
An Architectural Style Perspective on Dynamic Robotic Architectures

John Georgas and Richard Taylor

Abstract— We focus on the problem of developing robotic
architectures which are well-suited to supporting runtime evo-
lution, rather than specific evolution techniques. Based on the
insights provided by current robotic architectures, we elaborate
on their characteristics and how well they support the quality
of evolvability. Combined with insights from architectural
styles developed by the software engineering community, we
outline the RAS architectural style: a layered, component-
and connector-based, event-based style intended to provide
architecture-level support for evolvable robotic architectures.

I. INTRODUCTION

The domain of robotic systems is one in which the
importance of systems capable of reacting to unpredictable
conditions has long been recognized. To achieve this goal,
the robotic architectures research community has developed
situation- and task-driven architectures which take envi-
ronmental unpredictability into account. These task-oriented
architectures focus on explicitly specifying the environmental
conditions under which a task is applicable and explicitly
accounting for the determination of a task’s success or
failure. What these architectures, however, do not account
for is evolving systems at runtime in order to modify the
set of already existing robot behaviors or add new ones
without suspending operation – a feature refer to asruntime
evolution.

The software engineering community has developed archi-
tectural techniques to support the development of systems
with such runtime evolution capabilities, primarily focused
on dynamic architectures. These architectures are models
of software systems which are changeable at runtime with
model changes dynamically reflected on the system’s imple-
mentation. These research efforts are focused on making the
architectural model the locus for easier and more understand-
able change enactment.

In this paper, we pursue an examination of various robotic
architectures currently in use and investigate their combina-
tion with insights from the software architecture community.
The goal is to elaborate on an integration of research
from these two domains aimed at better supporting runtime
evolution in robotic architectures; we focus on fundamental
architectural support which fosters runtime adaptation rather
than discussing specific methods for achieving it.

This work sponsored in part by NSF Grants CCF-0430066, and IIS-
0205724.

J. Georgas is with the Informatics Department, Donald Bren School of
Information and Computer Sciences, University of California, Irvine, Irvine,
CA 92697, USAjgeorgas@ics.uci.edu

R. Taylor is with the Faculty of Informatics Department, Donald Bren
School of Information and Computer Sciences, University of California,
Irvine, Irvine, CA 92697, USAtaylor@ics.uci.edu

To this end, we begin by examining three robotic archi-
tectures: the canonical SUBSUMPTION architecture, three-
layer (3L) approaches as exemplified by the 3T architec-
ture, and the reactive concentric (RC) architecture of the
WITAS project. For each of these robotic architectures, our
discussion addresses the foundations of the architecture and
then continues with a discussion of the consequences these
concepts have in the context of runtime evolution – much
of the historical insight into these architectures and their
relationships comes from [1].

This paper continues with a discussion of howarchitec-
tural style insights combine with the needs of the robotics
domain in order to elaborate on a requirements statement for
dynamic robotic architectures. The fundamental contribution
of this paper is the presentation of the RAS architectural
style, which combines insights from these fields of study to
better support robotic architectures which are more flexible
and changeable at runtime. The main features of the RAS
style include: the strong use ofcomponentsandexplicit con-
nectors, limited anddirectional event-basedcommunication,
explicit layeringwhich is preserved during implementation,
and a dynamically changeablearchitecture. These charac-
teristics are specifically intended to promote the effective
construction of runtime evolvable robotic systems, and the
style has already been used in the construction of prototype
self-adaptive robotic architectures.

II. BACKGROUND AND RELATED WORK

The section will set the architectural context for the
remaining discussion by presenting the basic notions of soft-
ware architecture, architectural styles, and dynamic software
architectures.

A. Software Architecture

Software architecture models most commonly capture a
software system’s structure expressed through interconnected
components, which are responsible for the software system’s
computation [2]. Other perspectives on software architecture
also explicitly model theconnectorswhich manage and
enable communication between components. Architectures
clearly identify the high-level elements present in a software
system, and make their interconnections explicit.

Architectures are captured througharchitecture descrip-
tion languages(ADLs), which are syntactically precise lan-
guages for describing the architectural structure of systems.
Software engineering research has produced a variety of
ADLs, usually revolving around specific modeling concerns.
Architecture development environments, such as ARCHSTU-
DIO [3], focus on providing support for using architectures



and ADLs in software development by providing tools for
the specification, visualization, maintenance, analysis,and
deployment of architectures.

It is important to note that for architectural models to pro-
vide their full utility to software development, they have to be
more than just descriptive models which have no bearing to
the actually implemented architecture. Architecture mustbe
prescriptive in nature, and model the architecture of the final
product in order for the qualities pursued by the architecture
and the analyses performed at the architectural level to have
any bearing to the software system being developed.

B. Architectural Styles

Another important concept in software architecture is that
of the architectural style: a codification of design decisions
which are applied to the construction of systems [4]. Archi-
tectural styles may capture domain knowledge or be designed
to promote qualities which are of particular importance: the
C2 style [5], for example, was specifically intended for
the development of GUI systems. Architectural styles are a
critical concept in achieving high-level reuse of both specific
architectural solutions as well as domain expertise.

C. Dynamic Software Architectures

Dynamic architectures focus on techniques which allow
systems to be changed at runtime by modifying the ar-
chitectural model of these systems [6]. Architecture-based
runtime evolution focuses on coarse-grained changes enacted
on architectural elements and is aimed at providing flexibility
and dynamism, so that evolution does not necessarily require
foresight during development but can also be enacted long
after system deployment.

Focusing on this level of abstraction allows for better
cognitive grasp over the process and a clear understanding
of the interconnections which may be relevant in specific
contexts. Additionally, this approach focuses attention on
high-level issues rather than being mired in low-level con-
cerns critical to enactment but conceptually less important.
These approaches rely on development infrastructure and
architecture-to-implementation mappings to ensure that mod-
ifications are reflected on the system’s implementation. This
is the perspective adopted by this paper: the driver of change
in system behavior is a change in the topology of the system’s
software architecture.

III. ROBOTIC ARCHITECTURES

This section will discuss three robotic architectures from
the research literature in the context of runtime evolution. We
will examine each of the SUBSUMPTION, 3L, and RC archi-
tectures from an architectural perspective, looking at their
general architectural foundations and discussing how their
characteristics support architecture-based runtime evolution.

A. Subsumption

The SUBSUMPTION architecture [7] was the first signif-
icant departure from thesense-plan-act(SPA) paradigm of
robotic software construction and achieved early success over

SPA. Despite the benefits of SUBSUMPTION, it suffered from
serious drawbacks particularly centered on its scalability and
reliability in large and complex systems; these drawbacks
hindered its adoption and motivated the development of
alternative architectural solutions.

1) Architectural Foundations:SUBSUMPTION architec-
tures are, in essence, data-flow style architectures with flows
originating from sensors and terminating at actuators. In-
terposed in these flows are the architecture’s components,
which respond to events in the environment with requests for
action. SUBSUMPTION architectures adopt a layered decom-
position and capture behaviors as independent components
or component compositions which operate in parallel; layers
group components together according to their relative com-
plexity and sophistication. Communication between these
components is facilitated by theinhibition and suppression
operations: with these operations, higher-level modules are
allowed to inhibit the communication of modules as well as
replace normal communication with data flows of their own.

2) Runtime Evolution: While no explicit support for
runtime evolution could be found in the SUBSUMPTION

literature, these architectures hold a powerful lesson: encap-
sulating behaviors in independent modules communicating
asynchronously with no assumptions about the reliability of
communications results in highly-modular systems. In SUB-
SUMPTION architectures, the topology of the architectural
composition reflects the behavior of the system itself and
modifying behavior is a matter of altering the topology.
This focus on architectural elements is a key factor enabling
architecture-based runtime evolution.

One important drawback of SUBSUMPTION, however, is
that it does not support principled layering of components.
The topological location of a component is no indication as
to which layer it belongs to, and modules of one layer can
interact with modules from any other layer. The existence of
layers and component layer membership is wholly concep-
tual and neither evident in nor enforced by the architecture.
The communication mechanisms used also impose another
important restriction: components wholly override lower-
level modules, which prevents component interactions based
on the fusion of information. These drawbacks limit the
granularity of reuse to individual components as well as
limiting the kinds of interactions which can be used during
construction and evolution: both these limitations hinder
flexibility and evolvability.

B. Three-Layer Architectures (3L)

3L architectures strongly adopt layers as an abstraction
mechanism based on differences in overall component tasks
and treatment of state information. 3L architectures and their
variants (differences lying mostly in specific implementation
choices) have risen to become a very common strategy
for robotic architecture construction – the specific exemplar
which will be used for this discussion is the 3T architecture
[8].

1) Architectural Foundations:As the name would sug-
gest, three-layer architectures focus on constructing robotic



control systems by decomposing the system into three layers:
a skill layer, asequencinglayer, and aplanning layer.

The skill layer focuses on defining a collection of low-
level behaviors which do not maintain long-term state and
are responsible for actions which depend on quick reaction.
The sequencing layer is responsible for composing behaviors
from the skill layer into chains of actions to achieve tasks:
the sequencing layer encapsulates much of the behavioral
complexity involved in building robots. The sequencing layer
is also usually limited to maintaining historical state informa-
tion, but without attempts to forecast future conditions. The
planning layer is the most abstract of the layers and focuses
on operations which take a long time to complete relative to
other included behaviors; this layer encapsulates long-term
goals and performs time-consuming tasks such as generating
complete plans of action and environmental projections.

2) Runtime Evolution: While no support for runtime
evolution was found in the 3L literature, the strongest
benefit of these architectures for this activity lie in their
defining architectural characteristic: their use of practically
realized layers and the graceful interconnection of these
layers through providing input to rather than taking over
the operation of other layers. This strong use of abstraction
in actual implementations enables independent operation
between components as well as between layers, and supports
modularity and incrementality in both.

The most significant drawback of 3L architectures for
architecture-based runtime evolution is their treatment of
the sequencing layer. In the architectures studied for this
paper, the sequencing layer is implemented through special-
purpose language scripts which are interpreted at runtime.
Though this implementation choice is not included in the
conceptual basis for 3L architectures, the practical adoption
of this method to the exclusion of others leads us to consider
it here as a drawback of the methodology in general. The
use of these special-purpose languages has a significant
architectural consequence: the behaviors they embody are not
evident nor can they be affected through architectural means.
Differences in behavior in 3L robots are not evident from the
software architecture itself, but are primarily expressedin
the special-purpose code executed by the sequencing layer.
As the architectural topology is not the primary driver for
behavioral characteristics, 3L architectures do not naturally
lend themselves toward architecture-based runtime evolution.

C. Reactive Concentric (RC)

RC architectures [9] adopt the notion of atask procedure
(TP) as the central abstraction: these encapsulate the se-
quence of activities that must take place for a behavior to be
achieved. While conceptually maintaining the notion of 3L-
style control layers, RC architectures do not exhibit layering
in their implementations and instead adopt a middleware-
centric approach based on CORBA.

1) Architectural Foundations:Conceptually, RC architec-
tures adopt thecontrol layer for providing low-level services,
thedeliberativelayer for providing time-consuming services,
and the TP layer which forms the link between the two; this

layering mirrors the 3L separation into skill, deliberative, and
sequencing layers. In terms of the actual architectural imple-
mentation, however, this conceptual division is abandonedin
favor of a loosely coupled, event-based bus architecture that
supports non-layered interactions. The notion of layers, then,
is not one that is evident in the architectural topology, as all
components essentially belong to a single layer. TPs, which
are managed by a special-purpose module, are specified in
a special purposeTask Specification Language(TSL), which
is used to generate stubs forming the basis of custom-coded
TP implementations.

2) Runtime Evolution:While – once again – there is no
explicit support discussed in the literature for runtime evolu-
tion, RC architectures have a number of features which make
them well-suited to it. RC architectures exhibit a component-
based development methodology with event-based communi-
cation: these features allow for the development of systems
which exhibit a high degree of flexibility and decoupling,
which are critical qualities for dynamic architectures. This
methodology also supports the runtime initiation and compo-
sition of services, which provide the necessary infrastructure
for runtime evolution.

However, RC architectures also exhibit a number of
drawbacks. The division between layers of control in an
architecture is a purely conceptual one not evident in the
architecture’s implementation. RC architectures also mirror
one of the drawbacks of 3L systems: the TP layer is
implemented through the use of special-purpose artifacts
which are not architecturally visible. When examining an RC
architecture, what can be seen is a coarse-grained component
responsible for the enactment of an unknown number of task
procedures with architecturally undeterminable content.This
low architectural visibility of behaviors has the consequence
of making RC architectures unsuitable for the application of
architecture-based evolution techniques.

IV. DYNAMIC ARCHITECTURES FORROBOTIC SYSTEMS

This section addresses the intersection of principles on
system construction from the software architecture domain
– as codified in architectural styles – and the domain of
robotic system development – as exemplified in the preceding
discussion of the SUBSUMPTION, 3L, and RC architectures.
First, we discuss the nature of the problem space and
the requirements an architectural style must address to be
effective, and then we present and discuss an architectural
style formulation which composes features from robotic
architectures as well as existing architectural styles.

A. Problem Space

The problem space of interest is dynamic robotic archi-
tectures which can support runtime evolution. This class of
systems can support the modification of their behavior –
at runtime and without service interruption – in response
to a variety of stimuli. A full discussion of the methods
through which this evolution can be achieved is beyond
the current scope, but our particular research approach can
be found in [10]. More specifically, we are interested in



Fire Control

Robot ScannerCollision Detector

Wall Crawl Collision Recovery Reactive Fire

Turret Center Wall Seek

Attacker Memory

Deliberative Connector

Sequencing Connector

Reactive Connector

Reactive Layer

Sequencing Layer

Deliberative Layer

Skill Layer
Turn TurretMove Robot

Action requests

Robot notifications

Requests

Notifications

Fig. 1. A partial illustration of theArchWall robot architecture, with
annotations pointing out important characteristics of the RAS architectural
style.

systems which provide runtime evolution capabilities in an
architecture-centric manner in which changes in behavior are
brought about through changes in the system’s architecture.
The benefits of this strategy in this domain mirror those of
the general case of architecture-based evolution: architectural
models provide a more expressive, understandable, modular,
and reusable basis for system evolution than lower-level
approaches, such as those centered on source-code artifacts.

An architectural style specifically targeted toward this
problem space, therefore, must support both the effective
construction of robotic systems themselves as well promote
qualities which allow for their runtime change. More specif-
ically, support for the following qualities is critical:

• Evolvability. Given the focus on runtime change, it is
critical that the architectural style used supports the easy
evolution of architectures.

• Incrementality. It is important to support both incremen-
tal development as well as incremental evolution.

• Reuse. A high degree of reuse in terms of both compo-
nents and component groupings is important in reducing
development and evolution effort.

B. TheRAS Architectural Style

This section proposes a new architectural style named
RAS intended for the development of dynamic robotic
architectures. The development of this style – already in
use in our research activities – is aimed toward providing
architecture-level support for the qualities discussed inthe
immediately preceding section; its development is based on
a study of robotic architectures already discussed as well
as results from architectural styles stemming from software
engineering research.

We focus the discussion of this style on the example found
in Fig. 1, which illustrates a part of the architecture of the
ArchWall robot constructed according to the RAS style. This
specific architecture was developed to operate within the
ROBOCODE[11] infrastructure in the context of research into
the development of self-adaptive robotic systems; while not
embodied in a physical robot, this simulation-based platform
allows us to focus on the fundamental software engineering
concerns of robotic architectures. In ROBOCODE, robots
engage in combat with other competing robots in a battlefield
where the objective is to destroy opponents while ensuring
survival. This simple example robot follows the battlefield’s

walls, searches for and moves toward a wall if it finds itself
far from one, rotates the turret so that it is always facing
the center of the battlefield, fires at any target it scans,
and maintains information about robots which have injured
it to adjust firing strength accordingly. TheArchWall robot
also performs a number of evolutions through architectural
modifications: it changes its targeting and scanning strategies
at runtime in response to its level of energy and the number
of active opponents in the battlefield.

The major characteristics of the style, as illustrated and
annotated in the example of Fig. 1, are:

• Component-Based. A fundamental premise of this style
is its component-based nature: systems are built through
the composition of independent components each en-
capsulating a single task or behavior. Components are
unaware of the existence or identity of other compo-
nents in the architecture. Followed by both the SUB-
SUMPTION and, to a lesser extent, the RC approach,
this supports the high degree of modularity, incremen-
tality, and reuse necessary to create systems with high
evolvability.

• Explicitly Layered. The RAS style adopts explicit lay-
ering of architectures and partly follows the conceptual
delineation and naming conventions of 3L architec-
tures. Four high-level layers compose RAS architec-
tures: thedeliberative, sequencing, reactive, and skill
layers. These layers are mainly differentiated by the
requirements on their reaction time, their treatment of
state information, and the complexity of their interac-
tions with other system components. While the style
can support further layering within each of the above
mentioned layers, these four layers form the conceptual
and implementation basis for RAS-style architectures.
It is important to note that the layering is also reflected
in the actual implementation of the system rather than
just the conceptual design. The explicit separation of the
control architecture in independent layers – supported
and encouraged through communication conventions –
further promotes modularity and understandability as
well as incrementality and reuse at the granularity of
layers rather than just components.
The skill layer – which has different meaning in the
context of the RAS style than in 3L systems – contains
components which form the foundational capabilities of
the robot: components belonging to this layer are the
interface between the control software and the hardware
actuators and sensors which gather information and
execute mechanical actions. In the example of Fig. 1, the
Robot Scannercomponent emits notifications of other
robots detected by the scanner, while theTurn Turret
component performs turret movement in response to
directives. This layer is closely tied to the capabilities
of the hardware platform, and remains relatively static
when the system is evolved. The skill layer “pushes”
information to the architecture through notifications of
robot state changes and also provides information in



response to explicit requests by other components.
The reactive layer is composed of elements which
address actions the robot must take immediately after
the receipt of information from the skill layer which
indicates the need for action; this layer captures the
quick “reflexes” of the robotic system and also forms
a core of functionality that higher layers can access
– this corresponds to the 3L skill layer. Components
belonging to this layer do not maintain state information
but atomically react to events as they are received: the
ReactiveFirecomponent of the illustrative architecture
of Fig. 1, for example, immediately fires at enemies as
they are detected and has no memory of past firing ac-
tions. This non-reliance on state optimizes the reaction
time of components in this layer, while the capability to
maintain state and historic information is relegated to
higher layers of the architecture through the emission of
notifications which indicate which actions were taken.
The sequencing layer contains components which are
characterized by more complexity in the tasks and
behaviors they embody and address actions which are
not simply reactive in nature but may involve more
complex modes of interaction between layers. TheWall
Seekcomponent of the Fig. 1 architecture, for example,
attempts to locate the nearest wall for the robot to move
to by explicitly requesting information about the current
location of the robot and the size of the battlefield before
making its decision; this request-response interaction is
one that is unavailable to components of the reactive
layer. Sequencing components may also maintain short-
term state information which is used in the course of
the component’s computation, but – similarly to the
conventions of 3L architectures – does not attempt
to make predictions about the future. Components in
this layer have access to any capabilities and services
provided by all lower layers.
Finally, the deliberative layer of the RAS style is
comprised of components which have the capability of
storing long-term state information and may be con-
cerned with forecasting future state – this corresponds
to the 3L planning layer. Components of this layer have
full access to all provided services in the architecture,
and may engage in complex interactions with these
components involving multiple message exchanges. In
the specific example of Fig. 1, theAttacker Memory
component stores information about attackers and di-
rects the system to fire more strongly at those enemies.
While not predictive in nature, this component is an
example of the long-term state maintenance aspect of
the RAS deliberative layer.

• Event-based Communication. The RAS style adopts
the event-based communication paradigm of the Event
Based Integration (EBI) style. Communication between
components is accomplished through the exchange of
four types of events: anaction requestthat communi-
cates to the skill layer that an action – either atomic or
composite in nature – must be taken; arequestthat is

used to request information or an action from compo-
nents in the architecture in layers other than the skill
layer, a robot notification which conveys information
originating in the skill layer, and anotification which
conveys state or operational information originating in
components not in the skill layer. These events are
initiators of action through implicit invocation.
The RAS style also adopts directional message con-
ventions similar to those of the C2 architectural style:
requests may only be transmitted to layers below the
originating layer while notifications can only be trans-
mitted to layers above: for example, requests can be
sent from the sequencing layer to the reactive layer but
notifications cannot. While limiting, these restrictions
are important in that they provide architectural support
for the layering of components, and they promote care-
ful design of the relationships between components to
more easily identify the appropriate layer for each. Ad-
ditionally, event-based communication further promotes
modularity and reduced coupling between components,
and therefore enhances the evolvability of RAS-style
architecture.

• Connector-based Communication. Another characteris-
tic of the RAS style is its reliance on explicit connec-
tors. Each of the four layers discussed in the previous
paragraphs is separated from the others by an explicit
layer connector, as illustrated in Fig. 1. Connectors are
architectural elements responsible for communication:
in the RAS style, these connectors broadcast messages
to all connected elements in accordance to the direc-
tional conventions already described. These connectors,
which may also be included as part of intra-layer
arrangements, also act as points of access into the inner
workings of the architecture and provide support for
explicit monitoring of communication. These facilities
provide an increased degree of modularity and visibility
into the operation of robot architectures, particularly
when compared to the opaque nature of the commu-
nication in the SUBSUMPTION and 3L architectures.

• Dynamic Architecture. The RAS style adopts the dy-
namic architecture paradigm described in Section II:
the architectural model of the system is maintained
independently from its implementation and evolution
is achieved through modifications to the architectural
model, which are then translated to consistent changes
in the system’s running implementation. This approach
– supported by facilities of the ARCHSTUDIO envi-
ronment – provides for a higher degree of visibility
and couches system evolution at a level of abstraction
appropriate to an architecture-based approach.

In our research into self-adaptive systems, we have ap-
plied the RAS style in the construction of ROBOCODE

architectures with the capability to evolve at runtime. Most
importantly, the application of the style was critical in en-
abling runtime adaptation itself: conventionally constructed
ROBOCODE robots preclude runtime adaptation. In addition



to the enablement of runtime adaptation, RAS also provided
the necessary degree of modularity and reusability to allow
the modification of behavior through changes to only the
components relating to those behaviors while allowing the
remainder of the architecture to remain unchanged.

C. Stylistic Implications

The characteristics of this style are intended to support
the needs of the problem domain. Modularity is a funda-
mental characteristic supporting evolvability: the component-
and event-based nature of the style combined with explicit
connectors are features intended to support this quality.
A high degree of decoupling is also a consequence of
the use of event-based communication rather than utilizing
direct interconnections between components. The adoptionof
layers – both conceptually as well as practically in the actual
implementation of the system – promotes incrementality in
the development of each layer as well as enabling reuse at
a coarser granularity than just components. Finally, explicit
connectors also increase the visibility of the architecture and
the communication taking place between the components
of the system, as these connectors can be used for event
monitoring and logging.

Adopting the stylistic conventions of the RAS style, how-
ever, also carries the potential for detrimental effects. The
adoption of an event-based communication paradigm, for ex-
ample, means that there is the potential for message loss and
the consequent loss of possibly important information. This
potentially lossy communication between components also
implies that service fulfillment is not guaranteed: components
may make requests that are never responded to either because
the message was never received or because the recipient
component elected to not service the request. Event-based
systems may also exhibit poor scalability as the number of
events emitted by components grows too large for the system
to handle; however, the layered and directional event flow
nature of the architectural style proposed partially alleviates
this issue, as the effect of “event storms” is lessened by
the fact that components are partially shielded from sets of
system events. The reactive nature of the robotics domain
also makes problems that event-based solutions exhibit with
large-scale data transfers less likely.

V. CONCLUSION

Our examination of robotic architectures currently in use
revealed a number of areas where robotic architectures
can be improved for use with runtime evolution by being
informed by the successes of software engineering. The most
important weaknesses we identified are a lack of explicit
architectural layering and clearly encapsulated behaviors, and
the use of special-purpose elements which make understand-
ing systems and evolving them at runtime challenging. We
believe that these shortcomings can be addressed through
the combination of insights from robotic architectures and
general purpose architectural styles. To that end, this paper
outlines our proposal of the RAS architectural style, which

is currently in use in the context of our research into self-
adaptive robotic architectures. The main features of RAS
are a strong component-based development focus, explicit
layering that is maintained during implementation, event-
based implicit invocation of services with directional flow
of event types, the adoption of explicit connectors, and the
use of dynamic architecture techniques. These features are
intended to support the development of systems which are
amenable to runtime evolution by providing explicit support
for such evolution as well as promoting important qualities
in this context, such as modularity, incrementality, and reuse.

Our future work in this direction will be centered on the
further elaboration of stylistic elements which continue to
support the runtime evolution of robotic architectures. Wein-
tend to further examine the literature on robotic architectures
for additional features to be integrated into RAS, as well as
conduct further studies in order to evaluate the style on larger
and more complex systems for applicability and scalability.
We also plan on examining how the current elaboration of
the style can be augmented with further support for reuse
not only at the level of components or layers, but also
through the reuse of specific component groupings across
layers. Finally, we intend to deploy RAS-style architectures
on actual robotic platforms in order to examine the effects
of the stylistic principles in the real world arena.

REFERENCES

[1] E. Gatet al., “On three-layer architectures,”Artificial Intelligence and
Mobile Robots, 1997.

[2] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,”ACM SIGSOFT Software Engineering Notes, vol. 17,
no. 4, pp. 40–52, 1992.

[3] ArchStudio, An Architecture-based Development Environment, In-
stitute for Software Research, University of California, Irvine,
http://www.isr.uci.edu/projects/archstudio/.

[4] M. Shaw and P. Clements, “A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems,” Proceed-
ings of the 21st International Computer Software and Applications
Conference, pp. 6–13, 1997.

[5] R. N. Taylor, N. Medvidovic, K. M. Anderson, J. E. James White-
head, J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, “A
component- and message-based architectural style for gui software,”
IEEE Transactions on Software Engineering, vol. 22, no. 6, pp. 390–
406, 1996.

[6] P. Oreizy, “Open architecture software: a flexible approach to decen-
tralized software evolution,” Ph.D. dissertation, University of Califor-
nia, Irvine, 2000.

[7] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[8] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, andM. Slack,
“Experiences with an architecture for intelligent, reactive agents,”
JETAI, vol. 9, no. 2-3, pp. 237–256, 1997.

[9] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and
B. Wingman, “A distributed architecture for autonomous unmanned
aerial vehicle experimentation,”Proceedings of the 7th International
Symposium on Distributed Autonomous Robotic Systems, 2004.

[10] J. C. Georgas and R. N. Taylor, “Towards a knowledge-based approach
to architectural adaptation management,” inWOSS ’04: Proceedings
of the 1st ACM SIGSOFT workshop on Self-managed systems. New
York, NY, USA: ACM Press, 2004, pp. 59–63.

[11] M. A. Nelson, “Robocode,” 2006, http://robocode.sourceforge.net.


