
CS212 Web Programming

Final Exam Notes

History of Web Technology

• Early writing was cumbersome, hard to learn and
do, and controlled largely by the ‘man’.

• Physical media was the hot area, with stone and
clay winning for permanence and parchment and
paper (papyrus) winning for convenience (easier
to store and move around).

• The situation was pretty stable through the
Middle Ages, when the Church controlled – the
‘de facto’ government.

Printing Press

• Sped up printing, but works still had to be
transcribed onto press blocks.

• Prone to error – if you make a mistake,
expensive to start over.

• Literature, as opposed to scholarly, religious,
and governmental works are now feasible.

Movable Type

• Now we can correct our documents without
starting over.

• Creation of roles – Author and/or Editor role
and the Typesetter/Printer role

• Hand markup of documents begins to appear
as a way for the two roles to communicate.

Rise of the Machines (no, not Skynet)

• Presses begin to get mechanized.

• Controls appear to implement typesetting
rules

• These controls roughly correspond to some
markup.

Digital Machines (Still Not Skynet)

• Now documents are text files

• Markup commands are embedded to handle
how the text is displayed.

• General Purpose computers and digital
presses begin to approach each other in
capability.

Markup Language

• Commands begin to formalize with a tag
format.

• Pre-processing is recognized as a type of
scripting language technique.

• Documents begin to have internal links based
on markup tags.

• Beginnings of complex SGML (many
implementations, few cover complete
specification).

Meanwhile, Networking…

• Computers begin to get networked and/or
shared.

• File sharing and messaging naturally follow.

• Documents are files and also get shared.

• ARPA Net (ancestor of today’s Internet) allows
sharing protocols for files (ftp) and messages
(mail).

• Development of document browser leads to
new protocol for documents with markup.

HTML

• Subset of SGML oriented on presentation
markup.

• Also allows linking to external documents via a
Uniform Resource Locator (URL).

• Files are platform-independent text; it’s up to
the browser to interpret them.

HTML Drawbacks

• WYSINWYG – different platforms display
HTML in different ways.

• Content is static, updates must take place in
the document on the server and are not
reflected if you’ve already loaded it.

• Until extended, media types such a sound or
video are not supported.

• Does not take advantage of special capabilities
of a platform (fonts, etc.)

Portable Document Format

• Bundle document with free reader to create a
consistent display format on any platform.

• Creation tools are not free

• WYSIWYG … at a cost

HTML Request Flow

• Browser requests a document (.htm or .html)

• Server (or local file system) responds by
sending file to browser

• Browser interprets HTML tags

• Interpreted document is displayed to user

CSS

• Extends presentation capabilities of HTML

• Can be external, so one (or more) CSS can
control the look and feel style of several HTML
documents

• Excellent for sitewise or corporate style
identity control.

• Browser processes along with HTML

• Still static.

PHP HTML Preprocessor (PHP)

• Originally Pretty Home Page Tools

• PHP is a server-side tool that takes a PHP file
as input and produces HTML/CSS as output

• Because it has some conditional functionality,
the output can be dynamic.

• Because it is on the server, response can be
slow.

PHP Request Flow

• Browser requests a document (.php)

• Server (or local file system) gets file and
converts it to HTML/CSS

• The HTML/CSS (not the PHP) is sent to the
browser

• Browser interprets HTML tags/CSS

• Interpreted document is displayed to user

Multi-page PHP

• Capability to pass PHP variables in URL (Get
method) or in server-stored variables (Post
Method)

• Get is less secure because it is visible in the
browser and TCP/IP packets.

• $_POST data can be made persistent using the
SESSION functionality.

PHP Advantages

• Free!

• Dynamic!

• Fast (on the server, at least) because it does
not do many of the things that higher-level
languages do, such as type-checking.

• Optimized to handle simple text and numbers,
perfect for web documents.

• Includes some useful libraries (for MySQL, for
instance).

Speaking of MySQL

• Also free!

• Full featured but optimized for web use (if you
stick with text and simple data formats)

• Support is built into PHP (making the
PHP/MySQL combo very attractive)

PHP/MySQL Request Flow

• Browser requests a document (.php)
• Server (or local file system) gets file and converts

it to HTML/CSS
– MySQL requests embedded in PHP are sent to

database server
– Database server returns results
– Results integrated into HTML/CSS output

• The HTML/CSS (not the PHP or embedded
MySQL) is sent to the browser

• Browser interprets HTML tags/CSS
• Interpreted document is displayed to user

JavaScript

• Browser-side, so it is faster (no Internet lag)

• Java-like syntax, so easier for traditional
programmers.

• Also moves away from complicate regular
expression such as is used in PHP

• Can operate with Document Object Model
and also supports browser independent
applets.

JavaScript Flow

• Functions are created and linked to event
handlers.

• When an event is triggered, the linked
function operates and modifies the displayed
page (or shows a popup)

• No direct communication with web or SQL
server.

• Keeping session data requires leveraging the
server (usually with PHP).

Document Object Model

• Anything between an opening and closing tag
is an object. Ex. some text

• Objects (called nodes) can be arranged in a
parent/child/sibling hierarchy.

• Javascript and CSS can navigate the hierarchy;
PHP and CSS can leverage the elements if they
are named.

eXtensible Markup Language (XML)

• You can have any tag you want
– Tag meaning is in the document context

– Leveraged with tool(s) used to work with the
document

• Enforces a strict DOM (well-formed)
– Single root element

– All tags must be closed

– No overlapping tag pairs (as opposed to
embedded) <p>text</p> = bad!

More XML

• You can define your tags before the document
(DTD).

• This DTD enforces the structure of the
documents it is applied to (‘valid’ document)

• XML can be used to define data structures
(database), markup tags (documents), or even
configuration data or session files.

• It all depends on the tool that uses the file.

Web Design

• ‘Cool’ is in the eye of the beholder.

• Early developers were programmers, so design
was often awkward and hard to use.

• Solution – add graphic designers. But that
resulted in ‘pretty’ but not functional sites.

• Best results combined perspectives but also
looked into deeper design issues.

• Early sites were document-driven but dynamic
content changed the game.

More Web Design

• Site design should take into account the purpose
of the site.
– Sell something tangible?
– Distribute information/support?
– Implement a community/forum?

• Best of all took a user interface-oriented design
process

• User-oriented design helps bring more users to
site.

• Replaces ‘ad’ sites that inherently required other
content to bring users to the site.

Yet More Web Design

• Simple user-oriented design
– Do interface mock-ups

– Test with a focus group of potential users

– Adjust the interface to reflect the users

– “Rinse and repeat”

– Final design adds all user-desired functionality and
reflects usability input from the design cycle.

• No single ‘best’ solution – best is whatever
works and is usually a compromise.

