versa. The formulas can also be presented in the
variant forms

Ai = gijp? P =giiN

Since A"(V') is an inner product space, it will have metric coefficients cor-
responding to any basis, and we now wish to determine their form. To this end
we recall that

er =ex(1) A... Neq) form a basis of A"(V) where 7 € S, ;..

The metric coefficients are then given by
Def Ore = (e,r, €o) = (eﬂ(l) Ao Ner@y, oy N A €U(T))
= det((eri), €0(j))) = det(gn(ipo)), 1<d5<r.
Thus, the metric coefficients of A"(V') are the size r subdeterminants of
(9ij). In terms of basis elements, if u = p®e, and v = oPeg where o, 3 € S,
then

(u,0) = (p"ca,0’ep)
= %5 (eq,ep)
= Gapp®o” a,f €S,y
Now we want the matrix for the inner product in V*. We compute
(e'el) = (27(e"), 27 (e!))
= (9"er, g"er)
gFigt (ex, er)
= Egtfjgke
= gkis) = gii = g¥
Thus we have the metric coefficients for the inner product on V* and they turn
out to be the inverse of those of the inner product of V.
Remark Note that we have the following three highly desirable equations:
(eives) =g () =g7  (95)(¢") = (6]) =1
We are able to get all of these in the case of complex scalars because we have
set up the inner products on V and V* to be antilinear in the opposite slots.

No matter how things are set up there will be inconvenience somewhere, and
this seems to me to be fairly optimal for computational purposes.

We can now find formulas in coordinates for (¢,m). Let ¢ = X\’ and
m = pjel and we have

(67 m) = (Aieihujej)
TGN
= g¥ Aill5 -
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Just as in the case of A"(V) we can now derive the coefficients for the inner
product in A"(V*). We have

e"=e" WA Aem™ form a basis of A"(V*) where 7 € S, .
The metric coefficients are then given by

g7 = (e"e%) = (ew(l) A A e’r(r), DA A eU(T))
det((ew(i),ea(j))) _ det(gﬂ'(i)a(j)), 1<ij<r.

Thus, the metric coefficients of A”(V) are the size r subdeterminants of (g%/).
In terms of basis elements, if £ = A e® and m = ugeﬂ where o, 5 € S, , then

(tm) = (Aae”, uge’)
= )‘aﬂ_ﬁ(eav eﬁ)
= ¢"X\fis . fESu,
We now wish explicit formulas describing ® : A"(V) — A"(V*). We define
E, = ®(e;) = ger eV*
Def E = &7 l(el) = gl eV

and recall that, since ® is an anti-isomorphism,
O(p'e;) = p'E;
d'(N\el) = NE.
® extends naturally to A"(V) and ®~! to A"(V*) so that
D(p%eq) = p*FEy a€ Sy,
dt(Nge?) = NEP BeES,,.
These E, and E* will do no good unless we can decode them, which we do

now. Although we have general formulas for this, we will run through it again
quickly for those who don’t want to read the background material.
E, = Ea(l) VAN Ea(r)
Ga)ir € A A Gagryine'”
= ga(l)ilga(2)i2 . ga(T)ire,Ll ANe?AN...Ne

ir

We now use the method of resolving by permutations, where we group together
all terms with the same indices on the e’ which we have arranged so the indices
increase. We then have

(1 (r
Eo = ) (Z Sgn(ﬂ)gau)w(p(1>>9a<2>w<p<2>>"'9a<r>w<p<r>>)€ Wn . ner®
TESn,» PESr

Z det(ga(i)w(j))e”(l) A Ae™™)

TESn, »

= gan€” T€e€Sy,.

s
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This gives us formulas for ® on A"(V) in terms of the subdeterminants of (g;;):
D(p%eq) = p*Eq = gorp™e” a,m € Spr

and similarly
@71(A56ﬁ) :EEﬁ :g”ﬁ/\_ge,r B,m € Spr.

We will use these formulas later to get explicit formulas for the x-operators.
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6.3 The Unit Boxes {2y and ()

The Unit Boxes
For the definition of of metric forms of the x-operator in the next section, it
is necessary to fix a Unit Boz for the vector spaces V and V*. Given any basis
€1,...,en for V-we may form 2 =e; A...Ae, and then normalize (). Since
(Q,Q) =(e1AN...Neg,e1 A . Nep) =det(gi;) =g

and since g;; is symmetric (for Real vector spaces) or Hermitian (for Complex
vector spaces,) we know that det(g;;) is a real number.
Let us recall what happens to € under a change of basis. If &, = ae; then

Q = & N...Né,
= (d'ej)A...A(adre,,)
= det(al)er A...Nep
= det(al)Q.
and
g = det(g)) =det((éi,€;)) = (E1 A... Aén,E1 A... NEp)
= (det(ad)er A...Aen,det(af)er A... Aey)

= det(al)det(af)(e1 A... Aen, e1 A ... Aey)
= |det(ad)l?.

We can always find an orthonormal basis fi,..., f, by the Gram-Schmidt
process and arrange things so that

(fi, fi) = +1 for 1<i<n-—s
(fi, fi)=-1 for n—s+1<i<n
In this case we will have
1 0 0
0
00 ... 1
(fl/\---/\fn;fl/\---/\fn) :det((fi,fj) = det 10 ... 0
0
0 0 -1
Now, with our original basis eq,...,e,, we put
ei:a{fj, Q=e1N...Ne,

and using the formula above formula for the change of basis we have
g = QY =(eaAN...Nep,e1 A...Ney)

| det (@) P(fi Aeo i A fuy LA A fn)
|det(a{)|2(—1)s.
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Hence _
g = det(gij) = | det(a7)|*(~1)°
and the sign of det(g;;) is fixed by s, the number of f; with (f;, fi) = —1 in
an orthonormal basis. (This s is stable under change of orthonormal basis by
Sylvester’s Law of Inertia.)
Thus the expression

(—1)*det(gs;) = (—1)°g

is always a positive number, and we may normalize 2 to a unit box Qy by
dividing 2 by the square root of this quantity:

Qp = ! Q
(—1)%g
Then we have
1 1
Q0,2) = ——(Q0, Q) =———g=(-1)°
( 0 0) (_1)59( ) (_1)59 ( )

If V is a real vector space, then the one-dimensional real vector space A™(V')
has room for just two normalized Qy, one being the negative of the other. A
choice of one of them amounts to choosing an orientation for the vector space

V. Forming an Qo from any basis é1,..., e, will then result in either Qo = Qo
or Qg = —Qp. A basis €1,..., &, is similarly oriented to the basis eq, ..., e, that
produced g if 3 3
a, - 61,-.-,§n —
(=1)g

and oppositely oriented if Qg = —. Note that in either case
(QOaQO) = (Qovﬂo) = (71)5 :

Also note that one can shift an oppositely oriented basis to a similarly oriented
one by simply changing the sign on any one é; to —é;.

It is also worth noting that odd-dimensional and even—dimensional vector
spaces behave differently if we replace all e; by —e;. If V is even—dimensional,
—eq,...,—ey, is similarly oriented to ej,...,e,, but if V' is odd-dimensional
then —ey, ..., —e, is oppositely oriented to ey, ..., e,. This phenomenon of odd
and even—dimensional spaces having differing behavior shows up in a number of
different places.

If V is a Complex vector space (the scalars are the Complex numbers) things
are not nearly so nice. We have A™(V) isomorphic to the Complex numbers.
The normalized Qg do not now break down into two easily distinguished classes
but instead form a continuum connected to each other by unimodular Complex

numbers. (A complex number A is unimodular if and only if |A|] = 1.) For
example, given a basis e1,...,e, of V we can form another basis é;,...,€é, in
which

élz)\el, 62262,...,én:€n.
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Then

= (E1AN...AEp,e1 N NEy) = ((Ner) Nea, Ao ANen, (Aer) Aea, A Ney)
= M(e1 A Aeg,er Al Nen) = |A2g.

e

Thus if |A| =1 we have § = g and
A, — E1N...Nép, _ (Aer) ANea AL .. ANey :)\elA.../\en —
(—=1)°g (=1)°g (=1)°g
Hence we cannot put an orientation on a Complex vector space; g and —€
are connected by a continuous family e’y with 0 < 0 < 7.

We will use g to define the metric *-operations in the next section. We
have found that they are defined (except for sign) independently of the basis in
a Real vector space, but in Complex vector spaces there is no way to uniquely
specify the Qg; different bases will result in different 2y’s that are connected only
through unimodular complex numbers and don’t fall into any discrete classes as
they do in the real case. We will discuss this further in the next section.

We now consider the analogous unit boxes in A™(V*). We set
Q =e' A AE"

and compute

Q% Q) = (e*A...ne™ et AL neY)
= det((e’, €%))
- 1 -1)°
— det(g) = = = Y
g (=1)%g
We normalize by dividing by 11) to get
ey

so that

We note that

Q5,Q = —1)s Q" Q
(Q5,0) ( )gm< ;)
("N AeM et Al Aey)
= det((ehe;)) = det(s))
=1

as we expect for a basis and dual basis element. Next we compute ® on these
elements €2 and Q*

P(Q) = DlerA...Nen)=P(er) A... AD(ey)
= El/\.../\En:glile“/\.../\gmnei"
= det(gij)el A...Ae =det(g;)Q
= gQ*
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and thus

and we then have

() = =550 = e
= (1S = () D
-

and thus
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6.4 x Operators Adapted to Inner Products.

When an inner product is available, it is possible to redefine the star operator
so as to give an almost involutive isometry between AP(V) and A" P(V) and
similarly for V*. We do this by combining our * : A"(V*) — A"""(V) from
the previous chapter with the mapping ® : V' — V*, and multiplying by certain
constants which force isometry. There is an additional advantage; the reader will
recall that % changes by a multiplicative constant when the basis ej,...,e, is
changed. In the case of a real vector space the metric form of * becomes almost
independent of the basis; there is a sign change if the bases are oppositely
oriented by no other constants appear. In the case of a complex vector space x*
is defined only up to a unimodular (|A| = 1) complex number.
We begin our investigation with the following diagram

AP(V*) =5 APV
atie X o~y 1@
AP(V) — APV

and define

o = /(~1)sg(xo® 1)L Ce AP(V*)
¥ = \/(—llﬁ(* o ®)v v e AP(V)

The operator * is then extended by antilinearity to the whole of AP(V),
and similarly for x.

The factors involving 1/(—1)%g are inserted to compensate for changes in
the x-operator when bases are changed. One can determine them by first putting
in k and then determining the value of k which will make the next theorem come
out as it does, and this is the value of k that leads to invariance. This is not
particularly interesting so we have skipped the details.

The reader will note that * and * could also equally well be defined by
k1®ox and ka® ! o x with appropriate k; and ko. We will return to this matter
shortly.

To set the stage for the next theorem, which is critical to all that follows
let us recall some notation. We have a basis ey, ..., e, for V with dual basis
el,....e" for V*, g;j = (ei,e;), g = det(g;;). If we use the Gram-Schmidt
process to form an orthonormal basis f1,..., f, from the e; then (f;, f;) is +1
for n — s of the f;’s and —1 for s of the f;’s. The details are in the previous
section. Then we set

Def

Q = e1N...Ne,
QO = e'A...AE”
1 1
Q = ( Q= —Q
[(AD)] (=1)%g
* 1 * *
0 = ()0 = [0

(€2, )]
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‘We now have

Theorem

CAxm = (£, m) Lm e AP(V™)
ulAxw = (u,v)Q u,v € AP(V)
Proof
(Asm = (A (=1)%g(x 0 ® Vm
= V(-1 g(t Anx@7(m))
= V(=1)2g(, 27} (m))Q"

= (6,m)

1
UAFY = UN———=(x0 D)V

—~

v, 1)
= (u,v)Q

This theorem conceals a critical fact; since the value of *v is completely
determined by the values of u A %v, we see that *v is just as well determined
as . As we saw in the last section, for real vector spaces g is uniquely
determined up to sign, and the same goes for 2§ and x¢. Hence in this case

Corollary For a vector space with real scalars, v and xf are uniquely defined
up to sign. More precisely, if the bases ej,...,e, and €;,...,¢é, are used to
compute *.v and *zv then

+¥ov if é1,...,6, and ey, ..., e, are similarly oriented

*
™

v
U = —%,U if €1,...,€é, and ey, ..., e, are oppositely oriented .

*

and the same is true for xf. For the case of a complex vector space, as we saw in

the previous section, it is not possible to define {1y and f uniquely; they will
change by a unimodular complex number when the basis is changed. Hence in
this case *v and #£ are defined only up to unimodular complex numbers.

We now return to the alternate possibilities for defining * and *. Once
again we skip the dull details of deriving the values of the constants and simply
verify the final results.

Theorem

(-1)°
o = ——— (Pox)l
* (_1)59( )
v = (=1)°/(=1)%g (tl)_l o *)v
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Proof We present the proof in d
minus signs or conjugate bars. For

(-1)°
IN ———— (Pox)m =
" (—1)59( )

as required.
In a similar way, for any u € A

u A (=1)"V/(=1)7g(27" 0 %)(v)

Since this is true for all u € AP(V)

¥v=(-1)°

etail because care is necessary not to lose
any L € V*

\/(% 0 A D(xm)

\/((_11_)89 OO (0) A xm)

J((‘ll—)g & ((m, &1 (0))9)
((_—11))29 fm. 21BN

XN SIS

@51 (m), &0 -~ 0

")

= (=1)°V/(=1)°g (uA D (xv))
= (—1)°/(-1)5g @ (®(u) A *v)
= (—1)°V/(=1)sg @ " ((®(u), *0)Q*)
= (=1)*\/(=1)sg (®(u), )@~ (Q)
= (-1 V1) @), o0
B (—=1)%g
= (0 Ty ©
1
- ) (*1)59Q
= (u,v)Q
= uANA*v
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as desired.

Using the definition and the two previous theorems, we can easily show
that x and * are almost, but not quite, involutive operators and isometries.
Notice in the proof that we use both formulas for *, one from the definition
and one from the theorem; having both formulas is what makes it possible to
present an easy basis—free proof of this theorem. Having these two formulas
in turn depends on our methodology of factoring * : AP(V) — A" P(V) into
O : AP(v) — AP(V*) and * : AP(V*) — A" P(V). The common methodology
for proving this theorem uses an orthonormal basis. The reason this works is
that if the basis is orthonormal the ® can be almost ignored.

Theorem

| %
~

= (—LpPTREE e AP(VY)
(=1)P=P)+sy g e AP(V)

* %

*|
S

Proof

—~ ~ —~
—_
—_— — — —

and similarly
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Theorem x and * are anti-isometries:

(%€, xm)
(Fu, *v)
Proof
(%L, xm)Q
and similarly
(iu, §U)90

=

o
3

e
|

(m, £)

(u,v) = (v,u)

* A xxm
(=1)PPlxf A,

*u N\ ¥ *%v
(=P Pz Aw
v A xu

(v, )

For convenience we want to exhibit the formulas for certain special cases.

We have, for Q € A™(V)

¥ =

and then

¥y =

and then for 1 € A°(V)
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Similarly, for Q* € A™(V*)

*(*

and then

*
iﬂo

and finally for 1 € A%(V*)

123
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6.5 Coordinate formulas for x-Operators

The *-operators are often underutilized in applications because the available
technology for them is cumbersome. What we hope to show here that using
the metric coefficients g, for AP(V) and g®# for AP(V*) where o, 3 € S, , we
can recapture some of the ease of computation of classical tensor analysis. The
reader may recall our earlier contention that using S,, , as the indexing set is
the key to efficient use of Grassmann algebra.

We will now use the formulas from the last section to derive explicit for-
mulas for the x-operators, which are important for applications. As usual let
€1,...,en be abasis of V and el, ..., e" be the dual basis for V*. We recall the
formulas

¥ o= (=1)%/(=1)g(®@ L ox)
o) = E'= gjiej .
Then we have
¥eo = (—1)°\/(=1)5g(®7" o %)e,

= (=1)°V(=1)*g @ ' (sgn(0)e?)
= (1)*V(=1)rgsgn(o)@ (7P AL A ")
= (1)*V(=1)rgsgn(o)@ (TP AL AT (M)
= (=1)*V(-1)*g sgn(o)EZPD A . A ETM
= (=1)°V/(=1)°gsgn(o)g" @t g2, AL Ne;,
= (=1)°(-1)%g sgn(o)gT&eT where 7 € Spn—p -

In the last line we have used the method of resolving a sum by permutations.
See section 3.3 or the end of section 5.1 for more detailed explanations of this
method.

Similarly, using the formulas

*
(S
I
—~
—_
~—
w
—~
=)
o
*
~—
(S

@(ei

~—
|
IS
I
Q@
S
o
9]

we get, in exactly the same way,
xe? = ——— sen(o)gsre” TESunp-

The natural thing to do next would be to use the alternate formulas for *
and x to get alternate formulas for xe, and xe”. However, we think it is worth
disturbing the logical flow in order to learn another technique. We will resume
the logical flow in a moment.
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In many books on differential forms a technique like the following is used
for computing xe?, (interest in this case being focussed on the dual space V*).
We begin with the important equation (sometimes used as the definition of x).

LA xm = (£,m)§]
where ()f is the unit box in V*:
0f = /(C17g 9 = V“TTg el A Aen.
We use this to compute xe”, o € S, 5 by setting
*xe? = are’ T € Snn—p

for some constants a,, and then attempt to determine o, by some kind of
trickery resembling that used in orthogonal expansions. We substitute e” for ¢
and e? for m in the above formula and then use the expansion of xe” to get

e’ Nxe” = (e, e?)
e Nare” = gPrQ
ar e’P NeT = gPqOg.

Since p € Sy p and T € Sy, n—p, the left side of the last equation is non—zero for
exactly one 7, namely 7 = p. We then have

az el Nef = griQy (no sum on p)
and then
azsgn(p)et A Aem =g/ (—1)sge A Ae”
and thus

ap = sgn(p) /(=1)%g g pESnp

which we can rewrite in a handier form, setting 7 = p:

Y = T
(—1)p("7p)sgn(7‘) V(=1)%g g T E Spn—p

since sgn(7)sgn(7) = (—1)P("P) (see section 3.2). Finally

xe” = are” =+/(—1)%g Z sgn(7)g"%€" .

TESn,n—p

This formula is correct, but the perceptive will note that it bears little resem-
blance to the previously derived formula. The equivalence of the two formulas
is not difficult to prove provided one has some specialized tools and knowledge
(found in this book) but when working on ones own this sort of thing can be a
real source of frustration, and the frustration is augmented when the formulas
are expressed with ¢7% written out in full determinental form.
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We can derive this formula much more easily by using the other formula
for x¢:
= /(=1)5g (o ®™1)0.

We then have
xe’ = (—1)5g (x 0 ® 1)e
= V(=1)3g * (@ e WYA .. A DL (7P)
= (—1)5g = (gila(l)gizg(Q) g P e Neg, AL A ei,))

= V(“1)pg * ( Z {Z sgn(p)gT P ___gr(p(m)a(p)}em) A ___AeT(p))

TESn,p PES)

V(= Z sen (7 “’e

TESnp

= V(=19 Y sen(n)g

TESh,p

Similarly, using

we derive



6.5.

COORDINATE FORMULAS FOR x-OPERATORS

127

For convenience of reference, we collect here the various formulas involving

the star operator.

Formulas
*l = (—1)sg(x 0o @) Le AP(VT)
= (771)(@0*)6
V(=1)%g
_1)s
*e’ = (1) sgn(o)gsre TESnnp
(—=1)%g
w’ = VT Y sen(r) g
TESn,p
_ 1
o= (x 0 @) v e AP(V)
(—1)*g
= (=1)°V(-1)2g (@ ox)v
xe? = (1) sgn(o)gsre TE Snn—p
(*1)59
;ea = Z Sgn go"re‘r
\4 TGSTLP
CAxm = (4,m)Q L,m e AP(V™)
uAxv = (u,v) u,v € AP(V)
QF e' AL AEm
Q (—1)5g2"
IS
(—1)%g
05 = (-1
*1 = Qf
Q = erN...Ney
Q = LI
(—1)%g
0 = ()T
¥ = (-1)°
o=
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6.6 Formulas for Orthogonal bases

Although one of the basic principles of this book is never to derive formulas
using orthogonal or orthonormal bases, we recognize the importance of these
objects in applications. Hence this section will be devoted to the calculation of
the x-operator in V* for orthogonal bases.

We are going to do this in two different ways. First, we will show how to
specialize our general formulas to this case. Second, we will show how to calcu-
late these formulas directly from the definition. The latter method is included
for the convenience of those persons who wish to utilize the x-operator in classes
but do not have the time (or perhaps the inclination) to go through the general
procedure.

We will derive all our formulas for V*. The case of V is handled analogously,
and the formulas are predictable from those of V*.

To make the formulas as simple as possible we will simplify the notation,
using h; for \/ﬁ This destroys the systematic applicability of the summation
convention, which is suspended for this section. We will continue to use increas-
ing permutations as one of our basic tools, since without them the x-operator
is very hard to manage.

What characterizes an orthogonal basis is that g%/ = 0 for i # j. We will
set things up like this:

... 0 0 0
.0 0
. 0 20 0
7\ r
@) =1y 0 —hZ,, 0
0 0 oo
0 0 0 ... —h?

Thus the last s = n — r diagonal coefficients have negative signs. A typical
example would be the inner product used in special relativity with coordinates
t,x,y, 2z (in that order) and matrix

(L o o0 o0
0 -1 0 0
7\ —
W=1 0 o -1 o0
0 0 0 -1

Here n =4 and s = 3.
The general formula for the x-operator is given by

"= /[1g Y san(o)g”e

TESh,p

oT

where the g°7 are the p x p subdeterminants of (¢*). (We have chosen this
formula for xe” because it uses the entries from the (¢*) and is thus most
convenient.)



6.6. FORMULAS FOR ORTHOGONAL BASES 129

We first discuss the situation for g°” where o # 7. We will have g°” = 0 as
we see from the following example which demonstrates how a row of zeros will
appear in this case. We take 0,7 € Sp, 2

(1 2|3 4 ... (1 203 4 ... on
7= \2 3/1 4 ... n T=\2 4|1 3 ... n)
‘We then have )
oT __ h2 0
g —det(o 0)

because the entries for the second row must come from the third (= 0(2)) row
of the (¢%/) and the only non zero entry in that row is in the third column.
However, T selects columns 2 and 4, thus missing the only non-zero entry.

Hence ¢g°7 is diagonal; for 0 = 7 € S, ;, it selects a set of rows and equally
numbered columns to form a diagonal submatrix of (g%/). For example, with
the above ¢ and 7 we have

oo __ h% 0 TT __ h% 0
g det(0 h§> g det(0 h2
(We have assumed here that 4 < r). Recall now that (¢%) = (g;;)~' and
g = det(g;;) from which we obtain

1 1
I W 2 (—h2 ) (—h2) - (C1) (b B

n

so that
g =
Now suppose o € S, ,, and
o(1),...,op—b)<rando(p—>b+1),...,0(p) >r.
Then exactly p— (p — b+ 1) + 1 = b of the entries of

2
W2 ... 0 0 0
0 0
2
0 By O 0
8 8 —h2 ) 0
0 0 0 Lo—h2,

will be negative, so that the determinant of this matrix will be

oo __ b2 2
g = (71) h’o’(l) e h’o’(p)
and
s oo 1 b2 2
(1997 = G (D hoq) - o
oy ey hew)
ho’(p+1) PN ha-(n)
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Thus finally we have

= VO Y s

TESn,p

(—1)*g sgn(0)g”7e”

hoiy .. h ]
N - o)
(=1

sgn(o)e .
a(p+1) - Po(n)

Just as a quick check, let us calculate x xe?. We have

hot) - hy _
iiea — (71)b 1) (p) Sgn(o)ie”
ha’(p+l) “ e ho-(n)
Bt - - hy o hary e hagn )
_ (_1)13 (1) (p) Sgn(a’)(—l)é_b (1) (n—p) sgn(o)e”

ha(p-i—l) e ho(n) h&(n—p+1) - h,}(n)
hoy - o) ho@s1) - Potm) o

how1) -+ ho(m) hoq) - To(p)

- (4,1)5(4,1)p(n7p)eo ::(4,1)s+p(nfp)eo

(—1)’sgn(0)sgn()

which is correct, as we have seen in section 5.3.
Now we want to apply this formula, as an example, to the special relativity
metric
(%)2 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0o -1
However, in order to be consistent with established custom and our future needs
for this material we are going to modify some of our usual notations. In this
context it is usual to index with the numbers 0, 1,2, 3 rather than 1, 2, 3,4 and to
replace the basis vectors e, es, €3, e4 with dt, da!, da?, dz3. The reasons for this
will become clear in Chapter 9. We know that for normally indexed increasing
permutations we can get the sign of the permutation by

P

sgn(o) = (—1)Zi=1 9@ ~Tp = (_1)Xf=a0@)=d) |

If we reset the origin from 1 to 0, the exponent becomes

Y (o) + 1) = i+ 1) = Y (o) ~ i) = >_0(i) ~ Ty

and o
sgn(c) = (—1)=i=0 7@ =Tp1

In this formula we put Ty = 0 when p = 1.
We give some examples:

=% 3 %) sgn(o) = (~1)1T = (~1)170 = _1
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(0 1|2 3 —(_1)03-T1 _ (_1y3-1 _
U(O 3‘1 2> sgn(o) = (1) =(-1)"""=+1
o 0 112 3 _(_\I+3-Ty _ _1\4—-1 _
a—(l 3’0 2) sgn(o) = (1) =(-1)*""=-1
_ (0 1 2|3 (L \OHIH3=Ts _ (_qy4—3 _ _
O'(O 1 3‘2> sgn(o) = (—1) =(-1)""7=-1
With these and the formula for * we can compute
1
xde' = (-1)' 5 . 1(—1)dt/\dnc2 Adx® = +edt Ada® A dx®
1l'1 1 2 Lo 2
xdt Ada® = (—1) i 1(+1)d:1: ANdx® = —=dx Ndx
. c
1 3 2 1-1 2 2
sdr- Adz® = (1) 1—1(—1)dt/\d$ = —cdt Ndx
%.1.1

1
xdt A dxt A de® = (—1)? (—1)dt Ada® = —= da?
C

Now, using the formula * xe” = (—1)*TP("=P)e? each of the above four gives us
a second formula. For example from the second of the above four we have

sxdt ANdz® = flidzl/\sz
c
1
(122D gt anda® = —= xda’ A da?
c
xdet Nda® = (=1)-(—c)dt Ada®
= cdt Nda?.

We can now digest all this and more in the following table

x1=cdt Adz' Ada? A da®

xdt = +(1/c)dxt A dx® A dad xdzt ANdz? ANda® = +cdt
xdrt = +edt A dz? A dx3 xdt Ndx? Ndx® = +(1/c)da?
xdr? = —cdt Adxt A da? xdt Ndet Ndx® = —(1/c) da?
xdr® = +edt Adz' A dx? xdt Ndet Ndx? = +(1/c) d2?
xdt Ndxt = —(1/c)dx® A da3 xdz? Ndz® = +cdt Ada?
xdt Ndx? = +(1/c)dx! A dad sdzt Ndz® = —cdt Ada?
xdt Ndx® = —(1/c)dx! A da? xdzt Ndz? = +cdt Adad

xdt Adat Ada? Ada® = —(1)c)
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‘We would now like to derive the formula

1y ho() - - - ho(p) 5

xe” = (— sgn(o)e?

ho(psi) - o)

by a less sophisticated method. To do this we recall the formulas
CNAxm = (£,m)Q

and

1
QSZ\/(—l)égQ*:ﬁel/\/\e"

If we now set,

* e’ = E Qo e’

Tesn,nfp

where the o, are to be determined, then we have

e’ ANxe’ = g agre” Ne pPEShp.
TESn n—p

The term e” A e” is 0 unless 7 = p. Thus
e’ Nxe’ = agp.

Next we note by the above equation and Grassmann’s theorem

eP Nxe? = (e?,e7)
(erM eoMy o (er(D) eo(P))
= det . . .. QF
(ep(p)’ 60(1)) . (ep(p),ea(p))

and by the othogonality we have the right side equal to 0 unless {p(1)...p(p)}
and {o(1)...0(p)} coincide as sets (so that no column will be all zeros). But
then, since they are both in S, ,, we must have o = p. Thus . is 0 except for
the terms ay,5. We now know

xe? =ae’

for some o (depending on ¢) and we must determine . Once again

" Axe® = ae’ Ae®
(e7,e7)Q5 = asgn(o)e! A... A"
((e?@, ecMy 0 ... 0
det 0 cee e 0 = asgn(o)Q”

0 o 0 ((eoP) o (P))
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Now (e?@,e?®) = 4h; for o(i) < r = n —s and (e?®, @) = —h; for
o(i) > r =n —s. Let b be the number of o(i) satisfying the latter condition.
We then have

(—1)°h2 1y W2y % = asgn(o)hi .. h,
= asgn(o) by - - hom) Qo
giving
o= (—1) ho() - - ho(p)
ho@+1) -+ o)

which is our previous result.
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Chapter 7

Regressive Products
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7.1 Introduction and Example

The Regressive Product is Grassmann’s extension of the wedge product. Unlike
the wedge product, the extended product has not been much appreciated but it
has many uses in vector algebra and projective geometry. In this introductory
section we will show how natural a construction it is by looking at the problem of
finding the intersection of two planes in R3. We examine the standard solution
of this problem by vector algebra, and then by Grassmann’s regressive product,
and show the methodological superiority of the latter.

I must mention at this point that the regressive product does have some-
thing of a defect; it is somewhat basis dependent. If the basis is changed the
regressive product will pick up a multiplier. This is not a problem in projective
geometry and there are fixes in metric geometry. We will discuss this matter at
greater length in the next section.

Let dim(V') = n. For the wedge product, if A € A™(V') and B € A*(V) and
r+s > nthen AAB = 0. This is convenient for many purposes but also a little
dull. Grassmann found and “extension” of the wedge product which gives more
interesting information, which we will now present.

To motivate our construction we will look at a familiar problem of vector
algebra; finding a vector along the line of intersection of two planes. We will
work here in V' = R? with the standard inner product.

Let the two planes be

P —2z' —3z2 423 = 0
Py : el — 22 —223 = 0
The normal vectors to these planes are
ng = (—-2,-3,1)7 (7.1)
ng = (3,-1,-2)T (7.2)

The vector v along the line of intersection must be perpendicular to the two
normals ny and nse and thus we can take for V'

v=mn1 xng=(7,—-1,11)7

From this and the point (0,0, 0) on both planes we could write down the equation
for the line of intersection, if we were interested in this.

Now we want to look at the calculation in a very different way. Recall the
basic equations for the x-operator:

EAxA = (B, AQF
AnxE = (E,A)0Q

We will now redo the vector algebra calculation in R3 but we will NOT use the
inner product in R? which means we will work in R? and R3*. Elements of R3
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will be written as column vectors and elements of R3* will be written as row
vectors. We will use the standard basis for R3* and its dual basis

el =(1,0,0)  €*=(0,1,0) €*>=(0,0,1)

for R3*. So we have
<€i’ ej) = 0;

J

as usual.
Now we want to represent the planes P; and P, as wedge products of two
vectors in each plane. For P; we take the two vectors

v = (1,0,2)7 vy = (0,1,3)7
= 161 + 062 + 263 = 061 + 162 + 363
and form
’Ul/\’UQ = 7262/\637363/\614’161/\62
and then

A1 = #(vp Avg) = —2¢! — 3¢ + 168

Notice that we have counterfeited normal vector n; in the dual space. Notice

also that a vector w = (2!, 2%, 2%)T in in p; &

)\1(11)) = <>‘1aw>
= (2! —3e* + €2, xleg +2?en + 20e3)
= —2z' 322 + 28

0

In a similar way, using the vectors w; and w? in Py

w1 = (25073)T
w2 - (Oa _15 %)T
we get
w1 Awy = 32 ned —1ed Ael —2et Ae?
)\2 = *(wl A ’LUQ) = 361 — €3 — 263

and vector w = (21, 2%,23)T is in Py & Aa(w) = 0.
Now let us form

M AN = (—2e' —3e? +1e) A (3e! — 1e? — 2¢?)
= T2 ned — 13 nel +11el Ae?
v = %A1 AN) = Tel —1e? + 1168

= (7,-1,11)7
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Now let us verify in this context that v satisfies our desire, namely that it
lies in both planes which is equivalent to A;(v) = A2(v) = 0. We calculate

A,y @ = (A, x(A1 A A2y QF
= MAxx(A1AN)
= MAMAN
=0

and similarly for (A2,v) = 0. (Here we have used that for A € A”(R?) we have
xx A= (=1)C-"A) = A)

The perceptive reader will notice that we have gotten the same vector v
which we originally obtained from the cross product ny xne. Why is this impres-
sive? Notice that the problem of finding a vector along the line of intersection
of two planes has nothing to do with an inner product. The vector method uses
the inner product in an essential way. Using Grassmann techniques we have
eliminated the extraneous inner product from the problem, which is method-
ologically desirable. Careful examination of the calculation will clarify how we
were able to counterfeit the activities of the inner product by using the dual
space. This is valuable methodology, since if we want to apply Grassmann al-
gebra to, say, projective geometry we definitely do NOT want an inner product
hanging around marring the beauty of the landscape.

Grassmann was able to find a modification of the wedge product which gets
to the v we found from the products v; Avy and wy Aws representing the planes.
He writes

v = [v1 Ava(wy A ws))

or more elegantly
v = [v1 A vg.wy A ws]

The definition and properties of this new product [AB] are the subject of the
following sections.

Since Grassmann was unaware of the dual space as a separate entity, his
construction of the above product was based on an inner product methodology.
This is contrary to the spirit of modern mathematics (virtually the only part
of Grassmann’s work where this is the case) and so our development in the
following sections will modify Grassmann’s construction. It is rather remarkable
how little this changes things. The modifications are not very significant.
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7.2 Definition of the Regressive Product

Based on our experience in the last section we will now define the regressive
and combinatorial products. We will work with a vector space V' of dimension
n, its dual space V* and the duality operators

x: AT(V) — ATV
x: AT(V*) — A"TTT(V)

Let {e1,...,e,} be a basis of V and {e!,...,e"} the dual basis of V*. Recall
that if 7 € Sy, then

*ep = *(eﬂ_(l) AN... N\ eﬂ_(r)) = Sgn(ﬂ)eF(T'f‘l) A... A eﬂ'(n)

and similarly for xe™. Recall that these formula are valid for any permutation,
not just the ones from S, . Finally recall that for A € A"(V)

xx A= (17" A

Now we define the regressive product:

Def Let A € A"(V) and B € A*(V*) where 0 <r,s <n

ifr+s<nthen [AB]=AAB

if r+ s> n then x[AB] = xA A xB
In the latter case we can compute [AB] by using the formula above to compute
* % [AB]. Also, since r,s <n we have n —r, n —s > 0 and *4 € A"~"(V*) and
xB e A" 5(V*) so

«[AB] = % AA*B e AVTTTTS(VF) = AU (7
[AB] c An—(Qn—(T-l-s))(V*) — A(T—i—s)—n(v*)

Since n < r 4+ s < 2n, we have 0 < (r + s) —n < n so [AB] is in the range we
like. Summing up

if 7 + s < n then [AB] € A"5(V*)

if 7+ s > n then [AB] € A"ts—(V*)
The vocabulary is

if r + s < n then the product [AB] is called progressive

if r + s > n then the product [AB] is called regressive

For A € A"(V*) and B € A*(V*) exactly the same formulas are used,
although the * in these formulas goes the opposite way from the * used above.

Grassmann identified A" (V) with A°(V) by identifying aQ2 € A™(V) with
a € A°(V). This is natural in our circumstances, which we now demonstrate.
Let A=e1 A...ANe and B = e,41 A ... Aey. First note that *B uses the
permutation

. 1 2 ... n—r n—r+1 n—r+2 ... n
= r+1 r+2 ... n 1 2 e T
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We see that sgn(m) = (—1)"("=") so that *B = (—1)"("~"e; A...Ae,. According
to the above rules we must calculate [AB] regressively so that

x[AB] = xAAxB
= (ETA AN (DT AL AE
= (e'A. L AE)A(ETEAL AEY
- O
= x1
[AB] = 1
Since AN B = this is pretty good evidence that (Q is going to act like 1 in the

regressive world. We can also see this if we relax the restrictions on the A and
B so that we allow A = Q) and compute regressively

*[QB] = *QA«B
= 1Ax*B
= xB

[@B] = B

and thus again ) acts like 1. However, it seems simpler to me to just restrict A
and B to the range A™(V) with 0 <r <n — 1 and leave A”(V') completely out
of the system, its job being done by A°(V).

Later we will have to work with products of more than two elements.

Notice that the formula when r + s >n, #[AB] = *A A xB has an auto-
morphism like quality to it. It was clever of Grassmann to build this into the
theory long before automophisms had been defined, and is another example of
Grassmann’s profound instincts.

It is always nice to know how a new concept applies to the basis vectors so
let us now deal with that. Let 7 € S, and 0 € S, ¢:

er =€x1) N - Nenr)
€ = €x(1) N Neg(s)

If r + s < n then [ere,] = ex A e, and there is nothing new.
If r + s = n there are two possibilities.
First

€n(1)s -1 €xm(r)) €a(1)y -5 C€a(s)

are all distinct. Since both 7 and ¢ are increasing permutations, this can happen
only if ¢ = 7. By the rules, we must compute this product regressively:

xe; = sgn(m)e”
xe, = xez=sgu(w)e"
k[er€y] = kepx Axe, =xex Axex

= sgn(m)sgn(7)e™ Ae”
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_ (71>r(n7r)67~r Ae™

= e"NeT
= sgn(m)e' A Ae?
= sgn(m)Q*
= sgn(m) *1
lexes] = sgn(m)
Second, if r + s = n and
Ex(1)s- 1 €xm(r)) €a(l)s -5 Ca(s)
are not all distinct, then
) R ) )
also cannot be all distinct, and so
xeres] = kepAke,
= xex ANx*xeq

sgn(m)sgn(o) e™ A es
=0

[exes] = 0
We can sum this up conveniently by
If r + s = n then [ere,] = sgn(n) dro

Notice that
er N ey = 8gn(m)052

So everything is nicely consistent, and we can even write
er N ey = [eres|Q

The case 7+ s > n is best approached in the following way. There must be
some repetitions among

Ex(1)s- 1 €xm(r)) €a(l)s -5 Ca(s)

Collect the repetitions together and arrange in increasing order to get a p € S, -,
By rearrangement we can write

er = ZTepeq

e = Teyeq
where e, and e,, have no elements in common. Then compute

[(ep €y ) (ep €0y )]
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In certain cases this can be simplified, but we will handle this when we get to
products of three or more elements.

Our next project is to discuss the basis dependence of the regressive prod-

uct.
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7.3 Change of Basis

We now wish to discuss what happens to the Regressive Product when the basis
is changed. It will turn out that the regressive product accumulates a constant
multiplier, which in simple cases is predictable.

Let {e1,...,e,} be the original basis of V with dual basis {e!,...,e"} of
V* and let {f1,..., fn} be the new basis of V and {f!,..., f*} be the new basis
of V*. We want to know the effect of the change of basis on [AB].

We have, with Q2 =e; A ... Aey,

fi = aole;
Q = AN NS
= ngn 04717(1)04727(2) .. .ozz(”) e1N...Ney

= det(al)er A...Ney
= det(a?) Q
The crudest way to find the equation connecting Q* and Q* is as follows.

We know
k _ nk_j
f —ﬁjej

for some matrix (ﬁjk) SO
0 = (M fo) = (Brem age)

k j k j
= Bnogle™ e;) = Brayd)

- 5;?04
SO
I = (B)(x)
By = ()"
Thus

Q= fIALAST =det(Bh)et AL Ae”
= [det(ad)] Q"

Of course, it would have been easier to use (2*,Q) = 1 and Q0 =1
and hence with Q* = Q) for some f

1= () = (BQr,det(a)Q)
= Bdet(a})(Q",Q) = Bdet(a})
B = [det(a})]™

O = [det(a)] Q"
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Notice the second compuation short circuits a lot of trivia. These computations
can also be done in matrix form but we will leave this for the reader to do
herself.
Recall now the basic equations for the x-operator, which are, with A €
A"(V) and E € A"(V*),
EAxA = (2 AQ"
ANxE = (B, A0

The basis enters here in the definitions of € and Q*. Let us set a = det(a’).
Then Q = aQ and QF = o 1Q*. We will designate with ¥4 the result of

calculationg the *x-operator using the basis { f1,..., f*}. Then we have
EAxA = (EA)Q
EAFA = (B, AQ

= (E Aot

Then
EAFA=a" N E A =a 'EAA=EAa % A

Since this is true for all 2 € A"(V*) we have
FA=atxA
Using exactly similar methods the reader will have no difficulty showing

=ax=

[I]

*

for 2 € A"(V*).
It is now time to look at a simple example to get a feeling for how this
all works and fix the methodology in our minds. Let V = R3, {e1,...,e,} the

standard basis (written as columns). The new basis will be {f1,..., fn} where
fi = 2e;. Then (a) = 2I and a = det(a}) = 8. Note also for the dual basis

that f* = fe'. We now have

xep = 2 A e’
s = 2f2n2f°
«fi = 8fAf°

whereas
Fh=rAf=1xh

just as we predicted from theory. As a second example

x(eg Neg) = et
*(5f2 A 3e3) 2f*
«(f2Nes) = 8f°
¥(fanfa) = f1=38f = $x(fanfs)
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again as we predicted.

It is now trivial to see what happens to the regressive product under basis
change of A € A" and B € A® when r + s > n We will label the regressive
products [AB]. and [AB]z. Then

ﬂAB]; = [%A;B];
= *xAANx*B
= iQ x* AN *B
Q
1 1
4B = 1

Naturally this equation is true only when two elements are multiplied and only
when the multiplication is regressive.

Now let us again practise to see this at work. Suppose, as before, V = R3
and A =e; Aes, B=-¢e1 Aeg. Then

*[(61 A 62)(61 A 63)] = *(61 A 62) (61 A\ 63)]
3

e’(—€?)]

[
[
[

= [e%’] = 2 Ae?
= *eq
Thus
[(61 A 62)(61 A 63)]* =€
Similarly

(LA )i A f3)ls = f

Now using f; = 2e; and recalling that o = 8, we have from the last equation

[(2e1 A 2e2)(2e1 A2e3)]x = 2e;
16[(e1 Aea)(er1 Nes)]lz = 261
[(e1 Nea)(er Aes)ls = %61

= gller nea)(er Nes)l.

as predicted.
Thus the regressive product of two elements of A(V) picks up a factor

of m under basis change f; = a;'-ei, and similarly the regressive product
J

of two elements of A(V*) will pick up a factor det(a?). If more than two
elements are involved and both progressive and regressive products show up in
the computation it can be difficult to keep track of the factors. We will look at
this briefly in a later section.

However, in applications in projective geometry the factors usually do not
matter since things are usually defined only up to a constant multiplier. Also,
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looking back at section one where we found the line of intersection of two planes,
the actual length of the vector along the line was of no relevance, so again the
constant multiplier is of little importance.

In applications where the length of the vector is important one approach
would be to restrict ourselves to base change where det(a;'-) = 1, that is, to
require (o) € SO(n, R). The appearance of SO(n, R) here suggests that in this
approach a metric lurks in the background, which could be defined by declaring
the given basis {e1,...,e,} to be orthonormal.
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7.4 Dot Notation

This section has almost no content; it is about notation. Because the com-
binatorial product (which requires both progressive and regressive products in
its computation) is highly non associative, it is important to invent a notation
that clarifies how the various elements are to be combined in the product. We
could, of course, use parentheses, but this turns out to be cumbersome in prac-
tise. Thus I have adapted a notation using dots which I learned from W. V. O.
Quine long ago. Quine adapted it from Russel and Whitehead, and that is as
much history as I know. Similar notations have no doubt been invented many
times.

In this section A, B,..., M are elements of A(V) which are not necessarily
monomials. The basic principle which we use is left associativity, which means
that

[AB---M] = [--- [AB|C]D] - M]

That is, unless otherwise indicated, products are computed by first computing
the first 2, then computing with that product and the third element, etc.

If we wish the multipliaction to associate elements differently, we set off
groupb of left associated multiplications with dots. Left associativity begins
anew with each dot. Thus for example

[A.BC] = [A[BC]]
[AB.CD] = [[AB)[CD]]
[AB.CD.EF] = [[|[AB][CD))|EF)]

Already the reader may note some advantage in the notation. However, we
cannot do everything with a single dot. Often multiple dots are necessary; the
more dots the stronger the association. There is even a rule for decoding, which
we will see later. As examples of where this is necessary, consider the two

([[AB][CDI[EF]]  and  [[AB][[CD][EF]]
with dots
[AB.CD.EF) and [AB: CD.EF]

In the first product, all the dots are of equal weight and so left associativity
takes over; first compute [[AB][CD]] = X and then compute [X[EF]]. In the
second product the double dot indicates that left associativity starts over at the
double dot, so first one computes [[CD][EF]] =Y and then computes [[AB]Y].

The principle in general is left associativity starts at an n-dot symbol and
continues until the next n-dot symbol, a higher dot symbol, or a final ]. After
the new n-dot or higher dot symbol left associativity begins anew. It is most im-
portant to realize that the number of dots is equal to the number of left bracket
symbols at that point. Using this, one can mechanically fill in the brackets when
one sees the dots. Observe this carefully in the following examples.

[ABC.EF] = [[AB|C|[EF]]
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[A.BC.EF] = [[A[BC|[EF]]
[A: BC.EF] = [A[BC][EF]]
[A:B.C.EF] = [A[B[C[EF]]] WRONG

This expression on the left might be psychologically helpful but it violates the
rules; the double dot is not necessary as one sees by counting only one left
bracket [ at that point. This is a source of confusion and should be avoided.
The proper expression is

[A.B.C.EF] = [A[BIC|EF]]] CORRECT

Here are more examples, but in order to increase comprehensibility I will write
[ABC] for the correct [[AB]C]. Notice my abbreviation conforms to the left
associative rule.

[ABC.DEF] = [[ABC||DEF)]
[ABC.DEF.GHI] = [[ABC|[DEF))|GHI]]

[ABC : DEF.GHI| = [[ABC|[[DEF||[GHI]]
[AB.CD.EF.GH] = [[[[AB][CD)||EF)||GH]]
[AB.CD : EFGH] = [[[AB)[CD)|[[EF))IGH]]]] common
[AB:CD.EFGH] = [[AB][[CD][EF]|GH]]]

Note that I am here using the left associativity convention in the expression
[[CD][EF][GH]]. This is necessary to make the count come out right.
A couple more examples:

[AB:CD:EFGH] = [[AB][CD]|[EF|GH]]]
[AB:.CD:EFGH :IJKL] = [[AB][[CD|[EF)GH]|IJ)[KL]]
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8.1 Introduction

What is vector algebra? As it is ordinarily taught in the United States, it
consists of the elementary theory of the dot product in three dimensional space
over R (largely trivial), a component involving the cross product which is based
on the property that v,w L v x w and the equality ||v x w|| = ||v]|||w]||sin 6,
and a much less trivial part which centers around the vector triple product law
uX (vxw)=(u-w)v—(vxwu. In the first section of this chapter we will
essentially duplicate this construction, but to maintain interest we will do it in
n-dimensions. In particular, we will construct an analogy of the cross product
that functions in n-dimensions. This construction is well known in Russia as
the “skew product” but is less well known in the west. This section assumes the
standard inner or dot product on R™.

In the second section we will geometrically interpret (in R™) the elements
of A"(V) and in the third we will look at A"(V*). Then we will examine the
meaning of the duality operator % : A"(V) — A" "(V*) in the fourth section.
Finally in the fifth section we will look at the interpretation of *x : A™(V) —
A""(V) in the presence of a metric.
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8.2 Elementary n-dimensional Vector Algebra

The inner (or dot) product part of n-dimensional vector has been sketched out
in Chapter 1. It differs not at all from the theory of the 3-dimensional case which
we assume known. It allows us to find lengths of vectors and angles between
vectors.

We turn now to the analog of the “cross product”. We recall that in the
3-dimensional case the cross product is characterized by

v,w L v Xw
[lv x w|| = [[v[[|w]| sin 6

3. v,w, and v X w form a right handed system.

To produce an analog in n-dimensions, we must discuss the third item
first. Handedness is determined by choosing an element 0 # 2 € A™(V), and we
consider €27 and 5 to determine the same handedness if 25 = a£2; where a > 0.
(This makes sense because A™(V) is 1-dimensional.) There are two handedness
classes represented by 2 and —). We will refer to the chosen element Q (really
its handedness class) as the positive orientation or right handed orientation; the
other will be the negative or left handed orientation. A basiseq,es, ..., e, is then
positively oriented or negatively oriented according to whether e; AesA. .. Aey, =
af) where o > 0 or @ < 0. If a reader feels that he has a right handed basis
e1,€,...,e, he need only take = e; Aea A... A e, as his chosen element of
A™(V). There is of course no mathematical way to distinguish right from left;
only the distinction between the two has meaning.

Let us suppose a choice of basis {2 has been made. We select an orthonormal
basis e1,€e2,...,e, and form e; Aes A... Ae, = af) If a < 0, we may reverse
the sign on any e; and we will now have a right handed orthonormal basis.
We will always consider that this adjustment has been made. We then set

et Nea A...Ne, = Qg and have Qy = af2 with a > 0, so e1,es,...,e, is a right
handed system and €y is in the right handedness class. We then have
1 ... 0
(Q()vQO)Zdet( (eiaej)> = det =1.
0o ... 1

We then have a duality operator x : A"(V) — A" "(v) which, as we know from
section 5.3, satisfies

ANxB = (A,B)Q for A,Be A"(V).

Since in this section we will not be discussing V* at all, we can simplify the
notation by dropping the underline on % and writing simply *. We are now in a
position to define the vector product. Def Let v1,v2,...v,_1 € V. The cross

product of these vectors, which we shall denote by {v1,va,...v,—-1}, is defined
by
{v1,v2, ... 01} =*(V1 Ava AL o Avp_1).
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The perceptive reader will note that the cross product involves n—1 vectors.
For n = 3, this is two vectors and gives the familiar v; X vo. However, the X
notation is not well adapted to any dimension except n = 3.

We remark at this point that it would be possible to define the cross product
as a determinant in a way analogous to the case of three dimensions. The theory
can then be developed from this, but there is a difficulty in getting the length of
the cross product by this route. We will not adopt this method; we will develop
the cross product out of the theory of the % operator and get the determinantal
formula later.

Notice that the cross product is indeed a vector; v1 Ava A ... Av,_1 € AP1
and x : A"~ (V) — AY(V). Let us next note that if

_ 1 2 e n—1 n cs
7= o(l) o(2) ... on—1)|c(n) mn—1

then

{eo) o1} = *(€s) A - Aegn-1))

= sgn(0)eq(n)

Recall that the reverse ¢ of o is given by

(1 ]2 3 .. n cs

T \om) o) o) ... on—1) L

Then sgn(5) = (—1)°™ =T = (—1)°(™~1 and since sgn(o)sgn(5) = (1)~
we have
sgn(o) = (1)l — gyt
so that
{eot) - Com-n} = (=1)"""Me, ().
Now we can do some examples.

n=2: Then the cross product has only one input element {e, 1)} and we
have

{er} = (-1 Pea= e
{ea} (—1)*7le; = —e

Thus for n = 2 the cross product rotates the vector  positively.

n=3: The cross product now has two elements and we have
{6162} = (71)37363 = €3
{6163} = (—1)3_262 = —€3g
{6263} = (71)3_161 = €3
Since {ejes} = x(e1 Aeg) = — x (es Aer) = —{ese1}, the second equation is

often written
{ese1} =ea.
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These last equations show that {e;e;} = e; X e; and thus {vw} = v x w
as the latter is ordinarily defined, since the value of x on the basis vectors
determines it completely. Hence our cross product is indeed a generalization of
the ordinary three dimensional cross product.

To return to the general theory, we first have

xx (V1 A Avp—1) = (—1)("_1)("_["_1])1)1 A AU
(71)(’”71)’01 VANAN Un—1

and then, for 1 <i<n-—1,

('Ui,{’Ul---'Un—l})QO = (’Uz‘,*('Ul/\---/\'Un—l))QO
= v Axx(V1A...AUp_1)
= (—1)”71’1}1'/\?}1 VANV AN SR
= 0

and thus (v, {v1...v,—1}) =0 and
v; L{v1...op_1} forl<i<n-—1.

This is perhaps the most important property of the cross product.
Next we have

’Ul/\.../\’l)nfl/\{vl...’l)nfl} = (’Ul/\.../\’Unfl)/\*(vl/\.../\vnfl)
= (Ul/\.../\vn,1,1)1/\.../\’Unfl)Qo.

Since (V1 A. . .AVp—1,V1A. . .AUp_1) > 0, we have either vy, ..., Vp—1,{01 ... Vn—1}
are linearly dependent or vy,...,v,-1,{v1...v,_1} is a right handed system.

The first possibility, that v1,...,vn—1,{v1...v,—1} is linearly dependent,
is equivalent to vy, ..., v,—1 being linearly dependent, as we now show. Indeed,
since * is an isometry in R we have

({’Ul .. .’Unfl}, {’Ul .. .’Unfl}) = (*(1}1 VAN /\’Unfl),*(’ul AN /\’Unfl))
= (’1}1/\.../\’Un_l,’Ul/\.../\’Un_l)
= Jloi A AP
Thus
VI A ... \NVUp—1 /\{vl...vn_l} = ||’U1 /\.../\’Un_1||2QO
and we have
VlyeooyUne1,{01 ... Up—1} lin. ind. ff v Ao AU 1 A{v1.. 0511 =0

iff viA...AV_1=0

iff  wy,...,v,-1 linearly independent .

Thus the third characteristic property of the cross product remains valid in the
generalization.
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Another useful property, obtained from Grassmann’s theorem, is

{vr..copa b {wr .o cwn—1}) = (R0 Ao AUp—1) k(WL A A wp—1))
= (Ul/\.../\vn_l,wl/\.../\wn_l)
= det( (vi,wj)) (1)
so that
||’U1/\.../\’Un,1||2 = ({’Ul...’Unfl},{’l)l...vnfl})
= det((v;,v5)). (2)

The generalization of the second property is less straightforward. The for-
mula
[lv > wl| = [v][[[w]| sin 6

does not generalize in a simple way and we cannot discuss it further here. How-
ever, the geometric idea behind the formula does generalize, although we will
need to be a bit informal about it at this time. The expression above for ||v x w||
gives the absolute value of the area of the parallelogram spanned in 3-space by
the v and w. This we can generalize. Let v1,...,v, be n linearly independent
vectors in n-space. They span an n-parallelopiped P whose n-volume is (by
definition) ||vy A...Avy]|. (We will discuss this more completely in section 7.5).
Let P; be the “face” of P spanned by vy,...,v,_1. Then it is plausible that

(n-volume of P) = ((n — 1)-volume of Py) ||v,]| | cos 6|

where 0 is the angle between {v ...v,—1} (which is perpendicular to the face)
and v,,. But now we note that

[{v1 .- vn—1}] |lvn]] cosf Qo = (vn,{v1...vn-1}) Qo
= (Up,*(V1 A AUn—1)) Qo
= v Axx (V1AL . Avp_1)Qo
= v Axkx(V1 AL Avp_1)
= (=) D=y AW AL Ava_)
= (—1)("_1)UnAv1 A AUy

= UVIAN...NVy
So, taking norms and recalling that ||Q|| = 1, we have
[{v1 - vn—1}| [Jonl] |cosO] = |lv1 A... Avyl]

= (n-volume of P).
Comparing this with the equation above, we see that

[[{v1...va—1}|| = ((n — 1)-volume of P)
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We can extract from the above proof that

({v1...vn_1},00) Qo =v1 AL Awy (3)

which is a useful formula.
Next we wish to generalize the formula
i
vXw= |yl 2?2
wl w2

k
V3
w3
This form is bad for two reasons. First, we would like to write our vector
components in column form, and second, the sign comes out wrong in even
dimensional spaces. The proper way to write this for purposes of generalization

1S

vl wl g
vxw=|v2 w? j
v¥ow k
We can now generalize, when vy, ...,v,_1 are written in terms of an orthogonal
coordinate system ey, ..., e, as v; = ve;, by
1,1
vl UQ e eq
o= ] (4)
n n
,Ul 'UQ e €en

The proof is very easy; let w be any vector in V. Then
{v1...on_1t,w) Qo = (w,{v1...vn-1}) Qo

= (w,x(v1 Ao Avn—1)) Qo
wAxx (V1 AL Avp_1)
(—1)("_1)("_(”_1))w AL Ao Avp_1)
(—1)("_1)w AUVLA ... ANUp_1

= UVIAN...NUp_1 AW
1 1 1 1

v Vg ot Uy W
= : : | Qo
n n n
v} vy Up_; W
U% ’U'r2171
= (71)71-‘,-1 wl 4 QO
n n
U1 Up—1
U% .« . ’l}?]{il
1 . . . 1
= (—=1)"* : ; Doer e ,wler 4+ -+ w"en | Qo
n n
U1 o Up
1 1 1
vy V3 Up—1 €1
= s L)
n n
Uy Uy Up—1 ©n
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from which, since w is arbitrary, the desired equation follows.

Methodologically speaking, it is useful to note that one could take (4) as the
Definition of {v; ...v,—1} of one were only interested in having the cross product
and not the entire Grassmann process available. If one goes this route it is not
so easy to derive (1) or (2) unless one assumes that det(AB) = det(A) det(B)
where A and B are matrices with both scalar and vector entries, like (4), in
which case different multiplications are being used for different entries.

To see what interesting and important results may be derived with just the
equipment in this section, the reader might profitably consult the splendid book
Rosenblum[1].

Equation (1) can be looked at as the source of various special laws resem-
bling the vector triple product law. For example, if n = 3 we have by (3)

{uv},2) Qo =uAvAz=vAzAu= ({vz},u) Qo

so that
({w}, 2) = ({vz}, u) = (u, {vz})

or, in more familiar notation
UXV - Z=VUXZ-U=U-VXZ

with the familiar interchange of - and x. Then (1) gives, upon substituting
{uw} for u and using Grassmann’s theorem,

(Huw}tv}, z) = ({vz}, {uw})
det((v,u) (v,w))

(z,u) (z,w)
v)(w, z) — (w,v)(u, 2)

u,v)w — (w,v)u, z)

= (u
= ((
Since z is arbitrary,

Huwlv} = (u,v)w — (w,v)u

or in more familiar notation
(u x w) xv=(u,v)w— (w,v)u

which is the familiar vector triple product law.
It is clear that the vector triple product law can now be generalized to n
dimensions by using similar techniques. First we have

{uve...vp_1}1,2) Q0 = uAv2 A AV_1 Az
= (D)"Y A Ave i AzAu
= (=D)"'{va...vn_12},u) Qo

and then
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({Hur . un_1},v2.cvn_1},2) = (=) Yo vp_12}, {ur .. un_1})

(Uz,u1) (Uz,un—l)
— (—1)" ! det :
(Un—1,U1) te (Un—l, un—l)
(zou1) o (2,un—1)
(Uz,uz) (U2,un71)
= det (u1, 2)
(Un—l, U2) co (Un—l,un—1)
(Uz,ul) (02,163) (02,Un—1)
—det (ug,2) + -
(’Un71;u1> (’Un71;u3) (Unflaunfﬁ

where we have expanded the determinant by using the bottom row. This shows,
since z was arbitrary, that

(va,u2) - (v2,un—1)
{H{ur.. . up—1},v2...0n—1} = det : : : U1
(Un—1,u2) -+ (Un-1,Un—1)
('U27u1) (U2,u3) (U2,un71)
— det : : Uy + - - -
(’Unflaul) (vn717u3) (Unflaunfﬁ

This is the n-dimensional analog of the vector triple product law.
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8.3 Standard Interpretation of the Grassmann
Algebra A"(V) of a Real Vector Space V

We assume for this section that the field is the real numbers R. Things will be
similar over other fields but more difficult to visualize.

We must review some matters before beginning to avoid possible confusion.
First, we recall that if V' is an n-dimensional vector space then A™(V') is one
dimensional. Hence any two non-zero elements will be real multiples of each
other, and are thus to that extent comparable; for example, one may be twice
the other.

Now suppose that we have a 2-dimensional subspace W of a 3-dimensional
space V. Then any two elements of A?(V) which are constructed from elements
of W are also in A?(W) and hence are comparable. We are quite used to this
in the case of A*(V). We interpret elements of A'(V) as directed line segments
(“vectors”) and if we have two collinear vectors (that is, two vectors in the same
1-dimensional subspace W,) then one will be a multiple of the other;

2V

Figure 81: A vector and its double

for example in the picture we see v and 2v. The standard way to describe this
situation is to say the 2v is twice as long as v. However, there is no metric
involved here; the reason we can speak this way is because both v and 2v are
in the same 1-dimensional space A*(W) where W is the 1-dimensional subspace
spanned by v.

We could push this even further if we wished; we could select a vector e
to be the basis of W. Then v = ae for any v € W and we could assign a
“length” || to the vector v, thus counterfeiting a metric on W. The flaw in this
plan is that there is no sensible relationship between vectors in V' which are not
collinear, so we do not have an actual metric.

I mention in passing that this method of counterfeiting a metric is often
used in projective geometry to define the cross ratio in a situation in which there
normally would be no mention of a metric.

Although it is possible to object to the use of language like “2v is twice as
long as v,” it is very handy to use this language for our purposes, and indeed
to avoid it would require creating some clumsy circumlocutions. Therefore we
will use the phrase “2v is twice as long as v” in this and the following sections
but the reader must remember that no metric has been introduced. More to the
point, we will use analogous expressions for higher dimensions, for example “2A
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has twice the area of A,” and the reader will understand that what is meant here
is that we are working in some A?(W) where W is a two dimensional subspace
of V, or working in some A"(W) where W is an r-dimensional subspace of V,

It is worth noting that should a metric become available then “w is twice as
long as V” in the sense of this section really does imply that ||w|| = ||2v|], but
the converse is of course false. The situation is similar for higher dimensions.

The situation w = —2v is very common and the description ”w is twice as
long as v and oppositely oriented” is clumsy, but nothing better is obviously
available and we must muddle through with it as best we can.

These preliminaries out of the way, we can now get to the main objective.
Vectors in V' are represented pictorially as directed line segments in the usual
way. Now let V' be a three dimensional vector space and ey, ez, e3 a fixed basis,
which we here draw as orthonormal for artistic convenience.

Let

V1 = €1 +62

vy = e1tesxteg

so that the picture looks like:

&
A \{2
O /&
ey NG

Figure 8.2: Rectangle represented as product

We think of v1 Avy as represented by the parallelogram two of whose sides are vy
and vs as pictured above. The parallelogram has an orientation (first v; then vy)
which is not easy to represent pictorially. Then vs Av; is represented by the same
parallelogram which we think of as oriented oppositely, so that vy Avo+ve Avy =
0. We have drawn the customary circular arrows on the parallelogram to indicate
orientation. These are occasionally helpful for visualization. We will often omit
the orientation arrows from the figures if they are not relevant to the discussion.
This orientation is not easily controlled geometrically, so it is fortunate that the
corresponding algebra controls it adequately.

In elementary vector analysis orientation is controlled by using a normal
vector n so that vy, vs, n form a right handed system. Certain generalizations of
this method will function in restricted circumstances but in general normal vec-
tors are not available for Grassmann objects so we will not pursue this method.

Besides the orientation problem, there is a second difficulty in the represen-
tation of elements of A?(V). For vectors there is essentially just one geometrical
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object representing the element of A'(V'), but for A™(V) with > 1 this is no
longer true. (It is not even true for A'(V') unless we insist that all the vector
tails are at the origin, which we have tacitly done. Without this requirement
a vector is an “equivalence class” of directed line segments where equivalence
means same “length” and same direction.) The situation is similar for A"(V);
even a element v; A ve which is a pure product will have many equivalent repre-
sentations as a parallelogram, and the same will be true for higher dimensional
objects. This makes the pictorial representation less useful than it is for vectors,
but still much can be learned from it. We illustrate this now.

Recall that to express v; A v in terms of e, es, e3 we use the subdetermi-
nants of the matrix of coefficients

1 1
1 1
0 1
of v1 and vy. We have
vy Avg = 0ei Aea+1le; Aes+ les Aeg

= (61 +€2)/\€3

This gives us the picture:

61 o

' »-

;! ere
Figure 8.3: Rectangle represented as product

which the reader will note is not the same as the previously pictured parallel-
ogram. Thus the elements v1 A v2 and (e; + e2) A ez are equal as elements of
the Grassmann algebra but have differing pictorial representations, illustrating
the non-uniqueness of the representation. We would like to have some sense of
when two parallelograms do indeed represent the same element of the Grass-
mann algebra, and this is true if we have the following

1. The Parallelograms lie in the same plane
2. The parallelograms have the same area
3. The parallelograms have the same orientation

For number 2. we can deal with the question of area in some naive way, for exam-
ple dissection. (Recall the discussion of this earlier in this section.) Remember
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that we are dealing with a pictorial representation which gets progressively less
adequate as the dimensions grow, and we must not expect too much of it. For
3., if the dimension of V' is 3, one can get a sense of the orientation by curling
the fingers of ones right hand in the direction from the first vector to the sec-
ond, and noting the direction of ones thumb; the orientation is the same if the
thumb points out of the plane the same way each time. For higher dimensions
orientation is best controlled algebraically.

The reader should now have the sense that any two two pairs of vectors
v1,v9 and wi,we which lie in the same plane, create parallelograms with the
same area and have the same orientation will satisfy v; A vo = wy A ws. Here is
another example: Let

61+€2*€3
61+€2+63

(61 + 62) w1
263 w2

U1

V2

We then have the pictures

A Wa 2e AT
e:; \\\ % :
ete, el ) E
Wy 0 - =5

! erte

Figure 8.4: Different representations of the same product

The equality of the areas show can be seen by an elementary dissection. Com-
puting algebraically the matrix of coefficients for w; and wy is

11

11
-1 1
and this gives

’wl/\’wg:061/\€2+2€1/\€3+262/\63:(€1+€2)/\2€3

We now note that the above analysis, though taking place in a space V' of
dimension 3, would also be valid if it all took place in a subspace of dimension
3 in a space V of arbitrary dimension. Products of two vectors would still
be represented by parallelograms and everything in the above analysis would
remain correct with the exception of the remark concerning the use of a normal
vector, which would not be available in the more general case.

Let us illustrate these ideas by considering a sum of the form v Ave+v3Avy.
If v1 A vy and vs A vy determine the same plane, the problem is not interesting,
so we suppose this is not occurring. In an arbitrary vector space V the most
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common case occurs when the two planes only intersect at the origin, and this
case is also uninteresting because we can do nothing further. However, if the
two planes intersect in a line, and this is the case which must occur for distinct
planes if dim(V') = 3, there is then an interesting special case. We may then
find a vector w contained in the intersection of the planes. We illustrate in the
picture with v; = e; + e — %63, vg =e3, U3 =e1, and vy = €9

e,
erte,- e

Figure 8.5: Adding two rectangles

In these pictures we see the parallelograms for v; Avy and vs Avg and we choose
the vector w = e + e in the intersection of the two planes. It is then possible
to rewrite the products
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using this w, so that vy Avy = w Aw; and v3 A vy = w Aws. Of course, wy and
wsy are not uniquely determined. They need only be chosen so as to conserve
the area. In our case this can be accomplished by

e+e- 36
Figure 8.6: Adding two rectangles

taking

v Avy = (€1+€2—%63)/\€3=(€1+€2)/\€3=w/\63

v3Avy = erNea=(e1+e)Aea=wAes.
We then have

vi1 ANvg +v3Nvg = wAez+ Nea
= wA(e2+e3)

which we can picture as

&t &

et e,

Figure 8.7: Sum of two rectangles

Thus, in the sense of Grassmann algebra, we have added the two parallel-
ograms.

In a similar way, products of three vectors can be represented by paral-
lelopipeds. Higher dimensional objects can be imagined in analogy to those
described.
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Figure 8.8: Representation of product of 3 vectors

An arbitrary element A € A"(V) will be a sum of products of r vectors
which in general will not collapse into a single prodict. In this case our geometric
intuition for A remains weak at best. (Those who are familiar with homology
theory will sense the similarity to chains in that context.) We best we can do is
visualize the individual r-parallelograms corresponding to the summands of A.

We will now attempt to clarify pictorially the orientation on vy A vg A vs.
Below we have shown the parallelopiped representing v; A v2 A v3 and we have
drawn in the orientations

Figure 8.9: Representation showing orientations
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and now we show and exploded view:

Figure 8.10: Exploded view showing orientations.

Arrows for the faces determined by v; Ava, v2 Avs and vz Avy. These particular
orientations are determined by the fact that

(’Ul/\’Ug)/\’Ug = (’UQ/\’Ug)/\’Ul
= (’Ug A\ ’Ul) A\ (%]
so that in each of the orders we the vectors form a same handed system as

v1, U2, v3. We can now order all the sides by following the rule that orientations
must cancel when they meet at an edge. Thus in exploded view we have
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8.4 Geometrical Interpretation of V*

We wish in this section to provide a geometrical interpretation of V*. While
certain aspects of this interpretation are incomplete, it nevertheless gives a way
of visualizing the elements of AP(V*) and, surprisingly, was discovered over a
hundred years ago.

We will begin our discussion with more generality than is really necessary
for this section but which will be helpful later in the chapter on manifolds. In
this Chapter we will assume the field is always the real numbers R. We first
consider a one dimensional vector space V and then we will interpret an element
f € AY(V*) = V* to be pictured by a series of vertical lines.

Figure 8.11: An element f of V*

This representation of f we now superimpose on the a horizontal line represent-
ing V' on which a basis element e; has been chosen.

Figure 8.12: f and an element of e; of V

This particular example is set up to represent the element f = 2e! € V*, and
the picture is interpreted by counting the number of intervals crossed by e
to give the value f(e;) =< 2e!,e; >= 2 We further interpret f to be a the
description of a (constant) linear density 2. If we wish to illustrate with units,
the e! represents one centimeter and f represents a density of 2 grams/cm.
Then < f,e; > represents the mass of two grams. Similarly, we represent the
situation v = 2e; as

Figure 8.13: An element f of V*

For a physical example, suppose we have a wire of density 4 gm/cm and we
wish to find the mass of a wire of length 2 cms. We have g = 4e! for the
density and v = 2e; for the length, which we diagram in Figure 4. which
illustrates that < g,v >=< 4e',2e; >= 8; that is, the wire has mass 8 gm. If
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N T N N T S N |
rrrrrrrrTrTrTd

L o o | e
0 v

Figure 8.14: (g,v) =8

| | | | | |
I T T T T T

el —————]
0 125¢

Figure 8.15: < 261, 1.25e; >=2.5

we stretch our imaginations a bit we can make this work in general; for example
< 2et,1.25e; >= 2.5 is illustrated in Figure 5.

We could refine the system by putting subdivisions in to make it easier to count
fractions of a unit:

et HHHHHHHHHAHHHHH
0 125e;

Figure 8.16: < 2e!,1.25e; >= 2.5 in high res

but we are not really interested in refining the system to this degree. We could
also change the base unit from cm to inches and correspondingly change the
spacing between the lines to represent ounces per inch.

In terms of our previous theory, choosing a ”distance” between the vertical
lines is choosing a basis element Q* for A1(V):

I I I I_QQI I I

Figure 8.17: Diagram of basis element

and then %Q* is represented by

| I_QQI |

Figure 8.18: Diagram of % basis element

and 20* is represented by
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IIIIIIII’F?Q"IIIIII

Figure 8.19: Diagram of twice basis element

Associated with the choice of Q* € V* is a choice of 2 € V' which fits precisely
between the two vertical lines of (2*:

e

Figure 8.20: Diagram of both basis elements

In our example, since Q* represents 2 gm/cm, 2 will be a vector half a centimeter
long.

We now turn to the case dim(V') = 2. We first interpret elements of AL(V*).
We choose a basis in V' and a corresponding dual basis e!, e? in V* and ask how

0 &

Figure 8.21: Diagram of e! and e? from V

to interpret f = Aje! + A2e?. We interpret f as a series of equidistant parallel
lines generated as follows. The first line is the straight line connecting )\%61 and
/\%62. For clarity we will use a specific example; if we take f = 2e! 4 e? this is
the line shown on the left side of Figure 12. The second line is the line parallel
to this and through the origin as shown on the right side of Figure 12, and then
a whole series of lines is determined by these two as in Figure 13.

The series of parallel lines represents f = 2e! 4+ e2. The extra mark has a
significance which we will explain shortly.

We now want to relate the this picture of f € A'(V) to the value of f
on a vector v, that is we want to use the picture with the vector included to
determine the value of (f,v). To do this we define a stripe as the region between
two of the parallel lines. We then draw the vector into the picture and count
the number of stripes through which the vector passes. This is then the value

of (f,v).
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2 2
0 & 0 &

Figure 8.22: Partial Diagrams of 2e! 4 €2

[

Figure 8.23: Complete Diagram of 2e! + ¢?

We take as examples the vectors v = e; + €3, u = —ey + €2, and w =
1.5e; + .5ey. First we concentrate on v, where we see in the picture that v

crosses three stripes:

Figure 8.24: Value of 2e! + e? on vectors u,v,w € V

and this tells us that (f,v) = 3. If we calculate this we find
(fiv) = (2e' + €% e1+e) =2+04+0+1=3.

in agreement with the result from the picture.
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To justify the pictorial representation, we note that it is clear, first that
(f,e1) =2 and (f,e2) =1 and, second, that the method of computing (f,v) is
linear in v. Thus our method correctly represents f = 2e! + e2.

For the other vectors v and w, pictorially we have

and computationally

(fiw) = (f=2e'+e% 1.5e;+ .5e2) =2-15+1-5=35
(fiu) = (f=2e"+e* ~leg+1leg)=2-(=1)+1-(1)=-1
Notice that in the visual computation of (f,u) = —1 we obtained the result —1.

This is where the small sign (>) plays its role. This sign indicates the positive
direction of the series of parallel lines. Vectors like v and w which cut the lines in
this direction (rightwards in this case) count the strips positively. If the vector
cuts the strips in the opposite direction, like u, then the result is negative. The
element —f = —2e! — e2 € V would have the same series of parallel lines, but
the positive direction of the lines would be reversed.

The diagram for — f then looks like

[T

Figure 8.25: Diagram for —f = —2e! — €2

Finally, we note the patterns of parallel lines that correspond to the basis vectors
el and e? of V*. They are Before going on, it might be helpful to provide a

Figure 8.26: Diagrams for e! and e

physical example to of how the parallel lines of a linear functional could be
interpreted. There are many ways to do this but perhaps temperature is the
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most familiar. We could interpret (f,v) as the temperature at the head end of
the vector v, or, more generally and since everything is linear, we could also say
that (f,v) gives the difference in temperature between the head and tail ends
of the vector. The parallel lines of f then can be interpreted as the isotherms of
the temperature (lines of constant temperature) and the symbol (>) indicates
the direction of increasing temperature.

Another possible interpretation would be electrostatic potential where the
parallel lines are equipotential lines.

Next we consider A%2(V). Let us consider a product f A g where f is the
same as in the previous part of the section and g = e' + 3e?; we diagram both
below. Hence we might reasonably represent f A g by putting both sets of lines

L

f= 2el+e? g= el+3e?

Figure 8.27: Diagrams for f and g

on the same graph: The crossed lines representing f A g can now be used in the

Figure 8.28: Diagram for f A g

following manner. If we have a parallelogram representing v Aw in the plane, the
value of (f A g,v Aw) can be found by counting the number of areas formed by
the crossed lines which are inside the the parallelogram of v A w. For example,
we have shown the parallelogram for e; A e3. If we count the number of areas
formed by the crossed lines and inside the parallelogram of e; A e2 we see there
are approximately 5 such units of area. Hence (f A g,e1 A e2) is approximately
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5. If we explicitly compute this we have

(fAgieine) = ((e'+2e) A (3e" +e),e1 Ne)
= (5l Ae?er Aey)

_ng

Figure 8.29: Diagram for f A g

There is still the question of orientation to deal with. We will just deal
with this cursorially, leaving the interested reader to fill in the details. If we
want to discover whether a given system of crossed lines corresponding to f A g
is positively or negatively oriented, we start with one of the lines of f and go
around a parallelopided in the direction considered positive in comparison to
the basic choice of = ey A ey (which is counterclockwise in the above picture).
As we go round the parallelopided in the proper direction (starting with an f
line) the arrows will point IN or OUT. Form the sequence of INs and OUTs

from the arrows:
left picture: I O O I

middle picture: I I O O
right picture: O I I O

The rule is this. If the first two in the sequence are the same, then f A g is
negatively oriented and f A g = a)* with a < 0. If the first two in the sequence
are different, then f A g is positively oriented and f A g = a)* with a > 0.

We now turn the case of dim(V) = 3. In this case a linear functional
f € AY(V*) = V* is represented by a system of equally spaced planes determined
analogously to the previous case; if

f = )\161 + )\363 + )\363

then one of the planes generating the system goes through the three points
(1/X1,0,0), (0,1/X2,0), (0,0,1/A3) and the second is parallel to it and through
the origin. The others are parallel and spaced at identical intervals. Figure 20
shows the planes for 2e! 4 2e? + 2. It would be possible to use some sort of
little cone to indicate the increasing direction for the planes in analogy to the
two dimensional examples, but we will not pursue this option.

Just as in two space, it is possible to determine (f,v) by counting the
number of layers between the planes a vector passes through, as illustrated in
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-4 0

defini ng correspondl ng the sequence
triangles plan of planes

Figure 8.30: Diagram for f = 2e! + 2¢e3 + €3

&

Figure 8.31: Calculating (f,v)

Figure 21 for v = e; + ez + e3 where we have shifted the planes downward to
allow viewing of the vector. As is visible, the vector v cuts through 5 layers
giving the value (f,v) = 5. This is also the result of calculation:

(f0)

<2€1+2€2+€3,€1+€2+€3
24241=5

We now turn to representing elements of A%(V*). For example if we take
the elements f = 2e! + 2¢? 4 €2 and g = 5e3 of A'(V*) illustrated in Figure
22 and form their product f A g we get which shows how an element of A%(V*)
determines a system of rectangular tubes. There is an interesting historical
circumstance here; In the 1860’s James Clerk Maxwell was working on the
mathematical description of electric force fields which he referred to as “tubes
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/

/
/
/

: N

f=2e+ 2e+e, 9=56;

Figure 8.32: Diagrams for f and g

Figure 8.33: Diagram for f A g

of force”. He then described surfaces as cutting these tubes, and the “flux”
was a measure of how many tubes the surface cut. The tubes to which he was
referring are exactly the tubes visible in the above figure. Thus in some sense
none of this material is really new. We will return to this in Chapter 9.

It is important to realize that the representation of f as a picture is highly
non-unique. Also, there are issues of orientation to worry about, which are a
little difficult to represent pictorially. For example, in the above example

fAg = (2" +2e* +¢e*) Abe?
= 10e! Ae® +10e® A e® +5ed A e?
= 10e' Ae® +10e* A e3
(e* +e?) A10e?

which in some ways would make for a simpler picture.
We now wish to examine the interaction (f,v) pictorially. To do this we
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will make the situation a bit simpler. We will take v = ex A (—e1 +e3) € A%2(V)
and f = 2e? A 3e3 € A2(V*). These are illustrated in Figure 24. To illustrate

—&te
&4 v 4
O %
) &
V=6n (-6 +€) f=2e25 3e3

Figure 8.34: Diagram for (f,v)

the interaction of the two objects, we move v forward and extend the tubes so
that the just reach v. The value of (f,v) is then equal to the number of tubes

BRI S &
e, ;
v >
F8
o) o / e
v=en(-gte) f=2e’x3e3

Figure 8.35: Better Diagram for (f,v)

cut, which we see is 6. Hence (f,v) = 6 which we now verify by computation:

<f7v> = <2€2 A 3635 ez N\ (761 + 63)>
= —6(e*Ne’ea Aer) +6(e? Ne eq Aes)
= 6023 4+6055=-6-0+6-1=6.

Our last case is concerns A?(V*) which we illustrate with f = 2e!A2e2A3e3.
The picture is from which we see that the value of f on the unit cube e; Aea Aes
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%A /

AN

&
f=2eln 2e2A3€3
Figure 8.36: Diagram for a 3-form

is 12 since the unit cube would enclose 12 of the cells of f, which is then easily
verified by computation

(fier NeaNes) = (261/\262/\363,61 Aes A eg)
= 12(61/\62/\63,61/\62/\€3>
= 12(Q% Q)
= 12.

This concludes our attempt to render the meaning of A" (V*) visually. While
a lot of the subtleties are lost in the higher dimensional examples, I neverthe-
less feel that the geometric entities we have illustrated are are quite helpful in
understanding the action of A™(V*) on A™(V).
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8.5 Geometrical Interpretation of x : A"(V*)
A""(V) and *: A"(V) — A""(V*)

Figures need relabeling and maybe some repositioning

Recall from section 4.5 that the %-operators were defined by

x: AT(V) = A"TT(VT) LA xv = (L)
x: AT(V*) = A"T(V) u Al = (l,u)Q

for £ € A"(V*), w,v e A™(V) and €, Q* satisfying the condition (Q2*,Q) = 1.
These basic equations make it possible to easily interpret the geometric meaning.
We begin with dim(V) = 2 and £ € A}(V*) = V* so that ¢ € A'(V). The basic
equation uA*xf = (¢, u)Q) then becomes a condition on the area of a parallelogram
formed from u and *f. We represent ¢ by the usual sequence of parallel lines

Figure 8.37: u A %l = (£, u)Q2

and also illustrate {2 = e; A e2 and a vector u. See figure 1. Since w crosses
exactly one stripe, we have (¢, u) = 1, and this is true for any vector whose arrow
end lies on the line through (the arrow end of) e3. We think of u as representing
any such vector. Finding a representation for ¢ then reduces to finding a vector
x( so that the parallelogram formed from u and #¢ (including orientation) will
have the same area as the parallelogram formed from €2 = e; A es. This is
simple; it is only required to point *¢ along the line of ¢ through the origin, and
adjust its length so that it will have the required area. This is illustrated below
in Figure 2. The exact position of u is of no consequence, since sliding its arrow
end up and down the line does not change the area of the parallelogram.

It is interesting to use the picture as a guide to deriving the formula for
x0. If £ = Ae! + Aae? then the series of parallel lines is generated by the line
through (the arrow ends of) A—e and 62 Thus *¢ = a(%eg )\1161). We

may determine « if Ay # 0 by multlphcatlon by es:

(Le1)d = eg Axl
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Figure 8.38: u A *£ = (£, u)$)

1 1
el +xe?e) = erAa(~—ey — —e1)
A2 A1
o o
MO = —eiAea=—0
1 )\261 €2 o
so that & = A1 A2 and thus
# = x(Ae! + \pe?) = a(ieg - iel)
A2 A
1 1
= Ma(—ey— —
1 2()\262 ¥ 61)

= Aex — e

which is the formula given by the algebraic methods of section 4.5.

We now turn our attention to the opposite problem of geometrically rep-
resenting *v as a series of parallel lines. This is a little harder because our
intuition for families of parallel lines is not so well developed, so we use a little
algebraic help. Let

V= alel + a262

SO

XU = al*el—i—aQ*eg

ale? —a%e?.
Our standard method for drawing the parallel lines of a linear functional ¢ =

Bre! + Bae? is to generate them by the line through the arrow ends of %el and

é@g and a parallel line through the origin. In our case these are —%el and

ﬁeg. A vector going from the first to the second is then
1 1

Eegf(—gel) = a1a2(04262+04161)
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1

ala?

Thus the lines of xv are parallel to v, and the above recipe determines the
spacing. All that remains is the orientation, which we determine as follows.
Select w so that v Aw = af) = ae; A ey with @ > 0, (that is, v and w are same
handed as e; and e3). Then we have

wA*l = (L,w)Q for £ € A (V™)
wAx*xv = (xv,w)§)
wA ()Y =
—wAv =
vAWw =
af) =
This shows that (xv,w) = o > 0 so that w is in the increasing direction for the

parallel lines, and this determines the orientation, which we see in the following
picture:

Figure 8.39: u A £ = (¢, u)Q2

The (<) always points out the side of v that e lies on with respect to e;. (The
above picture above uses v = —2e; + 2e5, *v = —2e! — 2¢? for an example.)
Now we present a more complete picture to illustrate the equation

CNxv = (L,0)Q".

The following picture includes the linear functional £ = e! and shows the par-
allelogram representing Q* = e! A €2 and also the parallelogram representing
¢ A xv. The width of the

strips between the lines representing *v has been set so that the parallelogram
representing £ Axv has exactly half the area of that representing Q*. This means
that that £ A*v = +2Q*. To see why this is so, recall how an element in A2(V*)
is evaluated on an element of A%(V'); one counts the number of cells representing
the the first which lie in the area representing the second. Hence, if one cell is
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Figure 8.40: u A *€ = (¢, u)Q

twice as big as another, it’s value on a given area is half as big. In fact, as we
now calculate, ¢ A xv = —20Q* but we will leave it to the reader to sort out the
orientation for himself. The calculation runs
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CAxv=e' A (=2t —2e?) = —2(etnel +el Ae?)
= —2(0+e'ne?)
= 20" ={,v)Q",
since
0,0y = (e', —2e1 + 2es) (8.1)
= 2

so that indeed ¢Axv = (¢, v)Q2*. The last calculation is represented geometrically
by the parallelogram representing e! A v having a side half as long as v.

Next we turn out attention to the case of dim(V) = 3 and begin with an
¢ € AY(V*). We will draw the axes orthonormal and use the example ¢ =
el 4 e? + €3 so that the situation will be easy to visualize. We represent ¢ as
usual as a sequence of planes,

\

&

Figure 8.41: u A %€ = (¢, u)Q

two of which are shown above. From our experience in the dim(V) = 2 case
we suspect that £ will be an area which we can represent (in many ways) in
the shaded plane and which, when multiplied with a vector v going from the
origin to the transparent plane (for which (£,v) = 1) will form the element
) = e; Aez Aes. In contrast to the two dimensional case, it is not totally
obvious how to do this geometrically, although it could be so done. We will
proceed algebraically and illustrate the results geometrically.
We find #¢ = x(e! + €2 + €3) in the usual way:

* x(et +e? + )

= 62/\63761/\634’61/\62.

It is not obvious that this element actually lies in the shaded plane, and to see
this we must make some modifications.
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*f = eygNeg—e; ANeg+el Aes
(62—61)/\€3+€1/\€2
(62761)/\637(62761)/\62

= (62 — 61) A\ (63 — 62)

In this form it is obvious that the representing parallelogram does indeed lie in
the shaded plane.
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9.1 Introduction

A very fruitful place for Grassmann’s ideas is projective geometry. Grassmann’s
original presentation of his theory was projective, but we have taken a vector
space approach as this is a more familiar environment for most mathematicians
now, and improves the flexibility of application. The two approaches are entirely
equivalent being merely different interpretations of the same symbols. However,
analytic projective geometry is extremely important, lying as it does in the
foothills of Algebraic Geometry, and every mathematician should be acquainted
with its basic ideas.

Our approach to projective geometry is slightly non-standard because our
concern is the application of Grassmann Algebra. However, the differences from
a standard treatment might be considered enrichment by a fair minded person.
Also, while the treatment might look original it is only a trivial elaboration of
the ideas of Grassmann and those of standard projection geometry; no serious
innovation is claimed.

There is no ideal way to approach this subject. Every presentation has
serious drawbacks. The approach I take keeps related ideas together and is not
overwhelming in bringing on too many ideas at once, but is seriously inefficient.
My attempt at an efficient treatment mixed up the concepts so thoroughly I
feared nothing would be clear, but I apologize to experienced persons who will
be annoyed at having to go through essentially the same material twice.
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9.2 Standard Projective Geometry

In this section I will introuduce homogeneous coordinates and simple analytica
projective geomery in two dimensions. In a later section I will relate this to the
set of lines through the origina in 3 space, but we will not use that interpre-
tation in this section. Higher dimestions are treated analogously. We need a
nodding familiarity with the standard treatment in order to see how it relates
to Grassmann’s treatment, and it is enormously interesting in its own right.

Two dimensional Euclidean Geometry, essentially R x R with the standard
inner product, is seriously asymmetric with respect to points and lines.

two points determine a line
two mon parallel lines determine a point

Desargue (1591-1661) sugggested the addition of “points at infinity” so that
parallel lines would have a point at which to meet. Each family of parallel lines
determines a unique point at oo through which all lines of the family go. The
technical terminology is “All lines of the family are incident with the point at
00.” This adds a “circle” of points at co except that antipodal points on the
circle are identified. This is a very crude picture of the Project Plane P?(R) but
it can be helpful in getting an initial feeling for the subject. Since the “circle”
is at infinite “distance”, its radius is infinite and so its curvature is 0. Thus
it can also be thought of as the “line at co,” and this way of thinking is also
useful. Note that since two points determine a line, two points a co determine
the line at co. All of this can be analytically confirmed once we bring on the
equipment. After adding in the points at co and the one line at co we have
much more symmetry between lines and points;

two points determine a line

two lines determine a point

The first, but not the only, casualty of adding in the new points and line are
the loss of the inner product; the new structure has no simple geometrically
understandable metric or inner product; we must forego the idea of any two
points having a finite distance between them.

Another gain is that projections from the new structure P?(R) to itself are
extraordinarly well behaved and are handled well by the familar GL(3, R) (the
3 is not a misprint) as we will later show.

However, there is another serious loss. Two dimensional Euclidean space
R? = R x R is the direct product of R with itself, but this is not true for P?(R).
P}(R) is formed by adding a single point at oo to the real line, and this point,
residing as it does at either “end” of R, connects the two “ends” so that P!(R) is
topologically a circle. Thus, topologically, P}(R) x P!(R) is the direct product of
two circles and thus a torus (hollow donut, like an inner tube). It is intuitively
clear that this is not the same as P?(R):

P?(R) # P}(R) x P}(R)
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So there is both gain and loss in moving from R? to P?(R); it would be
unwise to consider either of them “better” or “more natural;” mathematics
needs both. In the context of algebraic geometry P?(R) is the more natural
basic object, but even there tangent spaces to varieties are usually thought of
as R2.

Now a critical person might suggest that the whole idea of points at oo is
nonsense; in fact many students feel this way when introduced to this subject.
However, most of the students can be beaten into sullen acquiescence when
the points at oo are given coordinates. If objects have coordinates which are
numbers, it is harder to claim they make no sense. Pliicker and Grassmann both
gave coordinates to the points at co around 1842, in slightly different ways. The
standard treatment which I will present here is closer to Pliicker’s approach; we
will look at Grassmann’s approach later, and give a generalized treatment of
which both are special cases.

In the standard treatment a point in P?(R) is given by a triple [2°, 21, 2?]
of real numbers. (There is an analogous theory using complex numbers which
is used in algebraic geometry; there is no difficulty in switching from P?(R) to
P2(C).) The tricky point is that any non-zero multiple of the original triple
[ax?, axt, ax?] refers to the same point. Thus the triples

ar”,ar,ax
[2,4,6], [1,2,3], [5,1,3], [100,200,300]

all refer to the same point. And what point is that? This question asks for
the affine coordinates (X!, X2) of the point. We find these in the x! and 2?2
positions when the triple is adjusted to that 2° = 1, or put another way, if we
1 2
divide [z°, ', 2%] by 2° we get [1, %5, 4] so that we have
1 2
1_ 2_ 2
X = ) X = )
In our example the triple that begins with 1 is [1, 2, 3] and thus the point referred
to is (2, 3), which can also be obtained from the triple [100, 200, 300] by dividing
by 100. Thus we can go back and forth between the triples and the affine
coordinates with ease, the point (—7,5) having triple [1, -7, 5].
It will be useful to have a notation for triples that refer to the same point.
We wil use ~ for this so we write
[a2?, axt, ax?] ~ [20 2, 2%
[2,4,6] ~ [100,200,300]
But, you say, what if 2° = 0? To investigate this question and get some
practise with the notation, let us look at the typical line in affine coordinates

AX'4+7X?-3=0
We parametrize the line by setting X' = % and thus X2 = —t + % and thus
the affine coordinates are (%, —t+ % Hence the projective coordinates are
Tt 3 17 3 4 12]

L=, —t+ 2]~ == =14 2]~ 2,7, -4+ =
L=t 2~ g, g1+ 2] ~ [T 4
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Now it is clear from the forms of the affine and projective coordinates that as
t — 00

(Z,—t+32) — o
(4,7, -4+ 2] — [0,7,—4]

and thus a reasonable interpretation is that [0, 7, —4] are the projective coordi-
nates of the point at co on the line 4X! + 7X?% — 3 = 0. In a similar way

[0, pt2, —p1] is the point at 0o on g + 1 X' + e X? =0

The family of lines parallel to ug + 1 X! + u2X? = 0 all have the form jig +
p1 X+ peX? = 0 and we see that they all have the same point [0, pz, —p1] at
00.
We also see that 2° = 0 is characteristic of points at co. Let us look at
1 2
this a little more closely. Using the equations X! = o, X 2= 75 we can get the
projective equation of a line easily by multiplying through by z;

po + X+ e X? =
1 2
po + p1 5 + p2 o
por’ + paat + por® =

The last is the projective equation of the line, and it has the advantage that we
can now include the line at oo by taking pp =1 and p; = pg = 0. Thus 2o =0
is the projective equation of the line at oo.

Looked at another way, the intersection of the line pox® + g1zt + 22?2 =0
and the line at oo is formed by setting 20 = 0 leaving us with p1zt + p2a? =0
with obvious solutions [0, g2, —p1] and [0, — e, p1] which of course give the same
point, being non-zero multiples of one another.

The last equation suggests an extemely important idea. We note that
[po, p11, p2] and [2°, 21, 22] enter into the equation pgz® + pyz! + p22? = 0in a
symmetrical manner. This suggests that the points (represented by [2°, 2!, 22])
and the lines (represented by [uo, 1, 2], with multiplication by a non-zero
constant giving the same line) enter into projective geometry ina symmetrical
manner, which we have already indicated by the symmetry of

two points determine a line
two lines determine a point

This is the famous Principle of Duality which is fundamental in projective ge-
ometry and can be systematized by

A theorem remains valid if the words “point” and “line”
are replaced by the words “line” and “point”.

as in the above example.
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Above we found the intersection of the line poz® + pizt + poz? = 0 with
the line at co. It is natural, then, to want a formula for the intersection of any
two distinct lines

pox’ + paat + poa®
uoaco + ylxl + u2x2 =
This is very easy once we set things up correctly.
Let us set e = [1,0,0], e2 = [0,1,0], e3 = [0,0,1] so that {e1,e2,e3} is
a basis of the vector space of all [a,b,c]. Let {e!,e? e*} be the dual basis,
Q=-e; Aea Aeg and QF = el Ae? Ae?. Now recall the general formula

A xz = ([, 2)0" we A" (V) zeA"(V)

Now we take 1 € A*(V*), u = p;e’ where y; are from the triple {y;} in gz’ = 0.
Forming v in the same way from the triple {;} in v;2° = 0 we set z = *(uAv) €
AY(V). Then, using the general formula and for some k& € Z whose value we
don’t need,

pAxx(pAv) = (u,*(pAv)Q*
(“Dfpnpnv = (ux(pAv)Qr
0 = {(uz)Q"

Thus we have p;z° = (u,r) = 0 for = x(u Av). In a precisely similar way we
have v;xt = 0. Thus = = *(u A v) is the point of intersection of the two lines.

From these results we can produce useful computational formulas for the
intersections of two lies. Let the two lines, in projective form be

— et — .l
W= pie v =vje

and then the point of intersection & = x(u A v) will be calcuated thus:

puAv = (e — povi)et Ae? + (pavg — pova)e® Ae® + (uovy — pivg)e’ A el
x(WAv) = (iva — pavi)eg + (pevo — pova)er + (ov1 — pavo)esz
T = (M1V2 — parn)eg + (uavo — pove)er + (Hov1 — pavo)es
[xo,xl, ZEQ] = |p1V2 — M2V, P2y — Hol2, o1 — MlVo]
[ M1 Mz M2 Mo Ho M1 }
vo Vo |,| Vo "N

51 52 # 0 (meaning the lines are not parallel) then the affine coordinates
1 V2

of the intersection will be

If

M2 Mo Ho M1
vy 1 v 1

M1 M2 ’ M1 M2
LS ) vy o
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This is just Cramer’s rule in a thin disguise.

Example 1.

X'+ X?2=14 A%+ 2t + 22 =0
X'—-92X%2=-5 52° + 2! — 222 =0

Then using the above formulas

1 1 1 —4 -4 1
0,1 .21 _
S N I S H |
= [735 735 79] ~ [15 173]
(X1’X2) = (LS)
Example 2.
X'-3X’=5 —52° 4+ 2! =32 =0
—2X'+6X% =11 —112° — 22" + 62° =0
Then using the above formulas
1 -3 -3 =5 -5 1
0,1 .21 _
%207 = H—Q 6] 6 —11H—11 —QH

= [0,63,21] ~[0,3,1]

which is the point at oo on both lines. Notice how the projective techniques
handle this case with no strain.

Now it is time to make use of the principle of duality. We want a formula
for the line through two points which is dual to the question about the point on
two lines which we just handled. Due to the algebraic duality between the two
problems, the answers must come out in a similar way. Let the two points be

[0 21, 2?] and [y°, y!, y?]. Then the solution must be
L=x(zNy)
with coordinates
11 2 0,0
_ r-y -y ry
[Co, l1, b2] = { 22 |0 0| et g }

The really careful reader will note that in the determiant I have transposed the
rows and columns, in keeping with the idea that points have vertical vectors
and lines horizontal vectors, a convention which we have been ignoring in this
section.

Example 1. line through (1,3) and (5,—2). The projective corrdinate are
[1,1,3] and [1,5,—2]. Then the line £ = x(z A y) through these two points will
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have coordinates (in the standard dual basis)

1 51|13 —21]1 1
s Sf[F s - e
—172° 4+ 52t + 422 = 0
5X'+4X%2 = 17

Example 2. line through points with projective corrdinates [0, 4, 3] and [1, 5, —2].
Then the line ¢ = x(x A y) through these two points will have coordinates (in
the standard dual basis)

4 5113 —21l0 1
s ol T S]] = ey
—2320+3z' —422 = 0
3X'—4X? = 23

We end this section with a demonstration of the power of projective geom-
etry to give stubstance to our intuition and instincts. Who has not looked at a
hyperbola with it’s asymptotes and not felt that the asymptotes are tangents to
the hyperbola at co? ! Projective Geometry allows us to justify this intuitive
impression. We will will now look at this in detail. Let us use

X x??
? — ? = 1 Hyperbola
X! X2
> — 3 = 0 Asymptote

Finding the projective forms of the curve by using X! = i—; and X2 = i—z gives

12 22
02 T T B
At =0
x! x?
_— = — = 0
2 3

The point at co on the asymptote is
[2°, 2", 2] ~ (0,1, 1] ~[0,2,3]

and this point is also on the hyperbola as we can verify by inputting the coordi-
nates into the equation. Thus [0, 2, 3] is a point of intersection of the hyperbola
and the asymptote, as we suspected. Notice two things in passing. First, the in-
tersection point is both in the “upper right” and “lower left” of the graph; they
are the same point. (The intersection with the second asymptote is [0, 2, —3]

1The question is rhetorical; in actual fact not all that many people have this impression.
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and is found in the “lower right” and “upper left.”) In general a straight line
in projective space will hit a conic twice; the fact that an asymptote has only
one point of intersections suggests the hyperbola and asymptote are tangent.
This can be verified by using a projective transformation. Imagine the the hy-
perbola and asymptotes drawn on a transparent sheet and use a flashlight to
project the sheet on a wall. If one is clever one can arrange it so that the point
[0,2, 3] projects into the point [1,1,0]. Analytically this can be done by the

linear transformation?

Il
K &
- [}

|
K

Substituting these into the previous projective equations for the hyperbola and
asymptote one gets

~12 ~02
~22 T x _
~1 ~0
@
2 3

Now we devide by #°2 and z° to get the affine equations

B X12 1
22 _
Xt = op
Xt 1
2 3
which meet at the image [2°, %', #%] = [3,2,0] ~ [1, %,0] of the point of inter-
section [29, 21, 2%] = [0, 2, 3]. On graphing, we see that the vertical line X1 = %

is indeed tangent to the image of the hyperbola (which is another hyperbola)
at the affine point (X', X?) = (2,0). We have slid over a few details here, such
as that linear transformations preserve tangency, but the basic idea should be
clear.

Everything we have done in this section could be done just as well using
the field C instead of R or in fact any field you like. The formal manipulations
would be the same. Standard algebraic geometry is done over C.

If you would like to try this, here is a little investigation you might try.
The two circles

X12 —|—X22 — a2
X12 +X22 — b2

when you have switched over to projective coordinates as before, both go through
the complex points at co with coordinates [0,4, 1] and [0, —i,1]. You can show

2In actual performance it might be necessary to do a sequence of projections on the wall.
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that the circles are tangent to one another at each of these points by using the
complex linear transformation

0 _ 'L .%2
1 _ .%2
2 = jo

I ought to resist the temptation to mention one of the most beautiful results
in mathematics; Bezout’s theorem in P?(C). This is

Bezout’s Theorem A curve of degree m and a curve of degree n
intersect in exactly mn points when points at oo (possibly complex)
and multiplicity of intersection are taken into account.

For examples of multiplicity, consider two ellipses which usually intersect
at 4 distinct points, but may intersect at two ordinary points and a point where
the ellipses are tangent (point of multiplicity 2), or two distinct points where
the ellipses are tangent at each of the two points (two points of multiplicity
2) or the ellipses do not intersect in the real plane (in which case they have
complex intersections possibly with multiplicity. In all cases the total number
of intersections, counting multiplicity is 2 x 2 = 4.

A line usually hits a parabola 1 x 2 = 2 times but the X!-axis is tangent
X2 = X g0 (0,0) is an intersection of multiplicity 2 and the vertical axis
X' = 0 hits the parabola at (0,0) and also at the point [0,0,1] at co. In all
cases there are thus two points of intersection.

For Bezout’s theorem to be true, it is critical to be working over the alge-
braically closed field C. If you enjoyed this excursion there are many wonderful
books you can consult to learn more. I have a particular fondness for [?] which
deals with plane curves in P?(C). If you wish to go for the full algebraic geome-
try experience two beautiful and classic texts are [Sharfarevich| (more concrete,
at least to begin with) and [Hartshorne] (more abstract). Another possiblity
is [Perrin] which is a shorter introduction and very student oriented but gets a
long way.
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9.3 Weight Functions

We now want to look at the material in the previous section in a different way.
A point in P?(R) has coordinates A[z", 2!, 22] where A € R — 0. If we let A run
through R, we always get the same point in P?(R) (unless A = 0) but we get
a line in 3-space. If 29 # 0 there will be a unique point in 3-space on the line
with 2% = 1. Thus the plane in 3-space with 2° = 1 is a model for the affine
part of P?(R). Each infinite point in P?(R) has coordinates A[0, z!, z?] and this
is a line parallel to M = {[2°, 2!, 22]| 2° = 1}. Thus the points of P?(R) are in
one to one correspondence with the lines through the origin, and indeed P?(R)
is often defined as “the set of lines through the origin in R3,” which is accurate
but confusing to beginners.

With this picture, then, a line in P?(R) (visualized as M) corresponds to
the intersection of a plane through the origin in R® with M, plus the point at
oo corresponding to a line in the plane through the origin and parallel to M.
Lines in R? in the plane thus correspond one to one with the points on the line
in P2(R)

Similarly a curve in P?(R) will correspond to a set of lines going from the
origin through the curve in M. If the curve is closed this will be conelike. There
will be additional lines parallel to M if the curve has points at oc.

Now the obvious question is “What is so special about the plane M =
{[2° 31, 9% | 2° = 1}?7” The answer is ”Nothing at all,” as we are going to
show. We are going to generalize slightly a construction of Grassmann (called
“weighted points”) by introducing a linear form for the weight function A(z),
which will thus have the form

Az) = Aoz + Mzt + Aaz?

This weight function will usually be kept constant during a discussion. The new
model of P?(R) will now be

My ={[z° 9", v°] | A(z) = 1}
and we will also use the notation
M, = {[2°y", ]| M=) =}

We could use any M, (plus points at 0o) as a model of P2(R). However there is
no advantage in this and we will stick to M; as the affine part of our model of
P2(R).

The points in M; correspond as before to lines through the origin in R3
and the points at oo correspond to lines through the organ parallel to M;.
Notice that the plane though the origin parallel to M, containing the lines
that correspond to points at oo, is My, and the triples in this plane satisfy
A%y 9°]) =0

Thus our new model of P?(R) consists of two parts; the points of M; char-
acterized by A(z) = 1 and what we shall call vectors which are triples with
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x = [2° 2, 2] with A(x) = 0. These correspond as usual to points at co when

we identify [20, 21, 2%] with A[z°, 2!, 22]. However, in Grassmann’s picture the
points at co fade out, and their role is replaced by the vectors. We can of course
switch pictures in the wink of an eye whenever it is helpful. If we explicitly
define the equivalence relation ~ by

WO yh v ~ 202", 2% & [0yt y7 = A0, 2", 2% with A#0
then we can write

PA(R) = My U (Mo/ ~)

I mention in passing that topologically Mg/ ~ is just the unit circle with an-
tipodal points identified.

Now let us contrast the standard model of projective geometry with Grass-
mann’s which we are about to study. In the standard model we use

[z, 2, 2%]) = 12° 4 02! 4 022

and the only use of the vectors is to determine points at oco.
Grassmann’s approach to the subject differs from the standard version in
that

a. AMz) =2+ 2! + 22
b. The value of A(z) is used for weights

c. The infinite points are replaced by the vectors of M

Thus Grassmann’s picture amounts to an augmentation of P?(R) with additional
structure, which makes it look a lot like R? but interpreting the points in R? in
a different way, and the reinterpretation is a lot like P?(R). Of course, R? and
P2(R) are of different topological type, so if we want to go back and forth some
fancy footwork is necessary.

We are doing all our development in P?(R) and R3, but it is important
to understand that we could just as well be doing it in P"(R) and R"*!. The
extension is so obvious and trivial that it is not worth losing the visualization
possible here in order to deal with the more general situation.

The next phase of Grassmann’s development is to introduce the weighted
point. Bach triple z = [2°, 21, 2%] with A\(z) # 0 has a weight given by \(z)
and is associated with a point  of M; given by & = A(lz) [2°, 21, 2%]. By the
construction, A(Z) = 1 so Z is in M;. Thus we say x is associated with the unit
point & and that x is & with weight A(x). and we can write x = A(z)Z. Such
multiples of unit points are called weighted points.

If AM(xz) = 0 then Grassmann calls x a free vector. (There is another kind
of vector called a line bound vector which we will discuss later.) Notice that
the point [0, 0, 0] counts as a vector in Grassmann’s system although it plays no
role whatever in the standard model of P?(R). The weighted points and the free
vectors together constitute all triples [z°, 2!, 2?] and they thus form a vector
space, with addition and scalar multiplication as in R3. In fact they are R3 for
all practical purposes, but we interpret the triples differently.
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We now wish to discuss the points on a line corresponding to p € R3*, with
1t # X and we assume the line goes through the distinct points z,y € M;. We
have p(z) = pu(y) = 0 and also A(xz) = A(y) = 1. Let 0,7 € (R) and

21 =0T+ TY
z1 is not a unit point; in fact its weight is
Mz1)=oXMz)+TAy) =0+ 7
Set

_or+Ty 1
o477 o+4T

oz + 1Y)

and now we have A\(z) = 1; hence z € M;. Also, z is on the line connecting x
and y because
1(z) = op(e) + 7ply) = 00+ 7-0=0

Although we have no metric, it still makes sense to ask the relation between the
segments (x to z) and (z to y). This we now examine.
First note z — x is a vector since

Mz—z)=Az)—AMa)=1-1=0

This vector is parallel to M; and also to the line p. Similarly, y — x is parallel
to the line to we must have

z—x = k(y—2a)
WY )
o+T N Y
1 lortry—(o+nz = sly-2)
T
T (y-x) = wly-n)
T
= K
oc+T
-
e = Ty
Similarly
o
y-z= -

Suppose now that we want z to lie % of the way from x to y. Even without a
metric we can express this as

=)
For this we need 7/(0 + 7) = % which gives

ocr+T1y 21x4+TYy 2x+y !
z = = = = - =
o+T 2T+ 71 3 3 8
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In words, if we want z to be % of the way from = to y, we weight x twice as

heavily as y and make sure the weights add up to 1; that is % and %

Notice that the ratio of I— and £ is just &

A better way to think of the previous example is as follows; we wish z to
divide the segment from z to y in the ratio 1 to 2. This gives preliminary values
o1 = 2 and 73 = 1 and then they must be scaled by their sum to o = % and
r=}

More generally we wish z to divide the segment from z to y in the ratio 7 to
0. Then it is only necessary to rescale 7 and o by their sum and form z = cx+7y.
Note carefully the order, which might seem a little counterintuitive.

Grassmann’s explanation of this runs along the following lines. If we have
unit points x and y we think of these points as having 2 kilogram and 1 kg
weights attached. Then z is the balance point of the segment. This physical
interpretation can be very useful for many purposes, both for intuitive under-
standing and practical calculation.

Grassmann’s original explanation of these ideas mixed up the previous the-
ory of weighted points and the wedge product. I have separated them as they
do have separate origins. We will combine them usefully later.

To proceed further, it is useful to introduce a notation which might at first
seem somewhat alarming. Suppose we have two parallel vector u and v and

that

v = Ku
Then I propose to write

v

K= -

u

The division notation for vectors is to be used only when the vectors are par-
allel in which case it makes perfect sense. We never use this notation with
vectors that are not parallel. The purpose of this is to eliminate very clumsy
circumlocutions.

We are now going to use Grassmann’s theory of weighted points to do some
geometry. We start with a simple result; The medians of a triangle meet at a
point two thirds of the way along each median.

z

Figure 9.1: Medians meet at a point

Let z, y and z be the three vertices of the triangle visualized in M; so that
they are unit points. Let r,s and ¢ be the midpoints of the sides xy, yz and zx
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(using z, y and z here as mere labels, not products). Then

r—+vy S_y—i—z . Z+T

2 2 2
We claim the three medians meet at a point w and additionally that

r+y+z
3

We need to show that w is a linear combination of z and s and that it divides
the segment xs in the ration 2 to 1. But 2s =y + z so

T+ 2s
=T = et e

which is exactly the requirement for w to divide the segment in the ratio 2 to 1.
Similarly w will be a linear combination or y and ¢ and of z and r, and divide
the segments in the proper ratio. This completes the proof.

You might wonder if there is a way to prove the similar theorem about the
angle bisectors meeting at a point. This can be done but it requires weighted
lines, not weighted points. Since the two theories are identical due to duality,
there is no difficulty.

The preceding theorem is a special case of the theorem of Ceva’: If we
connect the vertices of a triangle to the opposite sides, the three lines will be
concurrent if and only if the ratios of the divisions of the sides multiply to 1.
(We remind the reader of the terminology that three lines are concurrent if they
all meet at a point.)

3.

Figure 9.2: Theorem of Ceva

More explicitly using unit points x,y and z,

if r divides segment yz in the ratio %

and s divides segment zx in the ratio

and ¢ divides segment xy in the ratio

et LR}

Then segments xr,ys and zt are concurrent < %%% =1

3Ceva is pronounced Chayva approximately
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We will prove the = direction. The converse is left to the reader. Without
loss of generality we may assume that the coefficients have been normalized:
a+pB=v4+d=e+(=1. Then “r divides segment yz in the ratio £” means

B
z—r o«
=y B
Bz—pr = ar—ay
ay+ Bz = ar+pr = (a+P)r =r
Similarly
s vz + ox
t = ex+(y

Since w is linearly dependent on x and 7, there must be constants n; and 7; so
that

w = O1x+mr

Similarly, since the lines are assume concurrent,

w = bOy+ s
w = O3z+mnst

Then we have
w = Oix+mr = Oy+ms = O3z +nst

b1z +m(ay + Bz) = Oy +m2(vz +6x) = 032+ n3(ex + Cy)
= Oix+may+mpBz = by +nm2yz +nm20x = O3z + n3ex + 13Cy

Since x, y, z form a triangle, they must be linearly independent, so we have

91 = 772(5 = Tn3¢€
mo 02 = nsC
mpB = my = 03
Thus
a ma 0 vy my 03 T
B mB s 5 md 61 ¢ ml 6
SO

as required. Note how the use of Grassmann’s weighted points reduces the
geometry to trivial algebraic calculations, the geometric details of which we do
not need to consider, just as in ordinary analytic geometry.

Up to this point we have been emotionally locating the point z between x
and y which then presumes that o and 7 are positive. However, if we attach a
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positive weight to = and a negative weight (7 < 0, point being pulled up) to y
then the balance point will be outside the segment xy on the same side as x is
from y as shown in the figure. This figure illustrates

So+(-3)
z=-x+(—=
3 37
Then, as usual, we have
4
Y23 -4
z—r -3
-3
4 3 12z
y
4/3

Figure 9.3: Point with negative weight

Let’s analyze this in terms of lever arms(torque). If we scale z — z to be 1,

then z —y = 4. The mass times the lever arm from z is —% -4 = —% for y and
% 1= % for . Thus the total lever arm is thus
4 4
7 d t i) — — = —_ = 0
Zm(mance) 3+3

as it should be if z is the balance point. Of course, there is no real “distance”
here; we are just counterfeiting distance with the position coordinates.

In general there is little need to think explicitly of these matters (lever

arms) as the algebra will take care of itself, was we will see in the following
theorem of Menelaos*
Theorem of Menelaos Let x,y, z be unit points forming a triangle and let ¢
be on line xy, r on line yz and s on line zx. Then the points r, s, are collinear
if and only if the product of the ratios of the divisions of the the segments zy,yz
and zz equals -1.

We will prove the direction = and leave the converse to the reader. When
doing this the trick is to prove the r is a linear combination of s and ¢.

Suppose the three points are collinear. The ratios are

z—r lo'
r—y B
rT—s _ 0 N
s—z 0
y—1 €

= - =1
t—x ¢ €+¢

4Menelaos is pronounced in Greek with the accent on the second e and the la sounded as
a separate syllable: Me-né-la-os. The spelling Menelaus is a Roman barbarism.
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and these lead, as in the Theorem of Ceva, to

r = ay+ Pz
s = ~wyz+ox
t = ex+(y
V4
S

y t
Figure 9.4: Theorem of Menelaos

Since the three points r, s, t are assumed collinear, they are linearly depen-
dent, so their are constants 61, 05, 03 for which

011 + O35 + 93t =
O1(ay + Bz) + O2(yz + 0z) + O3(ex + Cy) =
(026 + 03¢)x + (010 + 03Q)y + (018 + Oay)z =

By the linear dependence of x,y and z we now have

026 + 03¢ :91(14—93( = 91ﬁ+92’y =0

thus
€ b a 03 v b
5oy ¢ h B 6
axe oo e Ly 0y by
B o ¢ ¢ B9 017" 027" 0y

as required.

There is the possibility that one of r,s or ¢t might wander off to co, as t
would if r = (y + 2)/2 and s = (z + z)/2. Nevertheless, properly interpreted
the theorem is still true. The best way to do this would be to reinterpret ratios
a/B as points in [3,a] € P}(R) and work from there. However, this would
have added another level of complication to the exposition, so I refrained, since
this is not a book on projective geometry but only an illustration of how nicely
Grassmann’s weighted points perform there.

Once more I remind the reader that the notation

zZ—T «

r-—y B
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where z — r and r — y are vectors is only a symbolic way of writing

the latter being a legitimate equation between vectors. In particular z — r and
r — y are not distances since we have introduced no metric, although when
we stay on a single line through the origin they do perform rather like signed
distances.
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