CS212 Web Programming

Final Exam Notes

History of Web Technology

e Early writing was cumbersome, hard to learn and
do, and controlled largely by the ‘man’.

* Physical media was the hot area, with stone and
clay winning for permanence and parchment and
paper (papyrus) winning for convenience (easier
to store and move around).

* The situation was pretty stable through the
Middle Ages, when the Church controlled — the
‘de facto’ government.

Printing Press

* Sped up printing, but works still had to be
transcribed onto press blocks.

* Prone to error —if you make a mistake,
expensive to start over.

 Literature, as opposed to scholarly, religious,
and governmental works are now feasible.

Movable Type

* Now we can correct our documents without
starting over.

e Creation of roles — Author and/or Editor role
and the Typesetter/Printer role

 Hand markup of documents begins to appear
as a way for the two roles to communicate.

Rise of the Machines (no, not Skynet)

* Presses begin to get mechanized.

* Controls appear to implement typesetting
rules

* These controls roughly correspond to some
markup.

Digital Machines (Still Not Skynet)

e Now documents are text files

e Markup commands are embedded to handle
how the text is displayed.

* General Purpose computers and digital
presses begin to approach each other in

capability.

Markup Language

Commands begin to formalize with a tag
format.

Pre-processing is recognized as a type of
scripting language technique.

Documents begin to have internal links based
on markup tags.

Beginnings of complex SGML (many
implementations, few cover complete
specification).

Meanwhile, Networking...

Computers begin to get networked and/or
shared.

File sharing and messaging naturally follow.
Documents are files and also get shared.

ARPA Net (ancestor of today’s Internet) allows
sharing protocols for files (ftp) and messages
(mail).

Development of document browser leads to
new protocol for documents with markup.

HTML

e Subset of SGML oriented on presentation
markup.

* Also allows linking to external documents via a
Uniform Resource Locator (URL).

* Files are platform-independent text; it’s up to
the browser to interpret them.

HTML Drawbacks

WYSINWYG — different platforms display
HTML in different ways.

Content is static, updates must take place in
the document on the server and are not
reflected if you’ve already loaded it.

Until extended, media types such a sound or
video are not supported.

Does not take advantage of special capabilities
of a platform (fonts, etc.)

Portable Document Format

* Bundle document with free reader to create a
consistent display format on any platform.

e Creation tools are not free
e WYSIWYG ... at a cost

HTML Request Flow

Browser requests a document (.htm or .html)

Server (or local file system) responds by
sending file to browser

Browser interprets HTML tags
Interpreted document is displayed to user

CSS

Extends presentation capabilities of HTML

Can be external, so one (or more) CSS can
control the look and feel style of several HTML
documents

Excellent for sitewise or corporate style
identity control.

Browser processes along with HTML
Still static.

PHP HTML Preprocessor (PHP)

Originally Pretty Home Page Tools

PHP is a server-side tool that takes a PHP file
as input and produces HTML/CSS as output

Because it has some conditional functionality,
the output can be dynamic.

Because it is on the server, response can be
slow.

PHP Request Flow

Browser requests a document (.php)

Server (or local file system) gets file and
converts it to HTML/CSS

The HTML/CSS (not the PHP) is sent to the
browser

Browser interprets HTML tags/CSS
Interpreted document is displayed to user

Multi-page PHP

e Capability to pass PHP variables in URL (Get

method) or in server-stored variables (Post
Method)

e Getis less secure because it is visible in the
browser and TCP/IP packets.

* S _POST data can be made persistent using the
SESSION functionality.

PHP Advantages

reel
Dynamic!

~ast (on the server, at least) because it does
not do many of the things that higher-level
languages do, such as type-checking.

Optimized to handle simple text and numbers,
perfect for web documents.

Includes some useful libraries (for MySQL, for
instance).

Speaking of MySQL

e Also free!

e Full featured but optimized for web use (if you
stick with text and simple data formats)

e Support is built into PHP (making the
PHP/MySQL combo very attractive)

PHP/MySQL Request Flow

* Browser requests a document (.php)

e Server (or local file system) gets file and converts
it to HTML/CSS

— MySQL requests embedded in PHP are sent to
database server

— Database server returns results
— Results integrated into HTML/CSS output

* The HTML/CSS (not the PHP or embedded
MySQL) is sent to the browser

* Browser interprets HTML tags/CSS
* Interpreted document is displayed to user

JavaScript

Browser-side, so it is faster (no Internet lag)

Java-like syntax, so easier for traditional
programmers.

Also moves away from complicate regular
expression such as is used in PHP

Can operate with Document Object Model
and also supports browser independent
applets.

JavaScript Flow

Functions are created and linked to event
handlers.

When an event is triggered, the linked
function operates and modifies the displayed
page (or shows a popup)

No direct communication with web or SQL
servetr.

Keeping session data requires leveraging the
server (usually with PHP).

Document Object Model

* Anything between an opening and closing tag
is an object. Ex. some text

* Objects (called nodes) can be arranged in a
narent/child/sibling hierarchy.

e Javascript and CSS can navigate the hierarchy;
PHP and CSS can leverage the elements if they
are named.

eXtensible Markup Language (XML)

* You can have any tag you want
— Tag meaning is in the document context

— Leveraged with tool(s) used to work with the
document

* Enforces a strict DOM (well-formed)
— Single root element
— All tags must be closed

— No overlapping tag pairs (as opposed to
embedded) <p>text</p> = bad!

More XML

You can define your tags before the document
(DTD).

This DTD enforces the structure of the
documents it is applied to (‘valid” document)

XML can be used to define data structures
(database), markup tags (documents), or even
configuration data or session files.

It all depends on the tool that uses the file.

Web Design

‘Cool’ is in the eye of the beholder.

Early developers were programmers, so design
was often awkward and hard to use.

Solution — add graphic designers. But that
resulted in ‘pretty’ but not functional sites.

Best results combined perspectives but also
looked into deeper design issues.

Early sites were document-driven but dynamic
content changed the game.

More Web Design

Site design should take into account the purpose
of the site.

— Sell something tangible?
— Distribute information/support?
— Implement a community/forum?

Best of all took a user interface-oriented design
process

User-oriented design helps bring more users to
Site.

Replaces ‘ad’ sites that inherently required other
content to bring users to the site.

Yet More Web Design

* Simple user-oriented design
— Do interface mock-ups
— Test with a focus group of potential users
— Adjust the interface to reflect the users
— “Rinse and repeat”

— Final design adds all user-desired functionality and
reflects usability input from the design cycle.

* No single ‘best’ solution — best is whatever
works and is usually a compromise.

