
Teams Battling Teams: Introducing Software Engineering
Education in the First Year with ROBOCODE

1. Introduction

In order to be effective software engineers, computer science undergraduate students must
master not only core theoretical computer science foundations and programming skills, but also a
variety of competencies having to do with design, the preparation of software-related
documentation, and soft skills relating to effective teamwork. In many traditionally structured
computer science programs, the acquisition of these software engineering skills is localized in
very few points in the already dense computer science curriculum: most commonly in an
introductory software engineering course that precedes a final, senior year capstone course.

This curricular structure presents educators with two significant challenges: First, it makes the
study and application of software engineering skills overly focused within the context of isolated,
discrete courses. While understandably driven by the tight confines of the undergraduate
curriculum, this isolation results in the perception that the content of such courses are a skill-set
with limited applicability. Second, it means that students are generally unprepared for the
challenges of software engineering learning activities when first encountered. With most
introductory software engineering courses applying experiential learning and couching learning
activities in the context of a team-based project, the challenge of mastering course content is
complicated by what is, for most students, their first significant experience with teaming and the
difficulties of managing not just their own work but also the work of their teammates.

These challenges motivate the need for better integration of software engineering knowledge into
the computer science curriculum, and the earlier introduction of the related skill-set and team-
based project experiences. In order to begin addressing these difficulties, we have introduced a
challenging and engaging software engineering team project into our first year introductory
programming sequence based on the ROBOCODE robotic combat simulator. Programming in the
JAVA language, students work on developing a cooperative team of robots that competes in a
tournament against robotic teams built by their fellow students – teams of students developing
teams of robots. Our key goals with this curricular enhancement are: (a) to include software
engineering education earlier in our program and in a more integrated manner than current
practice, and (b) to introduce team- and project-based software engineering activities in a low
risk, high student involvement setting in order to create a smoother learning curve for students.
This paper contributes:

• A discussion of the learning theory foundations for our approach, based on experiential
learning targeted at increasing student motivation;
• A minimally disruptive framework for better integrating software engineering education
within a computer science curriculum by elaborating our course design plan, and providing a
description of areas that required particular care; and,
• A presentation of quantitative and qualitative evaluation results, based on student
surveys, evaluation based insights, and our own observations.

The remainder of this paper is organized as follows: Section 2 discusses background information
on learning theories and the Robocode simulator, Section 3 presents the design of our approach,
and Section 4 discusses evaluative results while Section 5 offers concluding remarks.

2. Background

This section presents background information that underpins our work regarding the ROBOCODE
simulator and the learning theory foundations that inform the design of our approach.

2.1. ROBOCODE

ROBOCODE is an open-source development platform for robotic combat simulation, intended to
support the instruction of students in the JAVA programming language, originally developed and
released to the public by IBM8. Students develop and program the logic for each autonomous
robot, and these robots then compete against each other under the management of the simulator
infrastructure; Figure 1 shows a ROBOCODE battle in progress, showing the graphical interface of
the simulator, while a text-based view showing only final battle statistics is also available.

The basic objective of each robot is to survive while destroying its competitors: each simulated
robot consists of a mobile platform that moves around the battlefield, a radar that collects
information about other robots, and a turret-mounted gun that fires bullets. The key resource
associated with each robot is energy, which is a measure of health since the robot becomes
disabled when its energy is reduced to zero. Being struck by other robots’ bullets, colliding with
other robots, or colliding with the battlefield’s walls causes a robot to lose energy. Firing bullets
requires an investment of energy, which is regained only if a bullet actually strikes an enemy –

Figure 1. A screenshot of a ROBOCODE battle in progress.

energy invested into bullets that miss is lost. The objective, then, is for students to program logic
that allows robots to preserve their energy by avoiding collisions and enemy fire while also
maximizing their own chances of striking an enemy. Developers use and extend core ROBOCODE
classes, with the infrastructure providing information about events taking place on the battlefield
and supporting an API that can be used to enact robot actions. The ROBOCODE framework also
acts as a “sandbox” that restricts the actions that programs can execute and prevents one robot
from accessing the functions of another.

While the ROBOCODE simulator has been previously used in introductory computer science
courses7, this previous work focuses on the acquisition of programming language skills through
the development of a single robot by individual students. Our application is a novel divergence
that leverages the simulator’s capability to support the creation of robot teams, where robots of
the same team may coordinate their actions at runtime, developed by teams of students and
focusing on introducing software engineering skills, documents, and team-based activities.

2.2 Learning Theory Background

The foundation of our approach lies with the learn-by-doing learning philosophy2, which
espouses the importance of the interactive, social, and hands-on aspects of effective learning,
rather than an exclusive focus on the material or information to be conveyed to the learner. The
two expressions of this philosophy most relevant to our work are situated learning6 and problem-
based learning9. Situated learning identifies the importance of placing learning activities within a
context that is fundamentally similar to that in which the skills and knowledge acquired will
eventually be applied. Problem-based learning stresses activities that are open-ended and
encourage self-directed learning, which fosters a greater degree of student investment and
therefore quality of work.

Our work is also significantly informed by research into and findings related to student
motivation. The ARCS motivational model5 posits that there are four key factors in encouraging
a high level of learner motivation: attention (fostering curiosity and self-driven problem-solving),
relevance (supporting clear linkages of learning activities to learner interests), confidence
(ensuring that learners maintain an expectation of success), and satisfaction (clearly showing
learners the value of the learning outcomes being achieved). Further reinforcing student
motivation is a high degree of learner involvement and commitment to the learning activities
taking place, which are critical factors in fostering effective learning1.

In our own work, we have strived to incorporate insights from these educational approaches and
student motivational models. Our adoption of a team-based project strongly espouses situated
learning, as most of the work of practicing software engineers is performed within the context of
a team and not individually. Furthermore, students are free to design the behaviors of their
ROBOCODE robot in whatever way they feel will make their robot most effective, which provides
an open, problem-based context for their work. We have also found that the competitive setting
of ROBOCODE tournaments is highly engaging, with students being energetically involved and
invested into their robots’ success, which directly supports the kind of student attention,
satisfaction, and commitment to the project that supports effective learning.

3. Approach

Within conventionally structured computer science curricula, the inclusion of the software
engineering body of knowledge meets with significant challenges. Driven by the tight confines
of the curriculum, required by such factors as accreditation demands and the rapidly advancing
pace of the field as a whole, the instruction of software engineering is understandably limited to
few, discrete points in the curriculum. Generally, this results in students being unprepared for the
rigor of software engineering activities when first encountered, particularly the difficulties
associated with team-based projects that are an almost ubiquitous part of software engineering
instruction4.

In order to address these challenges, we first aim to provide for better initial exposure of students
to software engineering and teaming through the inclusion of a team- and ROBOCODE-based
development project within the context of our second semester introductory computer science
course. With this curricular improvement, we aim to introduce software engineering expertise at
a much earlier point in the computer science curriculum than is usual and to better prepare
students for the rigor of team-based projects in a setting that is entertaining and lower-risk than
the more realistic projects found in dedicated software engineering courses. While the
subsequent sections provide details on a number of aspects of our approach, the table below
captures the overall project timeline in order to provide context for subsequent discussion.

Course
Timeline Activity Related

Deliverable

Week 1-2 Elaborate software
requirements and design Initial Report

Week 2-6 Implement ROBOCODE
robot team

Robot
Implementation

Week 6 Discuss final design and
divergence

Summary
Report

3.1 Project Description

The fundamental aim for each student team is the development of a ROBOCODE team, consisting
of four cooperative robots. The simulation framework provides facilities to support this type of
development, primarily focusing on providing robots belonging to the same team with the
capability to share information among them. This capability expands the possible functionality of
robots to a great extent, since the arc of each individual robot’s simulated radar limits the
information it can gather about the battlefield. The ability to share data and action directives
among teammates allows each individual robot to make decisions based on a significantly larger
body of information and supports the development of cooperative behaviors. This allows for a
wider set of strategies that can be employed: robot teams, for example, are able to coordinate
their fire on the same opponent, or move so that they surround a target to prevent escape, or
strategically position certain team members far from harm. The overall project is grounded in a
multi-round tournament setting, where robot teams are pitted against each other until a single
robot team emerges victorious.

From a student perspective, this capability introduces significant additional complexities and
design challenges fundamentally stemming from the asynchronous nature of the simulated battle.
One interesting issue becomes the validity of available information in the decision-making
process: Robot team members may base their actions on information that is immediately
available to them, but also on data collected by their teammates. As time goes on, however, this
externally provided information is likely significantly less accurate, particularly as it pertains to
the positions of enemy robots which are likely to have moved away from the position in which
they were initially detected. Another challenging concern is adjusting the tactics used by a robot
team based on updated battlefield information and potential setbacks: Consider, for example, a
team of robots that coordinates their movement in order to encircle an enemy. If that enemy
robot is destroyed while the coordinated movement is still in progress, this encircling team
becomes vulnerable during their maneuver that now lacks its ultimate objective. Resolving and
making design decisions on these kinds of coordination challenges tends to be a primary area in
which students invest time while engaged in this project.

3.2 Curricular Integration

The software engineering centric ROBOCODE project is included in the final six weeks of the
second semester of our first year introductory computer science sequence. The course focuses on
an in-depth examination of object-oriented programming as well as an introductory coverage of
topics such as data structures, recursion, algorithms and algorithmic complexity, and
multithreaded programming – coverage of these topics is couched within activities performed
using the JAVA programming language. In order to be minimally disruptive, the team-based
ROBOCODE project forms a parallel thread of activities to homework and lab assignments more
closely coupled with course content. For example, while the learning module concerning data
structures is accompanied by a homework assignment and a lab assignment focusing on linked
lists, there is no explicitly required ROBOCODE-related assignment for linked lists. However,
since students have mastered this content, many elect to use lists, stacks, and queues as part of
their robot team’s logic for purposes such as managing potential targets. This is a common thread
regarding the topics covered in the course: Students acquire additional programming knowledge
and techniques, master them through traditional assignments such as homework and lab
exercises, and then independently apply them in their ROBOCODE projects.

3.3 Group Formation, Management, and Evaluation

Formal cooperative groups, which are structured, stable, and involve relatively long-term
commitments11, are an important element of situated learning and a key component of our
approach to improving software engineering education. Concerns such as group size, group
membership, and day-to-day team interactions, however, are critical factors in either fostering
success or being insurmountable obstacles to student activities12, so cooperative groups must be
organized and managed with care on the part of the instructor.

Based on insights for the effective formation and management of groups10, we explicitly focused
on addressing the following concerns in the design of our project:

• Clarity of task explanation and objectives. In addition to a detailed problem statement for
the project and an outline of the programmatic details of robot team development, students

were also allowed to gain insight into ROBOCODE through a preparatory individual
tournament that preceded this initiation of this group project.
• Group organization and leadership. While we allowed students great leeway in the
selection of their teammates, we also ensured that each team had at least one high-achieving
student who seemed a good candidate for being team leader.
• Monitoring and group dynamics. Throughout the six-week period of the team project,
instructional staff held informal meetings with each project team. Through these meetings
and associated status updates, we worked toward ensuring that conflicts between group
members were mediated as early as possible.

For effective group operation, it is also critical to provide evaluative feedback at both the group
and individual levels12. For this project, each deliverable element was accompanied by a student-
provided peer-evaluation that is used in a zero-sum grading methodology. This allowed us to
assign individual grades that are a better representation of individual student contributions than
the quality of final deliverables alone. As a result, individual grades reflect high or low levels of
contribution by students, based on the evaluations of their teammates.

Each student is required to provide a peer evaluation along with project deliverables: this peer
evaluation provides a scaling factor for the score of the submitting student and each of their team
members. A scaling factor of 1 for a teammate would mean that, according to the submitting
student’s estimation, that teammate deserves to receive exactly the overall score is for the
deliverable, a scaling factor of 0.9 would mean that they feel their teammate should receive only
90% of that grade, while a scaling factor of 1.1 would mean their teammate’s contribution merits
an extra 10%. As this is a zero-sum system, total reductions to the scaling factor for team
members must be accompanied by equal increases to the scaling factors of other team members:
the intent is to allow students to provide a measure of their teammates’ contributions, with
scaling factors smaller than 1 indicating that their teammate did not contribute as much as others
and scaling factors greater than 1 indicating their impression that their teammate contributed
more than expected.

The grade assigned to each deliverable by the instructor is the assignment’s baseline score for
each team member and the instructor then modifies this baseline score by the average of all the
scaling factors assigned to each student. In addition to a tangible measure of student feedback
about theirs and their teammates’ individual scores, this also provides another indication to the
instructor that an intervention is needed: any overall scaling factors of less than 0.9 or greater
than 1.1 result in a group meeting with the instructor in order to discuss the group dynamics and
inner workings that are contributing to such relatively large disparities of effort.

3.3 Software Engineering Lifecycle and Project Deliverables

In addition to providing the context for students to experience a meaningful team-based project,
our goal is to expose students to important software engineering skills and artifacts, relating to
project management, requirements, design, and reflection over the development process. While it
is infeasible to expect students to follow a rigorous development process and produce complete
associated documents and artifacts, we feel it is important for them to be introduced to these
concepts through scaled-down versions of these activities and related deliverables.

Students participating in the ROBOCODE-based team project use a truncated waterfall lifecycle
process and produce a number of software engineering documents and artifacts while engaging
in the following activities:

• Requirements and design. Students are required to begin their software engineering
activities by preparing an initial document that outlines the strategies and tactics their robot
team will employ, along with a description of how they will design their robots in order to
achieve these required behaviors.
• Management plan. Based on their requirements and design descriptions, students are
further asked to create and document a project management plan that describes how they will
go about organizing their development activities. They have to decide on and document who
will lead their team, how they will organize their team meetings and activities, and how they
will allocate work items to each team member.
• Implementation. At the end of the six-week development period, students submit the
commented source code for each of their ROBOCODE team robots.
• Summary and divergence report. As the final deliverable of this team-based project,
students are required to submit a final summary report of their project activities. This report
outlines the final features of their robotic team and how they actually managed to achieve
their desired goals. Perhaps most importantly, students are also required to address how their
design and implementation diverged from their initial plans.

While students do not necessarily, and are not expected to, master formal software engineering
techniques and methodologies, they gain valuable skills in addition to a significant team-based
project experience. Through their work on requirements and design definitions, students gain
experience with carefully identifying and documenting the features their system must exhibit
before beginning their implementation, which is likely the first time in their careers as computer
science students that they are required to do so. Through the elaboration of their team’s
management plan, students are forced to consider their own personal strengths and weaknesses
as developers in order to reach effective decisions regarding work allocation. Finally, the
requirement that they discuss how their final product diverged from their initial design
necessitates that students carefully reflect over their development activities, the difficulties they
encountered, and the validity of their initial estimations of the difficulty of project-related tasks.
These are key software engineering skills that are normally not addressed until significantly later
in the curriculum than the first year course that this ROBOCODE project is included in.

4. Evaluation Results

In our experience, this team-based ROBOCODE project has been effective and successful in
engaging the interest of students as well as better preparing them for larger-scale, dedicated
software engineering learning experiences. We base this assertion on a combination of informal
anecdotal evidence and observations, as well as quantitative and qualitative data collected
through student surveys administered over two semesters of offering this team-based activity.

4.1 Software Engineering Preparation

One of our fundamental goals with the introduction of this project is to inject software
engineering learning into the introductory programming level. Our project is designed to require
that students consider and document their decisions regarding requirements, design, and project
management in addition to implementing their ROBOCODE team. As a result, the design of our
project necessitates that students are exposed to these software engineering activities with
explicit deliverables. Furthermore, they are also exposed to a team-based project setting, which is
critical in building soft skills, such as effective and convivial communication, time management
and scheduling with team members, and conflict resolution. The very fact that students are
exposed to these learning activities in their first year meets our goal of introducing software
engineering learning earlier in the curriculum.

Quantitative and qualitative survey data also support an increased level of exposure to and
appreciation of software engineering skills by students. For example, students were asked to rate
their level of interest, from 1 to 10, for various aspects of this ROBOCODE project that include
problem analysis, building and applying programming skills, gaining the recognition of their
peers, and winning tournaments. Of these categories, the “problem analysis and solving”
category was rated the highest, with a median interest level of 8. One student reported that their
favorite part of the assignment was “designing [their] modular classes and just thinking how the
thing itself will come together” while another found the most useful element of the project to be
“designing behaviors.” To have junior students be this interested in design and problem analysis
– both of which are core software engineering skills – over simply programming is a clear
indicator of success in the context of our goals with this ROBOCODE project.

While we have not completed a structured, long-term longitudinal study of the effect of this
experience on the grades of students in subsequent dedicated software engineering courses, we
have collected data from two software engineering course offerings that were staggered around
the ROBOCODE projects described here: the first software engineering course was offered to
students that had not participated in the ROBOCODE activity, while the second one consisted of
students that had. While we were not able to strictly control student membership for previous
academic performance, we offer the following metrics as early informal indicators: In the
software engineering course that followed ROBOCODE projects, the overall median grade was
roughly 1% higher (an insignificant difference) but the overall median grade on the requirements
elicitation and documentation assignment was 7% higher. While we do not notice significant
differences in overall performance, we hypothesize that the relatively significant performance
differences in the requirements-centric assignment may be due to better preparation on the part
of the students for requirements elicitation and documentation activities.

4.2 Student Involvement

We are very confident that this project fosters a high degree of student enjoyment and
involvement. Perhaps the best indicator of enjoyment is the degree of enthusiasm exhibited by
students during in-class ROBOCODE tournaments. During tournaments, students are quite active
in cheering their robots on, congratulating each other on hard-won victories, and openly
expressing disappointment upon losses. We posit that the competitive tournament setting of the

project underlies this enthusiasm and involvement, which we are quite pleased to note exceeds
that which we have experienced using other kinds of projects that did not involve competition,
such as media-based assignments3. Involvement into the project was also evident in the amount
of time and effort students invested into their work, which was significantly larger than that
invested into the more traditional assignments of the course.

These assertions are also based on quantitative data drawn from surveys deployed to two cohorts
of students participating in this ROBOCODE-centric project:

• Students were asked to rate their enjoyment of the Robocode team-based assignment, and
76% of students said they either “enjoyed” or “greatly enjoyed” the assignment. Only 14% of
students rated their experience at some degree of lack of enjoyment.
• Students were asked to report on how many lines of code (LOC) they wrote for their
Robocode implementations, and 41% of students said they each wrote over 1000 LOC, while
33% reported that they wrote well over 1500 LOC. This tangibly demonstrates student
investment: compare the size of programs to the single largest conventional, non-ROBOCODE
assignment for the course measures that measures roughly 300 LOC.
• Students were asked whether the ROBOCODE assignment made them more enthusiastic
about their work in this course, and 75% of students either “agreed” or “strongly agreed”
with this assertion.
• Students were asked if they enjoyed the competitive nature of the Robocode assignment,
and 90% of students either “agreed” or “strongly agreed” with this statement.
• Students were asked whether they preferred this ROBOCODE assignment to the other,
more conventional assignments of the course: 67% of students either “agreed” or “strongly
agreed” that ROBOCODE provided a more preferable experience.

Qualitative data also supports our conclusions regarding an increased level of student
involvement, commitment, and enjoyment. One student commented that the assignment was “a
creative way to code while the tournaments inspired programmers to go that extra mile” while a
second commented that the assignment was “new and different from a traditional assignment.” A
student also said that the project is a “cool idea, Robocode is addictive” and another student
reported that their favorite part was “watching the battles, even though I got last almost every
time.” A favorite quote from a student was “I feel I learned much more about programming in
this than any other part of the course.”

4.3 Negative Perceptions

While we are very encouraged by the reception of this project structure by students, the response
was not universally positive. The negative comments that students made primarily revolved
around two fundamental issues: the time-consuming nature of the team project, and technical
issues with the ROBOCODE simulator. One student, for example, says “in order to do well, a much
greater proportion of outside study time was needed as compared to a typical 3 credit class.”
Another states that the project “added to an already high workload, more stress.” These
comments are understandable, as the team-based nature of the project adds a significant amount
of overhead in terms of the time that students need to invest into the project in order to do well.
For future offerings of the course, we intend to provide more time for students by increasing the
6-week time period allocated toward the team ROBOCODE project, in the hopes that the additional

time without a corresponding increase in the project’s requirements will provide a more
forgiving schedule for students. Another significant issue, particularly for certain students, was
experiencing technical issues with the ROBOCODE simulator. While most students did not have
undue difficulty, some had to work at circumventing significant simulator bugs, such as memory
leaks. We anticipate that future versions of the simulator will resolve these technical issues.

5. Conclusion

Within the structure of conventional computer science curricula, software engineering learning is
isolated in few discrete courses, which makes it challenging to properly prepare students for the
rigor and challenges of the experience. In this paper, we describe our initial effort in addressing
this challenge by introducing software engineering learning activities in the form of a team-based
development project centered on the ROBOCODE simulator that we introduced into our first year
programming course sequence. In this project, teams of students develop a team of ROBOCODE
robots that compete against the teams of their classmates, and students engage in software
engineering activities such as requirements gathering and design, produce software engineering
deliverable documents, and experience a significant team-centric development experience. Our
own observations along with qualitative and quantitative survey data supports that our learning-
theory based design is effective in stimulating student interest and providing students with a
gentle introduction to software engineering learning.

6. Acknowledgements

The author would like to thank Eck Doerry for developing the basis of the zero-sum peer
evaluation system we adopt, the many open-source contributors and developers of ROBOCODE,
and the computer science students of Northern Arizona University. This work sponsored in part
by the National Science Foundation under NSF Grant CCF-1017408, and Northern Arizona
University’s Faculty Grant Program.

Bibliography

[1] Astin, A.W. 1993. What Matters in College? Four Critical Years Revisited. Jossey-Bass.

[2] Dewey, J., Democracy and Education: An Introduction to the Philosophy of Education, The Macmillan
Company: New York, USA, 1916.

[3] Forte, A. and Guzdial, M., Computers for Communication, Not Calculation: Media as a Motivation and Context
for Learning, in Proceedings of the Hawai'i International Conference on System Sciences, Big Island, Hawaii, 2004.

[4] Hayes, J.H., Energizing Software Engineering Education through Real-World Projects as Experimental Studies,
in Proceedings of the 15th Conference on Software Engineering Education and Training (CSEET), IEEE Computer
Society, Covington, KY, USA, 2002, pp. 192-206.

[5] Keller, J.M. and Suzuki, K., Use of the ARCS Motivation Model in Courseware Design, in Instructional Designs
for Microcomputer Courseware, Jonassen, D.H. (Ed), Lawrence Erlbaum: Hillsdale, NJ, USA, 1988.

[6] Lave, J., Cognition in Practice: Mind, Mathematics, and Culture in Everyday Life, Cambridge University Press:
Cambridge, UK, 1988.

[7] O’Kelly, J. and Gibson, J.P. 2006. RoboCode and problem-based learning: a non-prescriptive approach to
teaching. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, pg. 217-221.

[8] http://robocode.sourceforge.net

[9] Savery, J.R and Duffy, T.M., Problem Based Learning: An Instructional Model and its Constructivist 
Framework, in Constructivist Learning Environments: Case Studies in Instructional Design, Wilson, B. (Ed), 1996,
pp. 135-148.

[10] Smith, K.A., Cooperative learning groups, in Strategies for Active Teaching and Learning in University
Classrooms, Schomberg, S.F. (Ed), Continuing Education and Extension, University of Minnesota, Minneapolis,
MN, 1986.

[11] Wankat, P.C. and Oreovicz, F.S., Teaching Engineering, Knovel, USA, 2006.

[12] Wilde, D.J., Using Student Preferences to Guide Design Team Composition, in Proceedings of ASME Design
Engineering Technical Conferences, DETC97/DTM-3890, Sacramento, CA, USA, 1997.

