An Architectural Style Perspective on Dynamic Robotic Archtectures

John Georgas and Richard Taylor

Abstract—We focus on the problem of developing robotic To this end, we begin by examining three robotic archi-
architectures which are well-suited to supporting runtime evo- tectures: the canonical UBSUMPTION architecture, three-
lution, rather than specific evolution techniques. Based on the | r (3L r h xemplifi h T architec-
insights provided by current robotic architectures, we elaborate taye (Sd) tﬁpp oact'es as e et .p I;"?: by th(?t 3t arc ftter::
on their characteristics and how well they support the quality ure, an X e reactive concentric ()_ archi _eC ure o e
of evolvability. Combined with insights from architectural ~WITAS project. For each of these robotic architectures, our
styles developed by the software engineering community, we discussion addresses the foundations of the architectute a
outline the RAS architectural style: a layered, component- then continues with a discussion of the consequences these
and connector-based, event-based style intended to provide ooncents have in the context of runtime evolution — much
architecture-level support for evolvable robotic architectures . . L . . .

of the historical insight into these architectures and rthei
relationships comes from [1].
I. INTRODUCTION This paper continues with a discussion of havehitec-

The domain of robotic systems is one in which thdural styleinsights combine with the needs of the robotics
importance of systems capable of reacting to unpredictab#®main in order to elaborate on a requirements statement for
conditions has long been recognized. To achieve this go&lynamic robotic architectures. The fundamental contigout
the robotic architectures research community has developef this paper is the presentation of the RAS architectural
situation- and task-driven architectures which take envi- Style, which combines insights from these fields of study to
ronmental unpredictability into account. These taskugd better support robotic architectures which are more flexibl
architectures focus on explicitly specifying the enviremtal and changeable at runtime. The main features of the RAS
conditions under which a task is applicable and explicithtyle include: the strong use obmponentandexplicit con-
accounting for the determination of a task’s success dectors limited anddirectional event-basedommunication,
failure. What these architectures, however, do not accou@xplicit layeringwhich is preserved during implementation,
for is evolving systems at runtime in order to modify theand adynamically changeabl@rchitecture. These charac-
set of already existing robot behaviors or add new ondgristics are specifically intended to promote the effectiv
without suspending operation — a feature refer towsgime ~ construction of runtime evolvable robotic systems, and the
evolution style has already been used in the construction of prototype

The software engineering community has developed arctielf-adaptive robotic architectures.
tectural techniques to support the development of systems
with such runtime evolution capabilities, primarily foeds Il. BACKGROUND AND RELATED WORK
on dynamic architecturesThese architectures are models The section will set the architectural context for the
of software systems which are changeable at runtime wifigmaining discussion by presenting the basic notions ¢f sof
model changes dynamically reflected on the system’s implgare architecture, architectural styles, and dynamiosott
mentation. These research efforts are focused on making tahitectures.
architectural model the locus for easier and more undedstan .

A. Software Architecture
able change enactment.

In this paper, we pursue an examination of various robotic Software architecture models most commonly capture a
architectures currently in use and investigate their combi Software system’s structure expressed through interatede
tion with insights from the software architecture communit componentswhich are responsible for the software system’s
The goal is to elaborate on an integration of researctPmputation [2]. Other perspectives on software architect
from these two domains aimed at better supporting runtinRiso explicitty model theconnectorswhich manage and
evolution in robotic architectures; we focus on fundamientgnable communication between components. Architectures
architectural support which fosters runtime adaptatidghera clearly identify the high-level elements present in a saftv
than discussing specific methods for achieving it. system, and make their interconnections explicit.

Architectures are captured througinchitecture descrip-

This work sponsored in part by NSF Grants CCF-0430066, aBd Il tjgn languagegADLSs), which are syntactically precise lan-

0205724. for d ibi h hi | f
J. Georgas is with the Informatics Department, Donald Brero8ichf guages for describing the architectural structure of syste

Information and Computer Sciences, University of Califoriiaine, Irvine, ~ Software engineering research has produced a variety of

CA 92697, USAj geor gas@ cs. uci . edu ADLs, usually revolving around specific modeling concerns.
R. Taylor is with the Faculty of Informatics Department, Dah&ren Archi d | . h A

School of Information and Computer Sciences, University ofif@aia, rchitecture deve opmfar?t environments, SF‘C &L _STU'

Irvine, Irvine, CA 92697, USAt ayl or @ cs. uci . edu DIO [3], focus on providing support for using architectures

and ADLs in software development by providing tools forSPA. Despite the benefits ouUBSUMPTION, it suffered from
the specification, visualization, maintenance, analyaig] serious drawbacks particularly centered on its scalgtalid
deployment of architectures. reliability in large and complex systems; these drawbacks
It is important to note that for architectural models to prohindered its adoption and motivated the development of
vide their full utility to software development, they haeeltte alternative architectural solutions.
more than just descriptive models which have no bearing to 1) Architectural Foundations: SUBSUMPTION architec-
the actually implemented architecture. Architecture nhest tures are, in essence, data-flow style architectures witbsflo
prescriptive in nature, and model the architecture of thal finoriginating from sensors and terminating at actuators. In-
product in order for the qualities pursued by the architectu terposed in these flows are the architecture’s components,
and the analyses performed at the architectural level te hawhich respond to events in the environment with requests for
any bearing to the software system being developed. action. YBSUMPTION architectures adopt a layered decom-
position and capture behaviors as independent components
or component compositions which operate in parallel; layer
Another important concept in software architecture is thagroup components together according to their relative com-
of the architectural style a codification of design decisions plexity and sophistication. Communication between these
which are applied to the construction of systems [4]. Archieomponents is facilitated by thehibition and suppression
tectural styles may capture domain knowledge or be designegerations: with these operations, higher-level modutes a
to promote qualities which are of particular importances thallowed to inhibit the communication of modules as well as
C2 style [5], for example, was specifically intended forreplace normal communication with data flows of their own.
the development of GUI systems. Architectural styles are a 2) Runtime Evolution: While no explicit support for
critical concept in achieving high-level reuse of both sfiec runtime evolution could be found in theu8sumPTION
architectural solutions as well as domain expertise. literature, these architectures hold a powerful lessonagn
) . sulating behaviors in independent modules communicating
C. Dynamic Software Architectures asynchronously with no assumptions about the reliabilfty o
Dynamic architectures focus on techniques which allokommunications results in highly-modular systems. UBS
systems to be changed at runtime by modifying the asumPTION architectures, the topology of the architectural
chitectural model of these systems [6]. Architecture-dasecomposition reflects the behavior of the system itself and
runtime evolution focuses on coarse-grained changeseshactnodifying behavior is a matter of altering the topology.
on architectural elements and is aimed at providing fleixybil This focus on architectural elements is a key factor engblin
and dynamism, so that evolution does not necessarily requiirchitecture-based runtime evolution.
foresight during development but can also be enacted longOne important drawback of S BsuMPTION, however, is
after system deployment. that it does not support principled layering of components.
Focusing on this level of abstraction allows for betteiThe topological location of a component is no indication as
cognitive grasp over the process and a clear understanditmgwhich layer it belongs to, and modules of one layer can
of the interconnections which may be relevant in specifimteract with modules from any other layer. The existence of
contexts. Additionally, this approach focuses attention olayers and component layer membership is wholly concep-
high-level issues rather than being mired in low-level contual and neither evident in nor enforced by the architecture
cerns critical to enactment but conceptually less impartariThe communication mechanisms used also impose another
These approaches rely on development infrastructure airdportant restriction: components wholly override lower-
architecture-to-implementation mappings to ensure tlwat-m level modules, which prevents component interactionsdase
ifications are reflected on the system’s implementations Thon the fusion of information. These drawbacks limit the
is the perspective adopted by this paper: the driver of aaangranularity of reuse to individual components as well as
in system behavior is a change in the topology of the systemiigniting the kinds of interactions which can be used during
software architecture. construction and evolution: both these limitations hinder
flexibility and evolvability.

B. Architectural Styles

I1l. ROBOTIC ARCHITECTURES

This section will discuss three robotic architectures frons: Three-Layer Architectures (3L)
the research literature in the context of runtime evolutive 3L architectures strongly adopt layers as an abstraction
will examine each of the 88sumpPTION, 3L, and RC archi- mechanism based on differences in overall component tasks
tectures from an architectural perspective, looking atrtheand treatment of state information. 3L architectures aed th
general architectural foundations and discussing howr theiariants (differences lying mostly in specific implemeraat
characteristics support architecture-based runtimeugeol. choices) have risen to become a very common strategy
) for robotic architecture construction — the specific exempl
A. Subsumption which will be used for this discussion is the 3T architecture
The SUBSUMPTION architecture [7] was the first signif- [8].
icant departure from theense-plan-ac{SPA) paradigm of 1) Architectural Foundations:As the name would sug-
robotic software construction and achieved early success o gest, three-layer architectures focus on constructingtiob

control systems by decomposing the system into three layetayering mirrors the 3L separation into skill, deliberatiand
a skill layer, asequencindayer, and gplanninglayer. sequencing layers. In terms of the actual architecturalémp
The skill layer focuses on defining a collection of low-mentation, however, this conceptual division is abandoned
level behaviors which do not maintain long-term state anthvor of a loosely coupled, event-based bus architectwat th
are responsible for actions which depend on quick reactioaupports non-layered interactions. The notion of layéwsn
The sequencing layer is responsible for composing beh&avids not one that is evident in the architectural topology, las a
from the skill layer into chains of actions to achieve taskscomponents essentially belong to a single layer. TPs, which
the sequencing layer encapsulates much of the behavioest managed by a special-purpose module, are specified in
complexity involved in building robots. The sequencingday a special purpos€ask Specification Languag&SL), which
is also usually limited to maintaining historical statedrha- is used to generate stubs forming the basis of custom-coded
tion, but without attempts to forecast future conditioneeT TP implementations.
planning layer is the most abstract of the layers and focuses2) Runtime Evolution:While — once again — there is no
on operations which take a long time to complete relative texplicit support discussed in the literature for runtimelav
other included behaviors; this layer encapsulates long-te tion, RC architectures have a number of features which make
goals and performs time-consuming tasks such as generatihg@m well-suited to it. RC architectures exhibit a compdnen
complete plans of action and environmental projections. based development methodology with event-based communi-
2) Runtime Evolution: While no support for runtime cation: these features allow for the development of systems
evolution was found in the 3L literature, the strongeswhich exhibit a high degree of flexibility and decoupling,
benefit of these architectures for this activity lie in theiwhich are critical qualities for dynamic architectures.isTh
defining architectural characteristic: their use of pally methodology also supports the runtime initiation and compo
realized layers and the graceful interconnection of thessdtion of services, which provide the necessary infrastmec
layers through providing input to rather than taking ovefor runtime evolution.
the operation of other layers. This strong use of abstnactio However, RC architectures also exhibit a number of
in actual implementations enables independent operatiainawbacks. The division between layers of control in an
between components as well as between layers, and suppeantshitecture is a purely conceptual one not evident in the
modularity and incrementality in both. architecture’s implementation. RC architectures alsaanir
The most significant drawback of 3L architectures foone of the drawbacks of 3L systems: the TP layer is
architecture-based runtime evolution is their treatmeit omplemented through the use of special-purpose artifacts
the sequencing layer. In the architectures studied for thighich are not architecturally visible. When examining an RC
paper, the sequencing layer is implemented through speciafchitecture, what can be seen is a coarse-grained componen
purpose language scripts which are interpreted at runtimeasponsible for the enactment of an unknown number of task
Though this implementation choice is not included in therocedures with architecturally undeterminable contéhis
conceptual basis for 3L architectures, the practical adopt low architectural visibility of behaviors has the conseue
of this method to the exclusion of others leads us to considef making RC architectures unsuitable for the applicatibn o
it here as a drawback of the methodology in general. Tharchitecture-based evolution techniques.
use of these special-purpose languages has a significant
architectural consequence: the behaviors they embodyoare V- DYNAMIC ARCHITECTURES FORROBOTIC SYSTEMS
evident nor can they be affected through architectural mean This section addresses the intersection of principles on
Differences in behavior in 3L robots are not evident from theystem construction from the software architecture domain
software architecture itself, but are primarily expressed — as codified in architectural styles — and the domain of
the special-purpose code executed by the sequencing layebotic system development — as exemplified in the preceding
As the architectural topology is not the primary driver fordiscussion of the $8sumpTION, 3L, and RC architectures.
behavioral characteristics, 3L architectures do not @adlfur First, we discuss the nature of the problem space and
lend themselves toward architecture-based runtime awalut the requirements an architectural style must address to be
effective, and then we present and discuss an architectural
style formulation which composes features from robotic
RC architectures [9] adopt the notion otask procedure architectures as well as existing architectural styles.
(TP) as the central abstraction: these encapsulate the se
quence of activities that must take place for a behavior to & Problem Space
achieved. While conceptually maintaining the notion of 3L- The problem space of interest is dynamic robotic archi-
style control layers, RC architectures do not exhibit laygr tectures which can support runtime evolution. This class of
in their implementations and instead adopt a middlewareystems can support the modification of their behavior —
centric approach based on CORBA. at runtime and without service interruption — in response
1) Architectural FoundationsConceptually, RC architec- to a variety of stimuli. A full discussion of the methods
tures adopt theontrol layer for providing low-level services, through which this evolution can be achieved is beyond
thedeliberativelayer for providing time-consuming services,the current scope, but our particular research approach can
and the TP layer which forms the link between the two; thiBe found in [10]. More specifically, we are interested in

C. Reactive Concentric (RC)

Attacker Memory

Deliberative Layer ~|:
Deliberative Connector

Sequencing Layer | [arescemer | WallSek
Sequencing Connector

1 1 Il
Reactive Layer ‘ Wall Craw! HColnsionRecoveryH Reactive Fire ‘ o
T T - Notifications

Action requests

Requests

Reactive Connector y .
1 Robot notifications

I 1 1
) i Move Robot | | i TunTurret | ‘ | Fire Control |
Skill Layer : :
i Collision Detector | { Robot Scanner |

walls, searches for and moves toward a wall if it finds itself
far from one, rotates the turret so that it is always facing
the center of the battlefield, fires at any target it scans,
and maintains information about robots which have injured
it to adjust firing strength accordingly. Th&rchWall robot

also performs a number of evolutions through architectural
modifications: it changes its targeting and scanning gjirase

at runtime in response to its level of energy and the number

Fig. 1. A partial illustration of theArchWall robot architecture, with
annotations pointing out important characteristics of theSRarchitectural
style.

systems which provide runtime evolution capabilities in an
architecture-centric manner in which changes in behavier a
brought about through changes in the system'’s architecture
The benefits of this strategy in this domain mirror those of
the general case of architecture-based evolution: anthits
models provide a more expressive, understandable, modular
and reusable basis for system evolution than lower-level
approaches, such as those centered on source-code artifact

An architectural style specifically targeted toward this
problem space, therefore, must support both the effective
construction of robotic systems themselves as well promote
qualities which allow for their runtime change. More specif
ically, support for the following qualities is critical:

« Evolvability. Given the focus on runtime change, it is
critical that the architectural style used supports thg eas
evolution of architectures.

« Incrementality It is important to support both incremen-
tal development as well as incremental evolution.

o ReuseA high degree of reuse in terms of both compo-
nents and component groupings is important in reducing
development and evolution effort.

B. TheRAS Architectural Style

This section proposes a new architectural style named
RAS intended for the development of dynamic robotic
architectures. The development of this style — already in
use in our research activities — is aimed toward providing
architecture-level support for the qualities discussedhim
immediately preceding section; its development is based on
a study of robotic architectures already discussed as well
as results from architectural styles stemming from softwar
engineering research.

We focus the discussion of this style on the example found
in Fig. 1, which illustrates a part of the architecture of the
ArchWallrobot constructed according to the RAS style. This
specific architecture was developed to operate within the
RoBocoDE[11] infrastructure in the context of research into
the development of self-adaptive robotic systems; while no
embodied in a physical robot, this simulation-based ptatfo
allows us to focus on the fundamental software engineering
concerns of robotic architectures. InOROCODE robots
engage in combat with other competing robots in a battlefield
where the objective is to destroy opponents while ensuring
survival. This simple example robot follows the battlefigld

of active opponents in the battlefield.

The major characteristics of the style, as illustrated and
annotated in the example of Fig. 1, are:

Component-Based\ fundamental premise of this style

is its component-based nature: systems are built through
the composition of independent components each en-
capsulating a single task or behavior. Components are
unaware of the existence or identity of other compo-
nents in the architecture. Followed by both thesS
SUMPTION and, to a lesser extent, the RC approach,
this supports the high degree of modularity, incremen-
tality, and reuse necessary to create systems with high
evolvability.

Explicitly Layered The RAS style adopts explicit lay-
ering of architectures and partly follows the conceptual
delineation and naming conventions of 3L architec-
tures. Four high-level layers compose RAS architec-
tures: thedeliberative sequencingreactive and skill
layers. These layers are mainly differentiated by the
requirements on their reaction time, their treatment of
state information, and the complexity of their interac-
tions with other system components. While the style
can support further layering within each of the above
mentioned layers, these four layers form the conceptual
and implementation basis for RAS-style architectures.
It is important to note that the layering is also reflected
in the actual implementation of the system rather than
just the conceptual design. The explicit separation of the
control architecture in independent layers — supported
and encouraged through communication conventions —
further promotes modularity and understandability as
well as incrementality and reuse at the granularity of
layers rather than just components.

The skill layer — which has different meaning in the
context of the RAS style than in 3L systems — contains
components which form the foundational capabilities of
the robot: components belonging to this layer are the
interface between the control software and the hardware
actuators and sensors which gather information and
execute mechanical actions. In the example of Fig. 1, the
Robot Scannecomponent emits notifications of other
robots detected by the scanner, while then Turret
component performs turret movement in response to
directives. This layer is closely tied to the capabilities
of the hardware platform, and remains relatively static
when the system is evolved. The skill layer “pushes”
information to the architecture through notifications of
robot state changes and also provides information in

response to explicit requests by other components.
The reactive layer is composed of elements which
address actions the robot must take immediately after
the receipt of information from the skill layer which
indicates the need for action; this layer captures the
quick “reflexes” of the robotic system and also forms
a core of functionality that higher layers can access
— this corresponds to the 3L skill layer. Components
belonging to this layer do not maintain state information
but atomically react to events as they are received: the
ReactiveFirecomponent of the illustrative architecture
of Fig. 1, for example, immediately fires at enemies as
they are detected and has no memory of past firing ac-
tions. This non-reliance on state optimizes the reaction
time of components in this layer, while the capability to
maintain state and historic information is relegated to
higher layers of the architecture through the emission of
notifications which indicate which actions were taken.
The sequencing layer contains components which are
characterized by more complexity in the tasks and
behaviors they embody and address actions which are
not simply reactive in nature but may involve more
complex modes of interaction between layers. Wl .
Seekcomponent of the Fig. 1 architecture, for example,
attempts to locate the nearest wall for the robot to move
to by explicitly requesting information about the current
location of the robot and the size of the battlefield before
making its decision; this request-response interaction is
one that is unavailable to components of the reactive
layer. Sequencing components may also maintain short-
term state information which is used in the course of
the component’s computation, but — similarly to the
conventions of 3L architectures — does not attempt
to make predictions about the future. Components in
this layer have access to any capabilities and services
provided by all lower layers.

Finally, the deliberative layer of the RAS style is
comprised of components which have the capability of
storing long-term state information and may be con-
cerned with forecasting future state — this corresponds «
to the 3L planning layer. Components of this layer have
full access to all provided services in the architecture,
and may engage in complex interactions with these
components involving multiple message exchanges. In
the specific example of Fig. 1, th&ttacker Memory
component stores information about attackers and di-
rects the system to fire more strongly at those enemies.
While not predictive in nature, this component is an
example of the long-term state maintenance aspect of
the RAS deliberative layer.

Event-based Communicatiohe RAS style adopts

used to request information or an action from compo-
nents in the architecture in layers other than the skill
layer, arobot notificationwhich conveys information
originating in the skill layer, and aotification which
conveys state or operational information originating in
components not in the skill layer. These events are
initiators of action through implicit invocation.

The RAS style also adopts directional message con-
ventions similar to those of the C2 architectural style:
requests may only be transmitted to layers below the
originating layer while notifications can only be trans-
mitted to layers above: for example, requests can be
sent from the sequencing layer to the reactive layer but
notifications cannot. While limiting, these restrictions
are important in that they provide architectural support
for the layering of components, and they promote care-
ful design of the relationships between components to
more easily identify the appropriate layer for each. Ad-
ditionally, event-based communication further promotes
modularity and reduced coupling between components,
and therefore enhances the evolvability of RAS-style
architecture.

Connector-based CommunicatioAnother characteris-

tic of the RAS style is its reliance on explicit connec-
tors. Each of the four layers discussed in the previous
paragraphs is separated from the others by an explicit
layer connector, as illustrated in Fig. 1. Connectors are
architectural elements responsible for communication:
in the RAS style, these connectors broadcast messages
to all connected elements in accordance to the direc-
tional conventions already described. These connectors,
which may also be included as part of intra-layer
arrangements, also act as points of access into the inner
workings of the architecture and provide support for
explicit monitoring of communication. These facilities
provide an increased degree of modularity and visibility
into the operation of robot architectures, particularly
when compared to the opaque nature of the commu-
nication in the 8sumMPTION and 3L architectures.
Dynamic Architecture The RAS style adopts the dy-
namic architecture paradigm described in Section II:
the architectural model of the system is maintained
independently from its implementation and evolution
is achieved through modifications to the architectural
model, which are then translated to consistent changes
in the system’s running implementation. This approach
— supported by facilities of the RCHSTUDIO envi-
ronment — provides for a higher degree of visibility
and couches system evolution at a level of abstraction
appropriate to an architecture-based approach.

the event-based communication paradigm of the Event In our research into self-adaptive systems, we have ap-
Based Integration (EBI) style. Communication betweemplied the RAS style in the construction of OROCODE
components is accomplished through the exchange afchitectures with the capability to evolve at runtime. Mos

four types of events: aaction requesthat communi-

importantly, the application of the style was critical in-en

cates to the skill layer that an action — either atomic oabling runtime adaptation itself: conventionally constad

composite in nature — must be takenreguestthat is

RoBoOcCODErobots preclude runtime adaptation. In addition

to the enablement of runtime adaptation, RAS also providdd currently in use in the context of our research into self-
the necessary degree of modularity and reusability to alloadaptive robotic architectures. The main features of RAS
the modification of behavior through changes to only thare a strong component-based development focus, explicit
components relating to those behaviors while allowing thiayering that is maintained during implementation, event-

remainder of the architecture to remain unchanged. based implicit invocation of services with directional flow
of event types, the adoption of explicit connectors, and the
C. Stylistic Implications use of dynamic architecture techniques. These features are

thended to support the development of systems which are

The characteristics of this style are intended to suppo ble t " lution b i licit
the needs of the problem domain. Modularity is a funda@Menable to runtime evolution by providing explicit suppor

mental characteristic supporting evolvability: the comeiat- fortr?uch eQ/OItJt'O” :S well ;SI pr:)motlng |mp3[o:_t:1nt gﬂia"t'es
and event-based nature of the style combined with explic'ﬁ] IS context, such as mocuiarity, incrementaity, antsee
Our future work in this direction will be centered on the

connectors are features intended to support this quality. . .) .
gl/]arther elaboration of stylistic elements which continee t

A high degree of decoupling is also a consequence . X . . .
the use of event-based communication rather than utilizirg)' PPO" the runtime evolution of raboltic architectures. five

direct interconnections between components. The adoption]E nd éz.{grth?rfex?mmi thbe I|_tetratur(;: c()jn. r(t)bcgpc\sa rchue&x"
layers — both conceptually as well as practically in the alctu or additional teatures to be Integrated into , as Well as
-ﬁonduct further studies in order to evaluate the style ayelar

implementation of the system — promotes incrementality i d I ‘ ; licabilit d labili
the development of each layer as well as enabling reuse\fﬁ more complex systems for applicability and scalability

a coarser granularity than just components. Finally, ekpli e also plan on examining how the current elaboration of
connectors also increase the visibility of the architextamd the style can be augmented with further support for reuse
the communication taking place between the componen ot only at the level of cgmponents or Iayers', but also
of the system, as these connectors can be used for ev tough Fhe reuse.of specific component groupings across
ayers. Finally, we intend to deploy RAS-style architeetur

monitoring and logging. tual robotic blatf . der t ine the effect
Adopting the stylistic conventions of the RAS style, how-O" @ctual robotic platiorms in order o examine the efiects

ever, also carries the potential for detrimental effectse T of the stylistic principles in the real world arena.
adoption of an event-based communication paradigm, for ex- REFERENCES

ample, means that there is th_e pqtentlal for_messag_e loss a”ﬁ' E. Gatet al, “On three-layer architecturesArtificial Intelligence and
the consequent loss of possibly important informationsThi Mobile Robots 1997.
potentially lossy communication between components alsd?] D. E. Perry and A. L. Wolf, “Foundations for the study offteare

implies that service fulfillment is not guaranteed: compdse ﬁg‘:h"lte;;“ribfgz'v' 12'53280” Software Engineering Notesl. 17,

may make requests that are never responded to either becaysge ArchStudio, An Architecture-based Development Enviraiimen-
the message was never received or because the recipient stitute for Software Research, University of Californiayine,
: _ http://www.isr.uci.edu/projects/archstudio/.
component elected to 'n.ot service the' .request. Event basiﬂ M. Shaw and P. Clements, “A Field Guide to Boxology: Prefiay
systems may also exhibit poor scalability as the number of * classification of Architectural Styles for Software SysténRoceed-
events emitted by components grows too large for the system iggsf of the 21562 "Iéerggggna' Computer Software and Appitns
. ; : onferencepp. 6-13, .

to handle; howevgr, the layered and d|rect|onal eyent f|0V\{5] R. N. Taylor, N. Medvidovic, K. M. Anderson, J. E. James Whit
nature of the architectural style proposed partially adits head, J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, “A
this issue, as the effect of “event storms” is lessened by component- and message-based architectural style for guvesef”

the fact that components are partially shielded from sets of L%%Elgggsacuons on Software Engineeringl. 22, no. 6, pp. 390-

system events. The reactive nature of the robotics domaifs] p. Oreizy, “Open architecture software: a flexible amioto decen-
also makes problems that event-based solutions exhildit wit tralized software evolution,” Ph.D. dissertation, Unaigy of Califor-

- nia, Irvine, 2000.
Iarge—scale data transfers less “kely' [7]1 R. Brooks, “A robust layered control system for a mobilebag”

Robotics and Automation, |IEEE Journal, @dl. 2, no. 1, pp. 14-23,

V. CONCLUSION 1986. _ ‘
[8] R.Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, afidSlack,

Our examination of robotic architectures currently in use “Experiences with an architecture for intelligent, reaetiagents,”

. . ETAL vol. 9, no. 2-3, pp. 237—256, 1997.
revealed a number of areas where robotic architectureg ,JD. Dohgﬁy%ﬂzslu% ’)F‘?He?;ntz 5T§’M:r3 b, Nyblom, T. Rers and

can be improved for use with runtime evolution by being ~ B. wingman, “A distributed architecture for autonomous unneghn
informed by the successes of software engineering. The most aerial vehicle experimentationProceedings of the 7th International
. . o ‘e Symposium on Distributed Autonomous Robotic Syst2ats!.

|mpqrtant Weakne_sses we identified are a lack of _expllc 50] J.C. Georgas and R. N. Taylor, “Towards a knowledgetapproach
architectural layering and clearly encapsulated behayanrd to architectural adaptation' management,WOSS '04: Proceedings

the use of special-purpose elements which make understand- gf tEe Nlit Sg/’:" i'CGN?gFT Wozfggzop Onsgeg-smanaged systelev
. . . . ork, NY, : ress, , pp. 59-63.
ing systems and evolving them at runtime challenging. Wﬁl] M. A. Nelson, “Robocode,” 2006, http://robocode.stefbrge.net.

believe that these shortcomings can be addressed through
the combination of insights from robotic architectures and
general purpose architectural styles. To that end, thigmpap
outlines our proposal of the RAS architectural style, which

