Knowledge-Based Architectural Adaptation Management

for Self-Adaptive Systems
John C. Georgas

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425
+1 949 824 5160

jgeorgas@ics.uci.edu

ABSTRACT

Self-adaptive software continually evaluates and modifies its
own behavior to meet changing demands. One of the main
elements in constructing architecture-based self-adaptive
software is adaptation policy specification. In this paper, we
present an approach to the construction of self-adaptive
software based on the architecture-centric definition of
knowledge-based adaptation policies. Our approach explicitly
represents adaptation policy at the architectural level using
techniques inspired from the field of artificial intelligence, and
provides for the decoupling of adaptation policy from
architectural compositions and for the dynamic runtime
evolution of these policies: we believe that this offers key
benefits in terms of reuse potential and flexibility. We
elaborate on this approach, and discuss our planned evaluation
methodology and specific research contributions.

Categories and Subject Descriptors

D.2.11 Software Engineering: Software Architectures —
languages.

General Terms
Management, Design, Languages

Keywords

Architectural adaptation management, self-adaptive software.

Dissertation Advisor
Richard N. Taylor, taylor@ics.uci.edu.

Research Area
Architecture-based self-adaptive software.

Research Topic

The definition of self-adaptive behavior through knowledge-
based management of architecture-centric adaptation policies
that are strongly decoupled from system implementations and
dynamically modifiable at runtime.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

1. INTRODUCTION

Self-adaptive software is aimed at addressing the challenges of
constructing systems that have the ability to autonomously
respond to a variety of situations. Architecture-based self-
adaptive software focuses on using software architecture
models as the central abstraction for decision-making and
change enactment in self-adaptive systems; the focus on
explicit architectural models addresses the challenges and
complications imposed by the multiple artifacts and levels of
abstraction through which autonomous behavior can be
expressed. A variety of research efforts have adopted this
architecture-centric approach including contributions based on
dynamic software architecture description languages (ADLS)
as well as work based on dynamic distributed systems with
explicit architectural models.

A core element in architecture-based self-adaptive systems is
the expression of adaptation policy: the mapping between the
set of conditions indicating the need for an adaptation and the
collection of modifications through which this need can be
addressed. Adaptation policies encapsulate the timing and
specifics of change, addressing when and what needs to be
done in order for a system to successfully adapt. These
policies, however, are often too closely coupled with the
system to which they relate and remain static during runtime;
in a domain expressly geared towards creating agile and
adaptable systems, these specific shortcomings result in the
specification of adaptive behavior that is conceptually hard to
reuse across multiple systems and difficult to dynamically
modify during system deployment.

Our goal is to address these difficulties by developing
mechanisms and supporting infrastructure for the specification
of adaptation policies that are strongly decoupled from
systems and dynamically modifiable at any point in the
system’s lifecycle, especially runtime. To achieve this, we
propose an architecture-centric and knowledge-based approach
in which adaptive behavior is achieved through a body of
observations establishing known information about a system
and a collection of rule-based adaptation policy specifications.
Explicitly represented and dynamically and independently
managed at the architectural level, these artifacts provide for a
clear separation of concerns between a system’'s elementary
components and the specification of the policies which define
self-adaptive behavior.

The key elements of this approach are the treatment of both
adaptation policy and related knowledge as first-class
architectural elements explicitly represented as decoupled
parts of a software architecture, the dynamic management of
policies at runtime, and the integration of established artificial
intelligence methods in software engineering research.

Constraint Resolver m

Maintain architectural
constraints and invariants.

Architectural Configuration
Manager

Maintains architectural configuration version
information and implements recovery operations.

“~

N

Architectural Adaptation
Manager

Adaptation
Policies

Knowledge-Based Expert System

Observations

Perform knowledge-based reasoning based on
observations and dynamic adaptation policies.

1 AN

External Events
Events which may add knowledge

or influence adaptations. . X
Implementation Runtime

Deployed component-based sofiware system

which may be instrumented for monitoring.

-

N

[7} Based on the knowledge-based system s directives:
enacts architectural adaptations, and dynamically
modifies adaptation policies.

Architectural Model
A model of the system's components,
connectors, and links.

&

Legend
[Sofiware component

—>» Information flow

Architectural Evolution
Manager

Maintains runtime consistency between
architectural model and implementation.

Figure 1. A high-level overview of our proposed approach, indicating the role of knowledge-based policy specification—the areain
which our work isprimarily focused—in the larger context of adaptation management. Shaded areasillustrate existing evolution
management facilities we leverage.

The following sections outline background information and a
justification for the need of this research direction in Section 2,
our hypothesis and proposed approach in Section 3. Our
expected contributions and planned evaluation activities
appear in Section 4 and Section 5 respectively.

2. BACKGROUND AND JUSTIFICATION

A formulation of the processes involved in architecture-based
self-adaptive systems appears in [12]. In this formulation, the
process of self-adaptation is separated into two sub-processes:
evolution management, which is focused on the enactment of
changes centered on explicit architectural models, and
adaptation management, concerned with the decision-making
process guiding these changes. While specific methods and
technologies are presented for evolution management, the
adaptation management process is not similarly addressed. In
our research, we expand on this approach to provide for
specific representations, methods, techniques, and tools for
adaptation management.

Dynamic software architecture specification research has also
addressed the issue of architecture-based adaptation
management and the specification of adaptation policy. A
variety of specification and reconfiguration languages, such as
Darwin [10], Wright [3], Gerel [7], and Acme style-based
specifications [8], provide facilities for the definition of
adaptation policy; however, these definitions are coupled
either with specific architectural elements or specific
architectural compositions and do not exhibit runtime
dynamism. Other notations and approaches, such as
COMMUNITY [16] and CHAM [15], provide for varying
degrees of adaptation policy decoupling but do not explicitly
address the runtime dynamism of these policy specifications.
More application-oriented approaches such as self-adaptive

digital signal processing systems [14] and coordination-based
object-oriented software [4] exhibit similar drawbacks. The K-
Components approach [6] to distributed systems provides
support for decoupled and dynamic policy specification, but
these policies are limited to rudimentary component
replacement operations.

A survey of these adaptation policy definition techniques in
architecture-based self-adaptive software research indicates
the need for an approach to policy specification which is
strongly decoupled from both the architectural elements and
the topologies they relate to, in addition to providing for the
dynamic management of these policies at system runtime.

3. HYPOTHESISAND APPROACH

We hypothesize that the above outlined drawbacks of existing
architecture-centric adaptation policy specifications can be
effectively addressed by adopting a knowl edge-based approach
in which self-adaptive behavior is specified through a
collection of independent and dynamic rule-based policy
definitions which reason over a body of architectural
observations encapsulating knowledge about a system. To
promote visibility and understandability, both of these
constructs must be explicitly represented, expressed, and
manipulated at the architectural level. Additionally, these rule-
based policies must be independent and decoupled from the
architectural building blocks used to construct a self-adaptive
system and be dynamically modifiable during system runtime.
With this approach, we enable systems that can not only
autonomously adapt, but also change the manner in which they
do so.

An overview of the encompassing approach we envision
appears in Figure 1; this overall process contextualizes our
work on dynamic adaptation policy specification within the

larger process of adaptation management. The Architectural
Evolution Manager (AEM) [5] explicitly manages consistency
between architectural models and the systems which reify
them; adaptations to systems, then, can be expressed solely as
changes to their architectural models. Information gathered
about the running system is collected in an adaptation
knowl edge-base and forms a body of observations over which
rule-based adaptation policies reason. The outputs of this
knowledge-base, which is managed at runtime by an expert
system, are adaptation responses deemed necessary by policy
specifications and known information; these responses
primarily describe modifications to architectural structure but
may also apply to the observations and policies encapsulated in
the knowledge-base. If these responses are not prohibited by a
collection of constraint resolvers, they are applied to the
architectural model of the self-adaptive system being managed;
changes are recorded by an Architectural Configuration
Manager, which may be used to manually recover from
undesirable changes. Finally, the AEM is responsible for the
actual enactment of these changes to runtime systems, at which
point the cyclic process resumes.

3.1 Adaptation Policies

Our primary focus is the development of decoupled and
independently dynamic adaptation policies which are modeled
at the architectural level as first-class entities (by this, we
mean entities which can be explicitly referenced and
manipulated rather than being subsumed by other architectural
constructs).

Each adaptation policy is defined through a set of composable
rule-based policy specifications, capturing the logic and goals
of a particular adaptive behavior; the general structure of such
an adaptation policy isillustrated below:
AdaptationPolicy id
(Description desc)?
(Observation id arg*)+
(Response id arg*)+

Each of these policies is uniquely identified and may include a
human-readable textual description. Policies also include one
or more observations (also uniquely identified): when these
observations are found in the knowledge-base, the entire
specified collection of responses will be triggered (as in
conventional knowledge-based approaches [9]). These
responses are drawn from a collection of operations which
modify the system’s architectural model or the self-adaptive
knowledge-base. Most importantly, these policy definitions are
modifiable during system runtime and, given the ability to
compose large-grained adaptation policies through the
specification of multiple related smaller-grained ones, provide
for finer control over overall system adaptive behavior.

These rule-based policy definitions are, in essence, mappings
between the set of architectural observations and architectural
responses. While many architectural observations will be
system-specific, some observations can be expressed in
semantic-free architectural terms. However, we believe that
the entirety of adaptation response operations can be specified
in architectural termsrelating to structural and knowledge-base
modifications. Asillustrated in Table 1, we adopt the evolution
operations outlined in [13] which we enhance with adaptation
responses for the modification of observations and rules.

Overall self-adaptive behavior is governed by the collection of
rule-based policy definitions and the body of knowledge

Table 1. Architectur e-based adaptation responses, including
modification operations for architecturesaswell as policies.

Response Description
AddComponent(C) Add the indicated ‘
e indi component, connec-
AddConrlwector(C) tor, or link to the architecture.
AddLink(L)
RemoveComponent(C) o .
RemoveConnecior(C) Remove the indicated architectural
_ element from the architecture.
RemoveLink(L)
AddObservation(O) | Add the specified observation or adap-
AddPolicy(P) tation policy to the knowledge base.
RemoveObservation(O)| Remove the indicated observation or
RemovePolicy(P) policy from the knowledge base.

collected about the system. This policy language is constrained
to architectural terms: responses are limited to defined
architectural and knowledge-base modifications, and
triggering conditions are limited to architecturally-meaningful
observations extensible by the architect for system-specific
knowledge. We believe these policy definitions balance ease-
of -use and simplicity with expressiveness.

3.2 Supporting Facilities

The kind of dynamically modifiable, rule-based approach we
espouse in this research introduces a degree of unpredictability
to the self-adaptive process. In contrast to explicitly specified
adaptation scripts (such as those found in [8] or [14]), these
policies may exhibit rule conflicts leading to detrimental
adaptations, a situation compounded by rule runtime change.
Therefore, we recognize the need to provide for facilities
accounting for such unpredictability. In addition to integrating
existing techniques for alleviating rule conflicts from the
knowledge-base research community [17], we also envision
additional support in terms of architectural constraint
resolution and architectural configuration management.

The constraint resolution facilities we plan on investigating
relate to specific restrictions on the presence of architectural
elements and their compositions. These constraints include
stylistic invariants applied to entire architectural topologies
(for which there exist established techniques, such as [11]) in
addition to specific permissions on which architectural
elements and interconnections may be modified by the
adaptation knowledge-base. Architectural configuration
management facilities provide support for architect-driven
recovery operations from configurations arrived at through the
self-adaptive process. While not directly related to our main
research focus of adaptation policy specification, an
investigation of these facilities is necessitated by the
unpredictability introduced by our chosen methods.

4. EVALUATION METHODOLOGY

Though the supporting infrastructure for this work is still only
in prototype status, we plan on refining our tools and
evaluating our overall approach across a number of aspects and
domains. First, we plan on investigating the expressiveness and
complexity inherent in the knowledge-based approach we
describe. Specifying adaptation policy as a collection of
independent rules is certainly harder to conceptualize than
sequential modification scripts, so we are interested in

examining the degree of complexity inherent in rule-based
policy specifications. Second, we intend to investigate related
dimensions of accuracy of adaptations and the scalability and
overhead imposed by the supporting infrastructure. For all
self-adaptive systems, and especialy for those relating to
safety-critical tasks, it is important to assure that adaptations
actually do take place when and as they are needed. The
scalability characteristics of self-adaptive applications—as
both architectural topologies and the set of adaptation policies
grow—and the computational overhead of the supporting tool
infrastructure are critical factors in whether this approach is
realistic in a practical setting, especialy in resource
constrained domains.

We intend to examine these properties of our approach through
activities combining the application of our methodology to
both experimental as well as real-world systems. Initially, we
plan on evaluating our methods on small-scale self-adaptive
systems with relatively few adaptation policies, which will
give us abasis for rapid experimentation and exploration of the
issues involved in applying our approach. We are considering
using Robocode [2], an infrastructure for the simulation and
visualization of battles between robots, as the basis for this
activity by designing self-adaptive systems which modify their
battle strategy based on performance and the competitive field.

Finaly, we plan on transitioning our methodology to more
realistic applications centered on the use of self-adaptive
systems in the satellite ground system domain. Through past
work, we have gained insight into such systems and can draw
on both personal experience as well as active industry
collaborations for the application of our self-adaptive
methodology to an adaptive telemetry processing ground
system based on STARS [1]. The scale of such a system and
the large number of adaptation policies needed to provide for
needed self-adaptive capabilities will provide for a realistic
evaluation of the performance characteristics of our approach.

5. CONCLUSION

One of the most important elements of architecture-based self-
adaptive software is the manner in which adaptation policies
are specified. Through an examination of other research
approaches, we identify the need for an approach which
supports policies which are strongly decoupled from systems
and dynamically modifiable at system runtime.

We believe that the knowledge-based specification approach
we outline in this paper satisfies these requirements. By
explicitly representing adaptation policies at the architectural
level, decoupling these policy definitions from both system
components and architectural configurations, and supporting
the runtime dynamic modification of rule-based policy
specifications, we offer an approach which supports the
potential for policy reuse, system flexibility, and adaptation
policy dynamism. Additionally, we leverage well-developed
knowledge-base techniques and expert system tools from the
artificial intelligence community and contribute a novel
integration of these technologies in the dynamic architecture
management domain.

6. REFERENCES

[1] Spacelift Telemetry Acquisition and Reporting System.
<http://www.aero.org/control systems/stars.html>, The
Aerospace Corporation.

[2] Robocode. <http://robocode.a phaworks.ibm.com>, IBM.

[3]Allen, R.J., Douence, R., and Garlan, D. Specifying and
Analyzing Dynamic Software Architectures. In Proceedings of
the 1998 Conference on Fundamental Approaches to Software
Engineering. Lisbon, Portugal, March 1998, 1998.

[4]Andrade, L. and Fiadeiro, J.L. An architectural approach to
auto-adaptive systems. In Proceedings of the 22nd
International Conference on Distributed Computing Systems
Workshops. p. 439-444, 2002.

[5] Dashofy, E., Hoek, A.v.d., and Taylor, R.N. Towards
Architecture-Based Self-Healing Systems. In Proceedings of
the First ACM SIGSOFT Workshop on Self-Healing Systems.
p. 21-26, ACM. Charleston, South Carolina, November 18-19,
2002.

[6]Dowling, J. and Cahill, V. Dynamic Software Evolution and
the K-Component Model. In Proceedings of the Workshop on
Softwar e Evolution, OOPSLA 2001. 2001.

[71Endler, M. A Language for Implementing Generic Dynamic
Reconfigurations of Distributed Programs. In Proceedings of
the 12th Brazilian Symposium on Computer Networks. p. 175-
187, 1994.

[8] Garlan, D. and Schmerl, B. Model-based adaptation for self-
healing systems. In Proceedings of the First ACM SIGSOFT
Workshop on Self-Healing Systems. November, 2002.

[9]Hayes-Roth, F. The Knowledge Based Expert System: A
Tutorial. |IEEE Computer. 17(9), p. 11-28, 1984.

[10]Magee, J. and Kramer, J. Dynamic Structure in Software
Architectures. Software Engineering Notes. 21(6), p. 3-14,
1996.

[11]Magee, J. and Kramer, J. Self organising software
architectures. In Proceedings of the Second I nternational
Software Architecture Workshop (ISAW-2) and International
Workshop on Multiple Perspectives in Software Devel opment
(Viewpoints '96) on SIGSOFT '96 Workshops. p. 35-38, 1996.

[12]Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.,
and Wolf, A.L. An Architecture-based Approach to Self-
Adaptive Software. |[EEE Intelligent Systems. 14(3), p. 54-62,
May-June, 1999.

[13]Oreizy, P. Open Architecture Software: A Flexible
Approach to Decentralized Software Evolution. Ph.D. Thesis.
Information and Computer Science, University of California,
Irvine, 2000.

[14] Sztipanovits, J., Karsai, G., and Bapty, T. Self-Adaptive
Software for Signal Processing. Communications of the ACM.
41(5), p. 66-73, 1998.

[15]Wermelinger, M. Towards a Chemical Model for Software
Architecture Reconfiguration. In Proceedings of the Fourth
International Conference on Configurable Distributed
Systems. p. 111-118, Annapolis, Maryland, May 4-6, 1998.

[16]Wermelinger, M. and Fiadeiro, J.L. A Graph
Transformation Approach To Software Architecture
Reconfiguration. Science of Computer Programming. 44(2), p.
135-155, 2002.

[17]Wu, P. and Su, S.Y.W. Rule Validation Based on Logical
Deduction. In Proceedings of the Second International
Conference on Information and Knowledge Management. p.
164-173, Washington, D.C., United States, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

