
Recommendations for Architecture-
Centric Software Supporting Self-
Adaptive Behavior

John Georgas
Institute for Software Research
University of California, Irvine
Presented at GSAW 2003



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



Architecture-Based Self-Adaptive Software
Software that modifies itself in real-time to meet new 
demands or address failures.

Examples:
Replacing a failed component with a lesser capable one to maintain 
nominal system behavior.
Adding components and connectors to a running system to meet 
new demands.
Replacing components with updated ones implementing updated 
capabilities.

Architecture-Based
Reasoning about system and adaptation policies is done solely 
on the basis of the architectural description.
Adaptation operations are expressed in terms of the high-level 
architectural elements (components and connectors).



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



Architecture as an Evolution Blueprint
Decisions about architectural design must precede other design concerns.

Component granularity, units of communication, interconnection strategies.
Architectural design decisions may either enable or prohibit certain 
implementations.

Architecture drives – not only supports – the entire software lifecycle 
including deployment.
Essential for this is an architecture-to-implementation mapping.

Without this, there’s no point in using high-level software architectures!
Architecture-level analyses do not hold for the final system without a strict mapping.
Self-adaptive behavior cannot be architecture-based without this mapping.
This mapping makes architectural descriptions an actual part of the final system.

Recommendations
Architecture-to-implementation mappings must be a part of any modeling method 
or language that is used to represent software architectures.
These mappings must be maintained and kept consistent throughout the 
software lifecycle.
Consistency must be enforced by tools, which somewhat increases the burden 
during implementation as options are limited.
But, some implementation artifacts will be generated, which somewhat lightens 
the load (this also helps maintain consistency).



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



Architectural Representation
Is UML an ADL?

An old, still discussed question.1,2

Yes, UML can be extended to describe architectural concepts.
But, an ADL is better at it.
So, why not use the modeling technique that is best for what you’re modeling?

B

C

A
UML for 
A, B, C

Code

Is either UML or an ADL alone sufficient?  I will claim “no.”
Recommendations

Use a combination of an ADL and UML for software modeling.
An ADL for architectural concepts.
UML for design concepts.

Analyze each individually for what it’s best at modeling.
Continuing off the previous discussion, maintain consistency of the relationship 
between the ADL, UML, and the implementation.
Wait!  More abstractions, and more relationships to keep track of!

Yes, but your modeling capabilities are increased.  The effort is worth it.



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



Component-Based Architectures
Component-based architectures with well-defined 
interfaces are a good start.
What about the interactions between components?

Do they always take place the same way?
Is the unit of communication a method call, or a message?

Recommendations
Connectors – and there are many “flavors” of them – must be 
modeled as a first-class architectural element!3
Connectors should encapsulate component interaction, and 
reveal how different interconnection strategies with the same 
components can result in perhaps radically different behavior.



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



Summary of Recommendations
Architecture-to-implementation mappings 
are essential.
An ADL combined with UML will produce 
the best modeling, and analytic results.
Connectors must be treated as first-class 
entities, and be explicitly represented.



Outline

Background and Context
Architecture as an Evolution Blueprint
Architectural Representation
Component-Based Architecture
Quick Summary
References



References
1. “Is UML an Architecture Description Language” 

OOPSLA99
2. “Reconciling the Needs of Architectural Description with 

Object-Modeling Notations” Garlan, Kompanek 2000.
3. “Towards a Taxonomy of Software Connectors”  Mehta, 

Medvidovic, Phadke.


