
Project 9: Maze Generator 

CS 200 • 20 Points Total 

Due Friday, April 21, 2017 

Objectives 

 Write a recursive maze generator in assembly. 

 Practice using procedural calling, general assembly programming, and using a high-level 

language implementation as a reference for writing assembly. 

Overview 

This is the first part of a two-part project.  For this project, you will only write the helper functions 

(everything except Visit) and modify the main program to test your work. If you don’t show me that 

you tested your functions, then you won’t get credit.  Also, my skeleton code cheats in how it creates 

the maze array to make it easier to display.  Ignore the header comments for the display routine and 

pay attention to the comments inside the routine, instead. 

Recursion can be used to easily create simple tile-based mazes. The idea is you start somewhere in 

"solid rock" and tunnel your way two steps in a random direction, then recursively repeat. When your 

twisty little passage runs out of room to grow (when it's about to cross itself), you fall back to the 

previous level of recursion and see if you can go in another direction.  

Here is a C++ implementation of such a maze generator:  

//============================================================================= 

//  maze.cpp 

// 

//  C++ implementation of a recursive maze-generating program. 

// 

//  History: 

//    2006.03.30 / Abe Pralle - Created 

//    2010.04.02 / Abe Pralle - Converted to C++ 

//============================================================================= 

 

#include <iostream> 

using namespace std; 

 

//----CONSTANTS------------------------------------------------------- 

#define GRID_WIDTH  79 

#define GRID_HEIGHT 23 

 

#define NORTH 0 

#define EAST  1 

#define SOUTH 2 

#define WEST  3 

  

 

//----GLOBAL VARIABLES------------------------------------------------ 

char grid[GRID_WIDTH*GRID_HEIGHT]; 

  

 

 



//----FUNCTION PROTOTYPES--------------------------------------------- 

void ResetGrid(); 

int  XYToIndex( int x, int y ); 

int  IsInBounds( int x, int y ); 

void Visit( int x, int y ); 

void PrintGrid(); 

 

  

 

//----FUNCTIONS------------------------------------------------------- 

int main() 

{ 

  // Starting point and top-level control. 

  

  srand( time(0) );  // seed random number generator. 

  ResetGrid(); 

  Visit(1,1); 

  PrintGrid(); 

 

  return 0; 

} 

 

 

 

void ResetGrid() 

{ 

  // Fills the grid with walls ('#' characters). 

  

  for (int i=0; i<GRID_WIDTH*GRID_HEIGHT; ++i) 

  { 

    grid[i] = '#'; 

  } 

} 

 

 

 

int XYToIndex( int x, int y ) 

{ 

  // Converts the two-dimensional index pair (x,y) into a 

  // single-dimensional index.  The result is y * ROW_WIDTH + x. 

  return y * GRID_WIDTH + x; 

} 

 

 

 

int IsInBounds( int x, int y ) 

{ 

  // Returns "true" if x and y are both in-bounds. 

  if (x < 0 || x >= GRID_WIDTH)   return false; 

  if (y < 0 || y >= GRID_HEIGHT)  return false; 

  return true; 

} 

 

 

 

  



// This is the recursive function we will code in the next project 

void Visit( int x, int y ) 

{ 

  // Starting at the given index, recursively visits every direction in a  

  // randomized order. 

  

  // Set my current location to be an empty passage. 

  grid[ XYToIndex(x,y) ] = ' '; 

 

  // Create an local array containing the 4 directions and shuffle their order. 

  int dirs[4]; 

  dirs[0] = NORTH; 

  dirs[1] = EAST; 

  dirs[2] = SOUTH; 

  dirs[3] = WEST; 

 

  for (int i=0; i<4; ++i) 

  { 

    int r = rand() & 3; 

    int temp = dirs[r]; 

    dirs[r]  = dirs[i]; 

    dirs[i]  = temp; 

  } 

 

  // Loop through every direction and attempt to Visit that direction. 

  for (int i=0; i<4; ++i) 

  { 

    // dx,dy are offsets from current location.  Set them based 

    // on the next direction I wish to try. 

    int dx=0, dy=0; 

    switch (dirs[i]) 

    { 

      case NORTH: dy = -1; break; 

      case SOUTH: dy =  1; break; 

      case EAST:  dx =  1; break; 

      case WEST:  dx = -1; break; 

    } 

 

    // Find the (x,y) coordinates of the grid cell 2 spots 

    // away in the given direction. 

    int x2 = x + (dx<<1); 

    int y2 = y + (dy<<1); 

 

    if (IsInBounds(x2,y2)) 

    { 

      if (grid[ XYToIndex(x2,y2) ] == '#') 

      { 

        // (x2,y2) has not been visited yet... knock down the 

        // wall between my current position and that position 

        grid[ XYToIndex(x2-dx,y2-dy) ] = ' '; 

 

        // Recursively Visit (x2,y2) 

        Visit(x2,y2); 

      } 

    } 

  } 

} 

 

 

void PrintGrid() 

{ 

  // Displays the finished maze to the screen. 

  for (int y=0; y<GRID_HEIGHT; ++y) 

  { 

    for (int x=0; x<GRID_WIDTH; ++x) 

    { 

      cout << grid[XYToIndex(x,y)]; 

    } 

    cout << endl; 

  } 

} 



Here is an example of a maze generated by the program:  

############################################################################### 

#         #           #   #     #           #     #     #               #     # 

######### ####### ### # ### # ### # ####### ### # ### # ####### ### ### ##### # 

# #       #     # # # # #   #   # #   #   #   # #     #   #   # #   # #     # # 

# # ####### ### # # # # # ##### # ### ### ### # ######### # # # # ### ##### # # 

# # #   #     #   #   #       #     #   #   #   #       #   # # # #       # # # 

# # # # # ### ##### ############### ### # ### ####### ####### # # # # ### # # # 

#   # # # # #   #           #   # # # # #     #     #       # # # # # #   #   # 

# ### # # # ### ########### # # # # # # # ##### ### # ##### # # # ### ####### # 

#   # #       #   #     #   # # #   # # # #     #   # #   #   # #   #     #   # 

### # ########### # ### # ### # ### # # ### ##### ### # # ####### # # ### # ### 

# # #     #       #   # # #   #   #   #     # #   #   # #       # # #   # #   # 

# # # ##### ######### # # # # ### # ####### # # ##### # ### ### # # ##### ### # 

# # # #     #         # # # # # # # #     #   #     # # #   #   # #     #   # # 

# # # # ##### ######### # ### # # # # ### ### ##### # # # ### ######### ### # # 

# # # #   #   #       # # #   # # # #   #   #   #   # # # # #   #     #   #   # 

# # # ### # ##### ### # # # ### # # ### ### # ### ### # # # ### # ### ### # ### 

# # #   # # #   #   # # #   # #   #   # #   # #   # # # # #   # # #   #   #   # 

# # ### # # # # ##### # ##### # ##### # # ##### ### # ### # ### # # ### ##### # 

# # #   # # # # #   # #   #   #     # # # #     #   #     # #   # #     #   # # 

# # ##### # # # # # # # ### # ##### ### # # ##### ######### # ### ####### # # # 

#         #   #   #   #     #           #   #                     #       #   # 

############################################################################### 

Requirements 

Convert the C++ program into an MIPS assembly language program using the following 

guidelines:  

 I’ve included a skeleton code file (Project9.s) that will get you started.  It has some TO 

DO comments; look for them to see what you have to add.  In this project, you DO NOT 

have to implement Visit (we’ll do that in Project 10), so your finished program should 

only print out a 79 x 23 grid of ‘#’ characters, plus any testing output you included for the 

functions you coded. 

 Use stack-based parameter passing. Additionally, use the stack to preserve registers.  For 

example, to call the "XYToIndex" procedure with (4,2) the following code might be 

used:  

 li $t0, 4  # set x in $t0 

 li $t1, 2   # set y in $t1 

  # remember, reverse order of parameters for C convention 

 sw $t0, -8($sp) # push first param (x) 

 sw $t1, -4($sp)  # push second param (y) 

 jal XYToIndex # call the procedure 

 lw $t0, 0($sp) # get the returned value into $t0 

 

      ... 

 

XYToIndex: 

 

 # save any registers we need to use. 

 sw $s0, -12($sp) # will hold current x 

 sw $s1, -16($sp) # will hold current y 

 sw $s2, -20($sp) # loop counter 

 sw $s3, -24($sp) # running index total 

      ... 



 

   # and now we can grab the input parameters 

   lw $s0, -8($sp) # load x into $s0 

 lw $s1, -4($sp) # load y into $s1 

      ... 

  --- the rest of the procedure’s code goes here --- 

      ... 

 # save the return value 

 sw $s3, 0($sp) # return value was running total of index 

 

 # when done restore the registers 

 lw $s0, -12($sp) # put old $s0 back 

 lw $s1, -16($sp) # put old $s1 back 

 lw $s2, -20($sp) # put old $s2 back 

 lw $s3, -24($sp) # put old $s3 back 

 

 # then return to the caller 

 jr $ra  # and return 

 I’ve given you the code to set the grid in memory and to prompt for a random number 

seed.  The code runs and if you stop it with a breakpoint before it exits, you can view the 

grid in memory.  

 Notice that the procedures I gave you don’t follow stack frame layout religiously (I’ve 

put some comments in discussing this); you don’t need to either.  Only Visit, which we 

aren’t implementing in this project, requires the reentrant capabilities of a stack frame.  

But be sure your stack doesn’t get messed up by your procedures or Visit will never work 

in the next project. 

 Implement and test your program in stages to avoid getting overwhelmed by having to 

debug too much assembly at once. For example, start by defining the PrintGrid procedure 

and make sure you can print out a "maze" that's completely full of pound signs.  Then 

tackle the remaining procedures one by one.  Since they are all called by Visit, you will 

have to add some test calls to the main procedure to make sure they work correctly.  

 I need to see your testing from above.  So be sure your main code not only calls the 

procedures but also prints out the calling and return values.  Then you can include a copy 

of your output in your report as proof of testing. 

 You don’t need to implement Visit in this project.  Instead, just show me some of your 

testing for the other procedures; the way they should work is detailed in the function 

headers and you can also use the C++ code as a guide.  

Project Report 

The final step of this assignment is to create a report consisting of a cover page, an overview of 

the project, sample output, and the source code.  See Assignment Policies on either the class 

website or Bb Learn.  

 


