
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSS'04, Oct 31-Nov 1, 2004 Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

Towards a Knowledge-Based Approach to Architectural
Adaptation Management

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
+1 949 824 5160

{jgeorgas, taylor}@ics.uci.edu

John C. Georgas Richard N. Taylor

ABSTRACT
Self-adaptive software continually evaluates and modifies its
own behavior to meet changing demands. One of the key issues
in constructing such software is that of planning when and
what kinds of adaptations are appropriate. In this paper, we
present an architecture-centric knowledge-based approach for
specifying and enacting architectural adaptation policies as the
main driver for self-adaptive behavior. Our work applies
explicitly represented knowledge-based policies for the
definition and enactment of software adaptation at the
architectural level. A key benefit of our approach is the de-
coupling of adaptation policy from system implementation as
well as the independent and dynamic evolution of policies
themselves. We elaborate our overall approach, present
prototype tools and techniques for its support, and discuss
future research directions.

Categories and Subject Descriptors
D.2.11 Software Engineering: Software Architectures –
languages.

General Terms
Management, Design, Languages

Keywords
Architectural adaptation management, self-adaptive software.

1. INTRODUCTION
Many software systems need to be adaptive in response to a
host of demands such as additional behavioral requirements,
changing deployment platform conditions, or unexpected
failures. More often than not these modifications are directed
by the human custodians charged with the software’s
maintenance, and it may often take these operators anywhere
from minutes to hours to perform needed adaptations. While
for some systems this time scale is perfectly acceptable, other
classes of systems operate under more stringent demands.
Dynamic software radio systems, space exploration vessels,

and distributed systems faced with unpredictable connectivity
are just a few examples of systems requiring the capability to
autonomously respond to situations dictating change.

Constructing such self-adaptive systems, however, is
challenging. Adaptation-related concerns are often too deeply
embedded into implementation code, or encoded as static, pre-
planned responses to a set of situations predicted at design-
time. To address these challenges, we present an approach
which integrates insights from knowledge-based systems with
high-level software architecture models.

An early formulation of architecture-based self-adaptive
software is described in [10]; elaborating and expanding on
that foundation, this paper describes a knowledge-based
approach to reasoning over the space of possible adaptations in
order to build self-adaptive systems. In this Knowledge-Based
Architectural Adaptation Management (KBAAM) approach,
reasoning and decision-making about the timing and nature of
specific adaptations are grounded on knowledge-based
adaptation policies. Both policies and relevant system
knowledge are represented and explicitly modeled as first-
class architectural elements and included in the architectural
description of a self-adaptive system. These elements are then
dynamically managed and reasoned over by an expert system,
which communicates adaptations thought to be necessary to a
framework responsible for their management and enactment.

The key elements of our approach are the treatment of both
adaptation policies and related knowledge as first-class
architectural entities decoupled from system implementation,
and the integration of existing knowledge-based techniques for
the representation and dynamic reification of these policies
allowing for their dynamic and independent evolution.

2. BACKGROUND
The technical underpinnings of our approach can be found in
the field of architecture-based runtime software evolution [9],
which centers around the reliable runtime management of
software dynamism based on architectural models. Such
models usually describe systems in terms of components,
connectors, and the interconnections between them [11]; in
architecture-based software evolution, these models are
explicitly bound to the running systems they describe. An
Architectural Evolution Manager (AEM) establishes this
binding and maintains consistency between runtime systems
and their architectures. System change can then be expressed
and enacted in terms of modifications to corresponding
architectural models with the AEM ensuring that these changes
are appropriately reflected on the running system.

An initial formulation of architecture-based self-adaptive
software appears in [10], describing the management of such
systems using two parallel and concurrent activities: evolution

management and adaptation management. Evolution
management focuses on maintaining runtime consistency
between a dynamic architectural model and the actual system
this model describes. Adaptation management evaluates events
indicating that an adaptation is needed, decides on the specific
content of changes, and finally enacts these modifications.
Continuously applied, the combination of these two processes
results in systems which modify their own behavior solely
through the manipulation of architectural descriptions. Of
these two activities, evolution management has been better
developed and supported to date; our focus here is to better
support adaptation management by elaborating on specific
methodological and representational techniques for adaptation
policies, presenting tools to support their management and
evolution, and providing for self-adaptive capabilities through
the integration of knowledge-based reasoning.

3. APPROACH
We adopt an architecture-centric approach to self-adaptive
software and apply our methods to systems constructed using
independent components interconnected through first-class
connectors, both explicitly modeled using architectural
descriptions. These architectural models are then used as the
basis for the decomposition of adaptation into three elements:
the kinds of knowledge and information which may indicate
the need for adaptation, the architectural operations through
which adaptations may be enacted, and the adaptation policies
which map between the two. The key insights of this work are
the treatment of adaptation policies as first-class architectural
elements which can be dynamically evolved during runtime,
and the leveraging of existing knowledge-based techniques for
dynamic reasoning over the space of architectural knowledge.

A high-level overview of the elements involved in our
approach appears in Figure 1. The central abstraction is the
architectural model which defines the structure of a software
system; these architectural models accompany the deployed
system they describe at runtime. The Architectural Evolution
Manager (AEM) maintains consistency between the
architecture and its implementation. Events captured from the
runtime system or those events generated by system
monitoring facilities are collected in an adaptation knowledge

base. Also collected are external events not originating from
within the self-adaptive system; these events may encapsulate
information about other collaborating software systems or
remotely generated adaptation directives. The responsibility of
the knowledge-base is to collect, maintain, and reason over
these observations which encapsulate relevant knowledge
about the self-adaptive system. This knowledge base underpins
the reasoning process by applying a set of architectural
adaptation policies over the existing body of observations and
determining whether any adaptations are needed. Responses
deemed necessary are expressed in terms of architectural
modifications communicated to the Architectural Adaptation
Manager (AAM). These changes may be of two types:
modifications of the adaptation policies currently in use by the
knowledge base, or structural changes to the system’s
architectural model. The cycle resumes with the AEM ensuring
that enacted architectural changes are dynamically reflected in
both the structure and operation of the running system.

3.1 Knowledge-Based Adaptation Policies
Architectural adaptation policies encapsulating the system’s
responses to prevalent conditions are explicitly modeled as
first-class architectural elements and decoupled from the
implementation of the self-adaptive system.

Information relevant to adaptation is represented as a
collection of dynamically gathered observations which
establish known facts about the system, while adaptation
policies specify rules which may be triggered by these
observations and determine necessary adaptation responses
based on the asserted conditions. The general structure of an
architectural adaptation policy appears below:

Each policy has a unique identifier and may include a textual
description. One or more observations are associated with the
policy as triggering events, and one or more responses are also
specified. Observations and responses are also uniquely
identified so that each can be independently referenced and
modified. Similar to traditional knowledge-based rules [5],

Figure 1. An overview of the elements involved in our approach to knowledge-based self-adaptive software illustrating the
interaction of evolution and adaptation management.

Architectural Model
A model of the system’s components,

connectors, and links.

Architectural Evolution

Manager

Architectural Evolution

Manager

Maintains runtime consistency between
architectural model and implementation.

Implementation Runtime
Deployed component-based software system
which may be instrumented for monitoring.

External Events
Events which may add knowledge

or influence adaptations.

External Events
Events which may add knowledge

or influence adaptations. Legend

Software component
Information flow

Based on the knowledge-based system’s directives:
enacts architectural adaptations, and dynamically

modifies adaptation policies.

Architectural Adaptation

Manager

Architectural Adaptation

Manager

Perform knowledge-based reasoning based on
observations and dynamic adaptation policies.

Adaptation Knowledge Base

Adaptation
Policies

ObservationsAdaptation
Policies

Observations

Adaptation

Management

Evolution

Management

AdaptationPolicy id
 (Description desc)?
 (Observation id arg*)+
 (Response id arg*)+

when the entire set of observations is asserted, the adaptation
responses specified will be triggered by the governing policy.

While comparable to conditional statements, a rule-based
specification has significant advantages in terms of dynamism:
the approach allows for individual policies to be dynamically
added or removed from an architectural description.
Furthermore, individual observations and responses within
policies may also be independently modified. The difficulty in
the prediction and management of policy interaction
introduced by this dynamic behavior can be addressed by
facilities external to the policy definition, as discussed in
Section 3.2. Governing self-adaptive behavior using
knowledge-based policies explicitly modeled as architectural
elements couples these dynamic characteristics with a high-
level of visibility for better understandability, potential for
reuse, and a finer degree of control over adaptive behavior.

3.1.1 Observations
Architectural observations encapsulate knowledge relevant to
the operation of a self-adaptive system and are the triggers of
adaptation. An additional component being added into a
software system, for example, would be represented as such an
asserted observation.

In our approach, observations added into the knowledge-base
are collected from two sources: the running self-adaptive
system itself and external information communicated to the
system. The former category of observations may originate in
the system as a result of its normal operation or may be emitted
by a monitoring infrastructure; our work does not explicitly
depend on a particular monitoring approach and we consider a
number of such infrastructures as complementary [3, 6]. The
latter category of observations are the result of external events
which may provide information about remotely located but
collaborating software systems or specific adaptation
directives provided by a human system operator.

An additional distinction is that knowledge which originates
from the system itself and is encapsulated in observations may
be of two kinds: structural information about the system’s
architecture, and semantically-dependent knowledge
concerning its intended behavioral characteristics. While the
latter kind of knowledge is closely tied to particular systems
and would have to be specifically defined by the system’s
architect, the former may be expressed solely in architectural
terms. For example, an observation stating that a particular
component has failed carries no system-specific semantic

information and would therefore be relevant and have meaning
for all component-based systems.

The capability to relate information in this semantically-
independent manner allows for the definition of generally
applicable, architecture-centric observations that can be reused
in multiple contexts and with many different heterogeneous
systems. Table 1 presents the collection of such observations
we use in our approach. The majority of these
straightforwardly deal with information about structural
changes of an architecture such as a component removal or the
addition of a link. Two of these observations, however, denote
potential problems in system composition; UnservicedRequest
observations indicate that a particular request is not being
serviced, while an IgnoredNotification specifies that a
notification of a service having been completed is not being
received by any component.

3.1.2 Adaptation Responses
Adaptation responses are the specific changes to be applied to
an architecture as a result of the need for adaptation. These
adaptation responses, similarly to the observations discussed in
the previous section, may be expressed either in a
semantically-dependent or -independent manner. Responses
which depend on the semantics of a system would, by
necessity, have to be specified by the system architect and
included in the representational infrastructure of our approach.
However, those responses not coupled with the self-adaptive
system’s functionality provide a reusable basis for the
expression and enactment of changes strictly in terms of high-
level architectural elements: components, connectors, links,
and – in the case of KBAAM – adaptation policies. The
responses presented in Table 2 direct two different classes of
adaptations: structural modifications of an architecture, and
changes to the policies governing adaptation. Both these
classes of responses are independent of the specific
functionality the system embodies. Architectures are modified
through the addition and removal of structural elements, while
the adaptive behavior of the system is modified through the
addition and removal from the knowledge-base of both
observations as well as policies (policies may also have the
constituent elements modified, but these operations are omitted
for brevity). The semantic independence of these operations
provides a non-trivial basis for structural as well as policy
modifications which is widely applicable.

Table 1. Architecture-based observations.

Observation Description

ComponentFailure(C) The indicated component or con-
nector has failed.ConnectorFailure(C)

ComponentAdded(C) The indicated component, connec-
tor, or link has been added to the

architecture.
ConnectorAdded(C)

LinkAdded(L)

ComponentRemoved(C) The indicated component, connec-
tor, or link has been removed from

the architecture.
ConnectorRemoved(C)

LinkRemoved(L)

UnservicedRequest(R) Request R is left unserviced.

IgnoredNotification(N) Notification N is ignored.

Table 2. Architecture-based adaptation responses.

Response Description

AddComponent(C)
Add the indicated component, connec-

tor, or link to the architecture.
AddConnector(C)

AddLink(L)

RemoveComponent(C)
Remove the indicated architectural

element from the architecture.
RemoveConnector(C)

RemoveLink(L)

AddObservation(O) Add the specified observation or adap-
tation policy to the knowledge base.AddPolicy(P)

RemoveObservation(O) Remove the indicated observation or
policy from the knowledge base.RemovePolicy(P)

3.2 Architectural Adaptation Management
In our approach, adaptation responses generated by the
knowledge-based system are not directly applied; these
changes are requested of, coordinated, and finally enacted by
the Architectural Adaptation Manager (AAM). The AAM is
responsible for the actual enactment of requested changes
across potentially heterogeneous architectural representations
as well as for providing a coordination point for the enactment
of architectural constraint resolution and transaction
management facilities.

Support for transactions as well as architectural constraints is
essential in addressing the unpredictable and non-deterministic
nature of knowledge-based systems. Facilities which preserve
core parts of a self-healing system and enforce architectural
invariants preserve system behavioral specifications in the face
of potentially unpredictable adaptations while transaction
management ensures that undesirable configurations may be
recovered from gracefully.

3.3 Example
As an example of an adaptation policy, consider a node in a
sensor network whose purpose is to collect measurement data
from nearby sensors and to re-transmit this data using its low-
gain antenna; the architecture of this node appears in Figure 2.
Essentially, this node acts as longer-ranged data proxy for
sensor nodes which have very limited transmission ranges. In
this scenario, the useful operational life of the transmission
node is limited by available battery power; though it is
preferable for this node to continuously transmit data, a
competing goal is the extension of its lifetime for as long as
possible. The following policy is defined for the node:

When the LowBattery (a semantically-significant observation
defined for this system) observation is added into the
adaptation knowledge-base, the specified responses will be
enacted resulting in the addition of the Data Buffer component.
This modification will result in the system reducing its duty-
cycle by transmitting data only when the Data Buffer is full
rather than continuously forwarding received data, therefore
minimizing power-consuming radio transmissions. While this
simple adaptive behavior could have been built into the system
at design-time, using the architectural principles and
adaptation mechanics of our approach means that such
behavior can be added into the system during deployment with
little foresight on the part of the architect at design-time.

4. PROTOTYPE IMPLEMENTATION
To support experimentation with the methodology discussed in
the previous sections, we have developed a prototype
supporting infrastructure by integrating existing technologies
for architectural modeling and evolution management with
newly developed facilities for supporting a knowledge-based
approach.

The representational basis for the architectural models used in
KBAAM is xADL 2.0 [1]: a highly extensible, XML-based
ADL. In addition to using the existing facilities of the language

for the representation of architectures, we extended the base
xADL schemas to define the structure of observations,
responses, and adaptation policies. Despite the extensive
namespace information associated with XML documents, the
current schema extensions are rather lightweight at just over
100 lines of XML schema definitions. These schema
definitions are further extensible so that architects can define
their own system-specific observations and responses. We also
leveraged the functionality of the ArchStudio 3 [7]
environment for the runtime architecture-based evolution of
software systems (the AEM, illustrated in Figure 1, is an
existing component of the ArchStudio toolset).

To support the knowledge-based reasoning facilities of our
approach, we implemented a knowledge-based expert system
using the Java Expert System Shell (JESS) [2]. The expert
system was constructed as an autonomous ArchStudio 3
component using the adaptation policies and observations
specified in the system’s xADL architectural description to
dynamically instantiate, maintain, and reason over a running
knowledge-base. Finally, we implemented a prototype of the
AAM tool, also integrated into the ArchStudio 3 toolset, for
the enactment of adaptation responses; rudimentary constraint
resolution facilities were implemented using the existing Critic
[12] infrastructure included in ArchStudio.

5. RELATED WORK
Garlan and Schmerl have also presented an architecture-based
approach to developing self-adaptive systems [4]. In their
work, architectural style specifications are used as the basis for
deciding when to apply pre-specified programmatic
modifications expressed using style-specific operations.
Though KBAAM shares a similar overall approach, our work
focuses on using dynamically maintained policies and system
observations allowing for the evolution of adaptation policies
at runtime.

The Chemical Abstract Machine (CHAM) model has also been
presented as a basis for specifying autonomous software
architectures. Inverardi and Wolf [8] describe how system
components and the data elements they produce and require
can be expressed as CHAM molecules while system
configurations are represented as solutions. In their approach,

AdaptationPolicy switch_to_burst
 Observation LowBattery
 Response AddComponent(B)
 Response RemoveLink(C1, T)
 Response AddLink(C1, B)
 Response AddLink(B, C2)
 Response AddLink(C2, T)

Figure 2. The architecture of the transmitter node showing
elements added (in bold lines) and removed (in dashed lines).

Component
Connector
Link

Removed element
Added Element

Legend

C1

Data Receiver (R)
Receives data from

external sensor nodes.

Battery Monitor (M)
Observes battery levels

and emits status notifications.

Data Buffer (B)
Stores sensor data until
buffer threshold is met.

Data Transmitter (T)
Transmits sensor data using
the node’s low-gain antenna.

C2

system reconfigurations are driven by reaction rules that
modify these abstract solutions. Despite their different
formalizations, this work and KBAAM both express
reconfigurations as an extensible, non-deterministic set of
rules which modify the representation of a system. The CHAM
approach, however, does not dynamically reconfigure its
reaction rules during system operation, and its highly abstract
nature makes mapping reconfigurations to running systems
challenging.

Other researchers have also presented formal approaches for
supporting software evolution. Wermelinger and Fiadeiro
propose an algebraic approach to architectural reconfiguration
using graph rewriting [13]; their approach is especially
concerned with ensuring sane reconfigurations and system
quiescence during such reconfigurations. While their
discussion does not cover how to plan specific
reconfigurations, which is the focus of KBAAM, we plan on
investigating how their ideas on ensuring the sanity of
architectural change integrate with our work.

6. CONCLUSIONS AND FUTURE WORK
One of the most challenging aspects of constructing self-
adaptive software is determining the timing and the specifics
of adaptations. Most current approaches to this challenge
involve adaptation mechanisms which are static and embedded
in the implementation details of the software system being
adapted.

In this paper we present our research efforts towards
developing systems exhibiting dynamic and independently
evolvable adaptive behavior. KBAAM is an architecture-
centric, knowledge-based approach to developing systems that
are able to autonomously adapt in the face of change. Building
on prior research performed in the context of runtime evolution
management, the key features of our work are: the treatment of
adaptation policies as explicitly defined architectural elements
strictly decoupled from system implementations, the dynamic
management and independent evolution of these adaptation
policies, and the integration of existing knowledge-based
techniques for the management and planning of adaptive
behavior.

In the future, we plan on addressing areas where refinements
and significant improvements can be made to the KBAAM
approach and the prototype infrastructure realizing it. Short-
term development plans include further work on the
representational underpinnings of adaptation policies and their
relation to structural architectural models in addition to
improving the visibility of ongoing adaptations to the system
architect through the collection and distribution of log
information. In the long-term, we plan on investigating the
applicability of our techniques in decentralized settings –
where systems are composed of independent peers – and
examining ways to achieve global adaptations through the
coordination of localized per-peer changes in addition to
evaluating the cognitive (how difficult our approach is to
understand and use) and computational overhead involved in
adopting our approach as well as its scalability characteristics.

7. ACKNOWLEDGEMENTS
The authors would like to thank Andre van der Hoek, Michael
Gorlick, Eric Dashofy, and Kari Nies for their helpful
comments and insights on this work. This work was supported
in part by by NSF Grant CCF-0430066.

8. REFERENCES
[1] Dashofy, E.M., Hoek, A.v.d., and Taylor, R.N. A Highly-

Extensible, XML-Based Architecture Description Language.
In Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001). Amsterdam, The
Netherlands, August 28-31, 2001.

[2] Friedman-Hill, E. Jess in Action: Rule-Based Systems in Java.
Manning Publications Co., 2003.

[3] Garlan, D., Schmerl, B.R., and Chang, J. Using Gauges for
Architecture-Based Monitoring and Adaptation. In
Proceedings of the The Working Conference on Complex and
Dynamic System Architecture. Brisbane, Australia,
December, 2001.

[4] Garlan, D. and Schmerl, B. Model-based adaptation for self-
healing systems. In Proceedings of the First Workshop on
Self-Healing Systems. November, 2002.

[5] Hayes-Roth, F. The Knowledge Based Expert System: A
Tutorial. IEEE Computer. 17(9), p. 11-28, 1984.

[6] Hilbert, D. and Redmiles, D. An Approach to Large-scale
Collection of Application Usage Data over the Internet. In
Proceedings of the 20th International Conference on
Software Engineering (ICSE '98). p. 136-145, IEEE
Computer Society Press. Kyoto, Japan, April 19-25, 1998.

[7] Institute for Software Research. ArchStudio, An Architecture-
based Development Environment.
<http://www.isr.uci.edu/projects/archstudio/>, University of
California, Irvine.

[8] Inverardi, P. and Wolf, A.L. Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model. IEEE Transactions on Software
Engineering. 21(4), p. 373-386, April, 1995.

[9] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture-
Based Runtime Software Evolution. In Proceedings of the
20th International Conference on Software Engineering
(ICSE '98). p. 177-186, IEEE Computer Society. Kyoto,
Japan, April, 1998.

[10] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.,
and Wolf, A.L. An Architecture-based Approach to Self-
Adaptive Software. IEEE Intelligent Systems. 14(3), p. 54-62,
May-June, 1999.

[11] Perry, D.E. and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes. 17(4), p. 40-52, October, 1992.

[12] Robbins, J., Hilbert, D., and Redmiles, D. Using Critics to
Analyze Evolving Architectures. In Proceedings of the
Second International Software Archichitecture Workshop
(ISAW-2). 1996.

[13] Wermelinger, M. and Fiadeiro, J.L. Algebraic Software
Architecture Reconfiguration. In Proceedings of the 7th
European Engineering Conference held jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering. p. 393-409, Springer-Verlag.
Toulouse, France, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

