IS Institute for Software Research

UNIVERSITY OF CALIFORNIA, IRVINE

Autonomous, Self-Adaptive
Software: Architecture-based
Tools, Technigues, and Methods

John Georgas, (Eric Dashofy)
Institute for Software Research
University of California, Irvine

May 6, 2004

http://mwvww.isr.uci.edu/

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture

e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

What is dynamism?

e The ablility to the change the structure or behavior of a
software system at run-time.

Generally, in ways not explicitly planned for in the initially deployed
system.
e Dynamism is essential for high-availability systems.
Medical devices
Space probes
Emergency response systems

e Dynamism is desirable for all systems.
PC security patches, virus updates

Service packs and other functionality upgrades
MMORPGSs

e Dynamism is necessary for self-adaptive systems.

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

sr.uci.edu/

To this...

Examples of Dynamic Systems/

e Dynamic load/install plugins in Internet

Explorer/Netscape
Generally, these work without shutting down the browser.

e Not-so-dynamic systems

Windov's Update
e O’ Wworks without a reboot if resources weren't in use.

JPL ce Probe system updates
@ re restart of many non-core systems.

jon patches

ot require a full reboot but generally require
ration restart.

We would like to move from this...

Institute for Software Research -
I S R UniversiTy ofF CALIFORNIA, IRVINE sr.uci.edu/

Technigues for Dynamism

e Plug-in Mechanisms (e.g. Netscape/IE)
Generally, specific extensions to a core platform.
Core usually remains unchanged.

e Dynamic code loading (e.g. Java ClassLoaders)
Handle loading new code and unloading old code.

e Dynamic component instantiation (e.g. CORBA)
Generally, handles unloading poorly.

Makes understanding and managing changes difficult
e Little change visibility.

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture

e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

Institute for Software Research -
I S UniversiTy ofF CALIFORNIA, IRVINE sr.uci.edu/

Architecture: A New Perspective

e Architecture views software systems at the level of
components and connectors.

Not lines-of-code or modules.
Not objects.

e Architecture generally leverages explicit software
models that depict at least:

Software Components

e Including provided and required interfaces.
Explicit (generally) Software Connectors

e Provided and required interfaces.
Explicit links between the two.

e Links form various system configurations.

S R e et
Example of an Architecture-level
Depiction:

» Is-l [r—» >—»igrep “foo”>r» [»>—» more [»

e

»| > stdout

S R e et
Example of an Architecture-level
Depiction:

» Is-l [r—» >—»igrep “foo”>r» [»>—» more [»

eComponents

»| > stdout

S R e et
Example of an Architecture-level
Depiction:

» Is-l [r—» >—»igrep “foo”>r» [»>—» more [»
/'
eComponents T L] stdout
eConnectors >
(all pipes)

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, IRVINE JIsr.uci.edu/

Example of an Architecture-level
Depiction:

? Is-1 [— [>—>grep “foo” > »>—» more [P
eComponents stdout
eConnectors

(all pipes)

eProvided interfaces

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Isr.uci.edu/

Example of an Architecture-level

Depiction:

> s -1 > >

eComponents
eConnectors

(all pipes)
eProvided interfaces
eRequired interfaces

grep “foo”

more >

]

stdout

S R e et
Example of an Architecture-level
Depiction:

» Is-l [>»igrep “foo” > [»>=1» more [
eComponents 5T L] stdout
eConnectors

(all pipes)

Provided intérfaces
*Requi /, Aaces

el inks /

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

A slightly larger example

sr.uci.edu/

Clock Ports Warehouses Vehicles
| | | | |
Connector 1
Plarlmer Telerlnetry
l Connectolr 2
Port E|1rtist Warehouse artist Veh]cl|e artist

Router artist

Connector 3

Router

Connector 4

Graphics

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture
e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

I S R Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

sr.uci.edu/

Can we use architecture to manage
and enact dynamism?

e Leverage architecture-level models to:
Understand and visualize the structure of the system.

Depict, visualize, and understand changes to that
structure.

Guide automated tools in making changes to modeled
components.

e Leverage the above concepts to:

Serve as the basis for self-healing/self-adaptive systems
that make decisions and changes based on architecture-
level models.

ISR e for o wware Research
A Vision for Architecture-based
Adaptation: The Figure-8 Diagram

Plan changes —

‘ \ Feedback
Evaluate and
descriptions management monitqr and
observations

\ J /‘ Planning

Enact changes and
collect observations —

Architectural Evolution
model management
\‘ Maintain /
consistency

and system integrity —

Deploy change Adaptation

Implementation I m plementation

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture
e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

Institute for Software Research - :
I S UniversiTy ofF CALIFORNIA, IRVINE w.isr.uci.edu/

First Focus: Bottom Half

Enact changes and
collect observations

|

Evolution .
—_—
management

\ Maintain /
consistency

and system integrity

Architectural —

model Q Implementation

Key Insight: Keep the model and the implementation in-sync: a
change to one automatically results in a change to the other.

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

sr.uci.edu/

Assumptions Implicit in the
Figure-8 Diagram

e % e There Is a modeling language.
- e It can be accessed programmatically.

peploy change | ® Change descriptions can be expressed
descriptions and deployed to (multiple?) sites.

S}D' —_— e There is an implementation framework
: that supports dynamic changes.

Maintain e There iIs a tool that can maintain

consistency

and system integrity model<—2>implementation consistency.

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

A Modeling Language

e Traditionally architectures are expressed in

sr.uci.edu/

Architectural
model

=

an Architecture Description Language (ADL):

A formalism that allows you to ‘write down’ architectures.

e At minimum, must support:
¢ Components
¢ Connectors
¢ Interfaces
¢ Links

e For our purposes, must also support some mapping to

Implementation.

Ideally, flexible enough to support many domains.

SR nstituceiforsontwareibesearch
Problems with current ADLS ”“.Tiéi?ét‘“’%

e Too broad. .
Example: Acme
Supports arbitrary properties on elements, but only basic
support for these properties

e Too narrowly-focused.
Examples: Rapide, Wright, Darwin, Meta-H, etc.
Support one domain or set of concerns well, others poorly.
Often lack implementation mappings.

e Not extensible.

Too hard to extend existing ADLs (and their tool-sets) to
add information.

ISR [nstitute fonsottwarsliessest
Our Solution: XADL 2.0 ““.TETQ:‘“’%
e An extensible, XML-based ADL. -

Modeling features all expressed in language modules (XML
schemas).

A composition of XML schemas make up an ADL.

Schemas available from UCI to support:
e Design-time & run-time structural modeling.
e Implementation mappings.

e Product-line architectures
(allows managing model
evolution over time).

Types & Instances -
Design-time

XArch — Run-time
(Architectural Instances Core)

Implementation
Mappings

(Future Expansions)

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

Change Descriptions Deploy change

descriptions

e Required to express and understand 3
architectural changes.

e Different levels of change to consider:
Basic ‘diffs’
e Describe changes between Modell and Model2.
Product-Line ‘diffs’
e Describe changes between Product-Linel and Product-Line2.
Pattern-based ‘diffs’

e Describe changes to patterns found in Modell and and
patterns found in Model2.

Institute for Software Research -
I S R UniversiTy ofF CALIFORNIA, IRVINE sr.uci.edu/

Our Change Descriptions Ll

descriptions

e We currently support: :
Basic ‘diffs’
Product-line ‘diffs’

e Both implemented as extensions to XADL 2.0.

e Accompanied by automated tools:
Automatically generate diff documents from two
architectures or product lines.

e (the architecture equivalent of ‘diff on UNIX)

Automatically merge a diff into an architecture or product
line.

e (the architecture equivalent of ‘patch’ on UNIX)

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

Architecture Frameworks o g8 o

e Bridge the gap between elements found in architectural styles -
(components, connectors)

e ..and programming languages.
(classes, objects, procedure calls)

e Often support a particular architectural style or family of
styles.

e For our purposes, should support run-time dynamism
primitives (add/remove component, add/remove link, etc.).

e Potential candidates:
Component frameworks like COM, EJB, CORBA...

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

c2.fw: One such framework g memm

e Architectural style(s):
Component- and message-based styles.
Special support for C2 style.

e Programming languages:
Java

(Other frameworks available for other languages)
e C++, Embedded C++, Ada95, etc.

e Dynamism Primitives

Exposes a single, unified interface for adding/removing
components, connectors, links, interfaces, etc.

IS Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.

Maintain

Maintain Consistency

and system integrity

e Tool must monitor both architectural model

and running system:

When model changes (e.g. due to patching a diff), must
modify the implementation to match.

When application changes (e.g. due to component failure
or shutdown) must modify the model to match.

e Algorithms to accomplish this with different
kinds of models and dynamism primitives are
still being researched.

IS Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.

Architecture Evolution Maintaln

consistency

M an a_g er and system integrity

e A component of our architecture-based
development environment that performs this
function.

e Currently supports local changes, will evolve
to support distributed changes and things like
maintaining component state across
replacements/upgrades.

IS Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.

Open Dynamism Research Issues

e Distributed systems %

Encounter many new types of failures—network failure,
host failure, etc.

e Infrastructure adaptation

Can be partially addressed with a multi-level approach
(AEMs running inside other AEMSs).

We have a proof of concept in our current infrastructure.

e Maintaining state across component
upgrade/replacement.

e Assessing/maintaining reliability.

Institute for Software Research - -
I S R UniversiTy oF CALIFORNIA, IRVINE isr.uci.edu/

A Vision for Architecture-based
Adaptation: The Flgure -8 Diagram

Plan changes

‘ \ Feedback
Evaluate and
descriptions management monitqr and
observations

\ } /‘ Planning

Enact changes and
collect observations —

Architectural Evolution
model management
\‘ Maintain /
consistency

and system integrity —

Deploy change Adaptation

Implementation I m plementation

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture
e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

Institute for Software Research - :
I S UniversiTy ofF CALIFORNIA, IRVINE w.isr.uci.edu/

Second Focus: Top Half

Plan changes

Deploy change . Adaptation HEvaIuate and

descriptions management monitor
observations

/

Key Insight: Managing and planning adaptations is done at the
architectural level, independent of the application semantics.

Enact changes and
collect observations

I S R Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Isr.uci.edu/

Implicit Assumptions

Erlllacttchbangest?lﬂd eChanges can be enacted and
LOTECLODSENANIONS] — Hhservations collected.

Evaluate and | e@(Qpservations can be evaluated for

~ monitor

observations | thelr meaning.

Plan changes| eModifications can be planned
according to some criteria.

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, IRVINE JIsr.uci.edu/

Planning Changes Plan changes

e Interesting guestions:

Who is responsible?
e System designers, administrators, users.

When should changes be enacted?
e Pre-planned situations, user discretion.

What are the specifics?
e Pre-planned change scripts, user-defined modifications.

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

Self-Adaptive Software Plan changes

e Software that can modify itself in response to:

Software faults.
Changing deployment conditions.
New behavioral requirements.

e Modifications do not need human intervention.

e The system itself decides...
...when changes need to take place.
...what the specifics of these changes are.

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, [RVINE JIsr.uci.edu/

Various Approaches Plan changes

e Changes are pre-programmed into software components.
Little visibility, close coupling with implementations.

e Pre-planned change scripts.
Static responses for a non-static world.
Limited to the foresight of the system designer.

e Adaptive algorithms
Domain-specific solutions in a constrained environment.

The challenge lies in developing an approach that ensures
high visibility, strict decoupling, and dynamic evolution.

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

A Knowledge-Based

Approach: Overview Plan changes

e An architecture-centric, knowledge-based approach which
reasons about change based on observations and policies.
Observations comprise known information.
Policies define when modifications should take place and what the
responses should be.

e Features:

High visibility

e Knowledge and policies are specified as part of the system’s architectural
description.

Decoupled
e Policies are strongly-decoupled from component implementations.
e Components need not have any knowledge of adaptation.

Dynamic
e Observations may be transient.
e Policies may be added, removed, and composed.

ISR e for o wware Research
Knowledge-based
Adaptation Policies

Plan changes

e Policies determine the timing and specifics of
adaptations.

e Knowledge-based policy structure:
Observation+ =% Response+

e Adaptation policies are specified at the architectural
level, and can be dynamically modified at run-time.

e Representational support using xADL 2.0, and
expert system implementation using the Java Expert
System Shell (JESS). Again, fully extensible.

Institute for Software Research ,
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/
Evaluate and

Adaptation Observations ~ _monitor

observations

e Observations express architectural knowledge.

Events indicating non-nominal operation.
e Component or connector failure.

Events indicating the structure of the architecture has changed.
e Components and connector addition, link removal, etc.

Events which may indicate composition errors.
e Requests and notifications go unanswered or ignored.
e These observations are supported by:
XADL 2.0 modeling extensions.
c2.fw implementation framework.

e But, they are easily extended to accommodate domain-
specific information.

I S R Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.
Evaluate and

Collecting Observations ~ _monitor

observations

e May be emitted by components themselves.

e Collected using independent software probes.

May be dynamically inserted into the running system.
Primarily observe communication patterns.

Component A > »—»/Probe >~ »—»/Component B

IS Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.

Enact changes and
collect observations

Adaptation Responses

e Responses indicate architectural modifications.

Addition of architectural elements (components, connectors, or
links).

Removal of architectural elements.

Addition and removal of observations or adaptation policies.

Composite operations.

e Using these responses, the system can modify both:
Its structure, and therefore its behavior.
The policies guiding adaptations themselves.
e Again, supported by xADL 2.0 extensions and the
c2.fw framework but also fully extensible.

IS Institute for Software Research .
UniversiTy oF CaLIFORNIA, IRVINE SI.Ucl.

Enact changes and
collect observations

Enacting adaptations

e Modifications due to adaptation responses

are not directly enacted. May need to...

Maintain architectural constraints.
Log and publish modifications.

e Architecture Adaptation Manager (AAM)

Point of coordination for these “value add” services.

e AAM (to be) included in the ArchStudio 3.0
toolkit.

Currently, coordinates constraint maintenance facilities.

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, IRVINE JIsr.uci.edu/

A short example Plan changes

e Unmanned Air Vehicle (UAV) with limited on-
board resources.

e Operates software components supporting

various tasks.
Nominal navigation.
Threat avoidance navigation. ?
Image processing. \
Inter-networking management.
e In certain situations, some of these tasks take

precedence.

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, IRVINE isr.uci.edu/

An example policy Plan changes

e Policy giving threat avoidance precedence. 3

<AdaptationPolicy id="Avoid threats">
<Description>Replace normal navigation.</Description>
<Observation id="Threat Detected" />
<Response id="Replace Component"
old="Nominal Nav" new="Threat Avoidance Nav"/>

</AdaptationPolicy>

e Observations
Domain specific: Threat Detected.

e Responses

Composite operation:
e Remove Nominal navigation component.
e Adding Threat Avoidance component in its place.

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

Open Research Issues

e Distributed systems

Can local adaptation decisions give rise to global adaptive
behavior?

e EXxpressiveness
Is this knowledge-based approach expressive enough?

e Safety and Predictability

Given the non-deterministic nature of the approach, can
guarantees about the system’s architecture be made?

Are constraints sufficient for this?

IS Institute for Software Research

UniversiTy oF CALIFORNIA, |RVINE

Outline

e Software Dynamism
e Software Architecture

e Architecture-Based Approach

Evolution Management
Adaptation Management

e Summary

dsr.uci.edu/

Institute for Software Research -
I S UniversiTy oF CALIFORNIA, IRVINE sr.uci.edu/

Summary

e Architectural models are central not only to software
development but also evolution.

e Architecture provides a promising approach for:
Dynamic, run-time system evolution.
Developing self-adaptive capabilities.

e “Proof of concept” techniques and tools:
XADL 2.0 architecture description language.
ArchStudio 3 environment.

Knowledge-Based Architecture Adaptation Management
(KBAAM).

	Autonomous, Self-Adaptive Software: Architecture-based Tools, Techniques, and Methods
	Outline
	What is dynamism?
	Examples of Dynamic Systems
	Techniques for Dynamism
	Outline
	Architecture: A New Perspective
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	A slightly larger example
	Outline
	Can we use architecture to manage and enact dynamism?
	A Vision for Architecture-based Adaptation: The Figure-8 Diagram
	Outline
	First Focus: Bottom Half
	Assumptions Implicit in the Figure-8 Diagram
	A Modeling Language
	Problems with current ADLs
	Our Solution: xADL 2.0
	Change Descriptions
	Our Change Descriptions
	Architecture Frameworks
	c2.fw: One such framework
	Maintain Consistency
	Architecture EvolutionManager
	Open Dynamism Research Issues
	A Vision for Architecture-based Adaptation: The Figure-8 Diagram
	Outline
	Second Focus: Top Half
	Implicit Assumptions
	Planning Changes
	Self-Adaptive Software
	Various Approaches
	A Knowledge-BasedApproach: Overview
	Knowledge-basedAdaptation Policies
	Adaptation Observations
	Collecting Observations
	Adaptation Responses
	Enacting adaptations
	A short example
	An example policy
	Open Research Issues
	Outline
	Summary

