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Abstract. Robotics is a challenging domain that exhibits a clear need
for self-adaptive capabilities, as self-adaptation offers the potential for
robots to account for their unstable and unpredictable deployment
environments. This paper focuses on two case studies in applying a
policy- and architecture-based approach to the development of self-
adaptive robotic systems. We first describe our domain-independent
approach for building self-adaptive systems, discuss two case studies in
which we construct self-adaptive Robocode and Mindstorms robots,
report on our development experiences, and discuss the challenges
we encountered. The paper establishes that it is feasible to apply
our approach to the robotics domain, contributes specific examples
of supporting novel self-adaptive behavior, offers a discussion of the
architectural issues we encountered, and further evaluates our general
approach.

1 Introduction

One of the major current challenges in software engineering is the development of
self-adaptive systems, which are systems that are able to change their behavior in
response to changes in their operation or their environment for a variety of goals.
In contrast to more specialized terms such as self-healing or self-optimizing, we
use the term self-adaptive to inclusively refer to this class of systems, without
consideration for their specific adaptive goals.

In addition to self-adaptive software, we are also keenly interested in robotic
systems. These systems are amalgams of software and hardware that are highly
resource constrained, commonly deployed in environments out of reach of human
operators, exhibit a high degree of dependence on events in their environment,
and commonly required to perform functions to which there can be little
interruption. The domain characteristics naturally motivate the inclusion of
self-adaptive capabilities that are currently lacking. The focus of this paper is
the intersection of the robotics domain with self-adaptive software, as we see
both a driving need for such capabilities in robotic systems as well as a fruitful
application domain for self-adaptive technologies.



The challenge of integrating self-adaptive capabilities into robotic systems
is a two-front battle: First, the system itself must be built in such a manner
as to be conducive to adaptation by virtue of its very design and construction.
Only then can adaptive behavior be integrated into the system. In our research
efforts, the fact that the construction of the system must support adaptation
implies that modularity is one of the fundamental qualities. This quality is the
key enabler that allows adaptation to take place in a fine-grained manner rather
than adaptation through wholesale replacement. In addition, due to the fact
that adaptive needs are virtually impossible to fully and correctly predict during
design, we also posit that adaptive behavior must be built in a way that is flexible
and modifiable at runtime.

Much of our previous work has been dedicated to the development of
architecture-based self-adaptive systems, and we identify a clear parallel in the
capabilities this work provides and the needs of self-adaptive robotic systems.
More specifically, we have developed notations and tools that support the design
and development of policy- and architecture-based self-adaptive systems that are
modular and have the ability to change adaptation policy specifications during
system runtime [1]. Our goals with the specific work described in this paper are
to:

– establish the feasibility of integrating our policy- and architecture-based self-
adaptive system research with robotics domain;

– develop novel self-adaptive capabilities in robotic systems that did not
previously exhibit them; and,

– probe into the difficulties and pitfalls of such an integration effort.

This paper is a report of our work to date toward these goals and our
experiences in striving to meet them. We describe two case studies we performed
in developing self-adaptive robotic systems, beginning with our work in the
Robocode system – a robotic combat simulator and development framework –
and continuing by discussing the construction of an autonomous Mindstorms

NXT robot. For each of these systems, we demonstrate practical self-adaptive
solutions to practical domain challenges. Neither of these domains previously
considered – much less provided support for – self-adaptive capabilities.

The key contributions of our work in this intersection between self-adaptive
architectures and robotic systems are:

– verifying the feasibility of integrating robotics and architecture-based self-
adaptive techniques;

– providing examples of novel self-adaptive capabilities in our case-study
domains;

– uncovering an important architectural mismatch between architecture-based
adaptation and current robotic domain practice; and

– demonstrating that our policy language is adequate for expressing robotic
adaptations.

The remainder of the paper offers background information, presents our
overall approach to self-adaptive systems, discusses our case studies, and
concludes with future work and final remarks.



2 Background and Related Work

This section begins with a discussion of representative robotic architectures,
paying particular attention on their support for runtime change. We also discuss
related approaches to architecture-based self-adaptive systems.

2.1 Robotic Architectures

One of the first robotic control system architectures to gain wide acceptance
was the sense-plan-act architecture (SPA) [2]. In SPA, control is accomplished
through the sense component that gathers information from sensors, the plan

component that maintains an internal world model used to decide on the robot’s
actions, and the act component that is responsible for executing actions.

SPA architectures, however, scale poorly as robotic systems grow in complex-
ity and scope, and Subsumption [3] was developed to address these scalability
issues. This architecture abandons world models and adopts layered compositions
of reactive components. Communication between these components takes place
through the inhibition and suppression of inputs and outputs of lower level
components by higher level ones. While the component-based approach of this
architecture allows for improved scalability and modularity, the supported modes
of communication prove very limiting.

Most current robotic systems are heavily influenced by three-layer (3L)
architectures, first described in [4]. These hybrid architectures separate robotic
systems into three explicit layers and mix reactive and planning modes of
operation: The reactive layer captures behaviors that quickly react to sensor
information, the sequencing layer chains reactive behaviors together and trans-
lates high-level directives from the planning layer into lower-level actions; the
planning layer is responsible for deciding on long-term goals.

Despite their differences, these robotic architectures share a commonality in
their lack of support for runtime adaptation, discussed in more detail in our
paper to a workshop attached to the International Conference on Robotics and
Automation (ICRA) [5]. These architectures simply do not consider this concern
in their design and therefore do not exhibit the necessary qualities to be amenable
to the direct application of self-adaptive techniques – the minimally amenable,
perhaps, is the Subsumption architecture, due to its focus on independent
components.

This lack of support for the architectural qualities that promote ease of run-
time change is the motivation for the development of the RAS architectural style,
also described in [5]. The style combines insights from event-based architectural
styles such as C2 [6] and the Subsumption and 3L robotic architectures, and is
aimed at supporting the development of robotic architectures that are modular
and incrementally evolvable while fostering component reuse. Figure 1 outlines
the style, which is:

– component-based, with no shared memory between components;
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Fig. 1. An illustration of the RAS architectural style, showing the style’s layers and
event types.

– explicitly-layered into skill, reactive, sequencing, and deliberative layers3 with
components belonging to layers based on their complexity and maintenance
of state information;

– event-based with communication taking place between components of the
architecture through requests and notifications, sensor information being
transmitted by robot notifications, and actions being enacted through action

requests, and;
– connector-based, with independent connectors separating layers and facili-

tating communication and distribution.
The robotic systems we build in our case studies are built according to the

principles of this style, which provides the basis for the construction of robotic
systems that foster modularity and, therefore, are more easily modifiable using
architecture-based means.

2.2 Self-Adaptive Architectures

Some related work takes a formal approach to the specification of architectures
and the artifacts governing adaptation. The work based on Community

[7], for example, models architectures as abstract graphs while the approach
based on the Darwin [8] architecture description language (ADL) focuses
on the self-assembly of systems according to a formally specified set of

3 While the RAS style uses similar layer names as 3L architectures, there are
differences between the two; the reader is referred to [5] for further details.



constraints representing invariant architectural properties. Other approaches are
more focused on providing practical tool support for developing self-adaptive
architectures. The Rainbow system [9] adopts a style-based approach and
focuses on the specification of styles for specific domains along with style-
specific adaptations and constraints tailored for the domain’s needs. Our own
work is a descendant of such a tool-based approach [10], which conceptualized
architecture-based adaptation but left many questions about how to implement
adaptive behavior unanswered.

There is also work in the intersection of robotic systems and architecture-
based approaches: Applied to sophisticated hardware platforms, the Shage

framework [11] supports the definition of adaptive strategies managed by a
controlling infrastructure, but focuses only adaptations that replace components
with alternatives providing similar services. Kramer and Magee have also dis-
cussed self-adaptive robotic architectures through the application of a conceptual
framework strongly influenced by 3L architectures and focused on self-assembling
components using a formal statement of high-level system goals [12]. In contrast,
the approach described here embodies a fundamental trade-off away from formal
specifications of system behaviors in order to achieve a higher degree of flexibility
and support for the runtime change of adaptation policies without necessitating
the re-generation of adaptation plans.

3 Approach

Before discussing the case-studies, we present here the high-level approach we
use for developing self-adaptive robotic systems. As this paper is focused on
the application of our approach to robotic architectures, we keep the discussion
minimal; a more extensive discussion of the overall approach appears in [13].

The core of our policy-based approach to architectural adaptation manage-
ment (PBAAM) appears in Fig. 2. Self-adaptive systems in this approach consist
of three fundamental parts: an architectural model specifying the system’s
structure, a set of adaptation policies capturing how the structure changes, and
executable units of code corresponding to each architectural element. These three
artifacts are managed at runtime by elements of the PBAAM infrastructure:
the Architecture Model Manager (AMM), the Architecture Adaptation Manager

(AAM), and the Architecture Runtime Manager (ARM) respectively. Self-
adaptive systems are further augmented by a configuration graph model that
maintains information about the history of a system’s adaptations, as well
as a body of architectural constraints that are intended to preserve core
system capabilities. These artifacts are managed at runtime by the Architectural

Runtime Configuration Manager (ARCM) and the Architecture Constraint

Manager (ACM) respectively.

3.1 Adaptation Policy Specification

One of the fundamental abstractions in our approach is the adaptation policy:
a policy is an encapsulation of the system’s reactive adaptive behavior and
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Fig. 2. The tools and activities of the PBAAM approach.

indicates a set of actions that should be taken in response to events indicating
the need for these actions. The basic building blocks of adaptation policies are
observations and responses. Observations encode information about a system and
responses encode system modifications. Given the architecture-based focus of our
approach, responses are limited in the kinds of actions they can perform: they
are restricted to operations which change the structure of software architectures
and, in essence, reduce to additions, removals, connections, and disconnections
of architectural elements.

We specify the structure of adaptation policies using a xADL 2.0 schema
[14] that extends the core schemas of the ADL and lays out policy structure.
The basic definition of a policy appears below, with XML namespace information
removed for the sake of brevity:

<xsd:complexType name="AdaptationPolicy">

<xsd:sequence>

<xsd:element name="description" type="Description"/>

<xsd:element name="observationList" type="ObservationList"/>

<xsd:element name="responseList" type="ResponseList"/>



</xsd:sequence>

<xsd:attribute name="id" type="Identifier"/>

</xsd:complexType>

Each adaptation policy is characterized by a unique identifier and may
contain an optional, human-readable textual description that indicates its
purpose to designers. Each policy also contains a list of observations and a list
of responses: when this list of observations is fully satisfied, the entire set of
responses is enacted. It is very important to note that this policy schema is
highly extensible and can be customized to fit the needs of specific projects. One
of the extensions currently under development, for example, extends the notion of
policies with support for expressing observations in terms of exhibited behaviors
while modeling responses as a set of desired behaviors, where Statechart

models [15] are used to specify behavior.

3.2 Architectural Adaptation Management

The AAM is the element responsible for the runtime management of the specified
adaptation policies. When the self-adaptive system is first instantiated, the AAM
loads the set of policies and initiates their runtime evaluation: as policies are
added and removed from the policy specification, the AAM updates the set of
active runtime policies to reflect these changes. The current incarnation of the
AAM adopts an expert system for the runtime management of policies. In a
very straightforward manner, policies are translated to executable condition-

action rules and then managed using an expert system shell. More specifically,
we adopt the Java Expert System Shell (JESS) [16] for this task, which provides
us with a well-tested and efficient platform for the runtime execution of policies.

In coordination with the ARM – an existing element of the ArchStudio

environment that supports runtime evolution and predates our work – the
AAM drives architectural change by enacting modifications to the system’s
architectural model. The ARM’s primary responsibility is to ensure that changes
enacted to the architectural model are also enacted on the runtime system itself.

Alongside these tools that implement a reactive self-adaptation loop, two
additional tools provide capabilities related to constraint and configuration
management. Before changes are actually enacted, the ACM ensures that these
changes would not violate a body of architectural constraints. These constraints
enforce a variety of desired architecture structural properties, ranging from
component membership to architectural connectivity. Only those changes that do
not violate these constraints are allowed to be enacted by the AMM. The ARCM
tool is responsible for monitoring architectural changes as they take place, and
recording them in a configuration graph. Nodes in this graph correspond to and
maintain information about architectural configurations, while edges represent
adaptations between these configurations. Each edge maintains bi-directional
diff information, which is used by ARCM to enact explicit user commands to
apply rollback or rollforward operations on the architecture (an early description
of ARCM appears in [17]).



3.3 Activity Flow

Referring to the activity flows indicated in Fig. 2 by numbered arrows, the
adaptation process begins when observations about the running system are
collected and transmitted to the AAM (flow labeled 1). These observations
are gathered through independent probing elements or through self-reporting
components and encapsulate what is known about the system. This information
forms the basis for evaluating adaptation policies managed by the AAM.

Any triggered responses are first communicated to the ACM (indicated by
the flow labeled 2), which ensures that these suggested responses do not violate
the active architectural constraints. Modifications that are deemed allowable are
communicated back to the AAM, and then finally enacted by being transmitted
to the AMM (event flows 3 and 4, respectively). Both the ARM and ARCM are
notified of any changes enacted on the architectural model (event flow 5). The
ARM then ensures that these changes are reflected on the executing system,
while the ARCM builds the system’s configuration graph; ARCM also allows
manual modifications triggered by the user (event flow 6).

4 Case Studies

This section offers specific details about two case studies in integrating self-
adaptive capabilities with robotic systems. For each of the ArchWall and
Archie systems, we will discuss our experiences and call out some of the
difficulties we encountered and lessons we learned in providing novel self-adaptive
capabilities in domains that did not previously support them.

4.1 Robocode

Our first study was performed using the Robocode4 system. Initially developed
as a Java teaching tool, Robocode is now an open-source system under active
development that provides a robotic combat framework and simulator which is
used to pit robotic control systems in battle against each other.

Robocode Background. Robocode provides a customizable simulated
battlefield into which robots are deployed: the objective of robots is to remain
alive while destroying their competitors. Each robot may move, use its radar
to detect other robots, and use its gun to fire at opponents. The constraint of
primary importance for each robot is the amount of remaining energy. While
all robots begin a battle with the same level of energy, energy is depleted by
being hit by bullets or colliding with other robots or walls. Energy can also be
invested into firing bullets at other robots, but a multiple of this invested energy
is recovered by successfully hitting. The goal of each robot, then, is to preserve
its own energy by both firing wisely as well as avoiding collisions and enemy fire.

4 http://robocode.sourceforge.net
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Fig. 3. The architecture of the ArchWall robot, showing the layered arrangement of
components and connectors implementing robot behaviors, as well as the environments
and platforms providing the execution context.

From a software development perspective, the Robocode API provides
builders with basic robot control capabilities: movement and steering, control
for the robot’s scanner and weapon, and support for notifications of battlefield
events. How each robot responds to these events is the challenge of Robocode

development, and the robots developed by the community vary from the very
simple to the very sophisticated. It is important to note that in development
for the simulator, a robot is programmed and compiled as a single static unit of
code that is then executed by the battle simulator; there is no consideration or
support for runtime adaptation.

Architecting ArchWall. The core architecture of the ArchWall robot
follows the guidance and constraints of the RAS architectural style (discussed
in Section 2.1) and appears in Fig. 3.

In contrast to Robocode development that focuses on robots being mono-
lithically implemented as a single unit of source code, ArchWall is comprised
of a number of independent components and connectors that are distributed
between the Java and Robocode environments. These components embody a
number of behaviors and are arranged in RAS layers. At the lowest level, the skill
layer captures the basic tasks that a Robocode robot can perform: ArchWall

can scan for other robots, turn its turret, fire at enemies, detect collisions, and
control its speed and direction. Using these fundamental facilities, the reactive
layer implements a simple collision recovery strategy of stopping and moving
away from collisions, firing at any enemy robot detected, and moving along
a wall if the robot is near one. The sequencing layer contains components that
ensure the turret is always pointed toward the center of the battlefield, and direct
the robot to move to the nearest wall if it has not already done so. Finally, the
deliberative layer maintains data about enemy robots that attack ArchWall.



In accordance with the RAS style, components are arranged in layers according
to the timeliness of their responses to events, and their maintenance of state.

The curved connection in Fig. 3 indicates the special-purpose interface we
constructed in order to integrate the PBAAM infrastructure with the Robocode

simulator (the integration also involved a number of modifications to the
simulator framework itself). PBAAM requests for robot actions are translated
into the appropriate Robocode API calls, while notifications of simulator
events are translated into architectural events and transmitted to the robot’s
architecture.

With this architecture, ArchWall first seeks a battlefield wall and then
follows it for the duration of the battle, embodying the movement behavior of
a type of Robocode robots referred to as “wall-crawlers.” The turret is always
kept pointed toward the center of the battlefield, and ArchWall fires at any
robot it detects. This initial set of behaviors is sufficient for the robot to compete
in basic battles: in our testing experiences, the robot tends to rank between
positions four and six in a battle against ten opponents selected from the set of
sample Robocode robots that are distributed with the simulator.

Self-Adaptive ArchWall. The basic behaviors exhibited by ArchWall,
while sufficient to be competitive, are certainly not optimal under a wide variety
of battlefield conditions. For example, while firing at any enemy robot scanned
is perfectly acceptable when the robot’s energy is high, it would be helpful to
exhibit a more careful firing strategy as the robot’s energy is depleted. Similarly,
while targeting the center is useful when there are many opponents on the
battlefield, it becomes less desirable as the battle progresses and the number
of enemies is lessened.

To address these shortcomings, we developed a self-adaptive version of
ArchWall by placing the architecture of the robot under the management
of the PBAAM toolset. This augmented architecture appears in Fig. 4; the core
architecture of the robot appears in unshaded components, while the PBAAM
tools are shaded. Along with the system, we deployed a number of adaptation
policies addressing the need to change the firing and targeting behaviors of
ArchWall as the conditions of the battle change. One policy, for example,
states (in an abridged form for brevity):

<AdaptationPolicy id="ReplaceFiring">

<ObservationList>

<StringObservation>

<StringObservationContent>

(energy_report {energy < 60}) </StringObservationContent>

</StringObservation>

<ResponseList>

<RemoveComponentResponse>

<RemoveComponent> ReactiveFire </RemoveComponent>

</RemoveComponentResponse>

<AddComponentResponse>
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robot’s architecture as well as the PBAAM tools that enable self-adaptive behavior.

<AddComponentIdentifier>

DistanceReactiveFire

</AddComponentIdentifier>

<AddComponentType>

DistanceReactiveFire_type

</AddComponentType>

...

</AddComponentResponse>

</ResponseList>

</AdaptationPolicy>

This policy replaces the firing strategy used by ArchWall when the energy
of the robot drops below the indicated threshold by replacing one component
with another: Distance Fire, which only fires at enemies that are nearby in an
attempt to maximize the chances of hitting (and, thereby recovering the invested
energy) takes the place of Reactive Fire.

Additional adaptation policies also change the way in which the robot moves
and scans for opponents as fewer enemy robots remain: in total, the ArchWall

robot contains four independent adaptation policies which modify its behavior
in different ways. Overall, the addition of the adaptation policies improves the
performance of the robot: the adaptive version of ArchWall tends to rank
between positions two and four, while even coming in first on some test runs.

Most importantly, however, is the fact that each adaptation policy is
completely independent of the architecture to which it is applied and could
be added, removed, or modified during runtime as the robot continues to
operate. Furthermore, the architecture and components of the robot are entirely



adaptation unaware: None of the components needs to be modified for the
transition from the non-adaptive to the adaptive version of ArchWall, and
the only changes are those made through architectural means.

Developing the ArchWall robot clearly established the feasibility of inte-
grating architecture- and policy-based self-adaptive software methods in robotic
systems by providing novel support for developing self-adaptive Robocode

robots. While this framework is admittedly limited to simulation, from a software
engineering perspective it exhibits many of the same challenges that developing a
self-adaptive system for any other robot does: coherently organizing and relating
robot behaviors, for example, and dealing with multiple sources of input in
deciding on which actions to perform.

The effort also gave us experience in dealing with an important architectural
mismatch between the Robocode framework and the PBAAM infrastructure:
Like most robotic system frameworks, robots supported by Robocode are
developed synchronously by sequencing behaviors through their explicit ordering
in the source code. This way of building systems conflicts with the asynchronous
nature of our approach. As this asynchronous and modular nature is a
fundamental enabler of runtime change, reconciling this mismatch was necessary
and required effort in the design and implementation of each behavior in order
to compensate. Each component had to be constructed in a state-based way
– that is not necessary in other applications we have applied our approach to
– that maintains information about the state of the interactions it is engaged
in with components to which it has dependencies. This explicit maintenance of
state for inter-component interactions is a key enabler for the integration of our
work with robotics; decoupling this interaction modeling from components and
isolating it at the architectural level is an area we are interested in pursuing in
our future work.

4.2 Mindstorms NXT

We performed the second case study using the LEGO Mindstorms NXT

development kit5. Released in the summer of 2006, this is another in LEGO’s
line of kits to support easily accessible and affordable development of robotic
systems that has found great traction in academic settings.

Mindstorms NXT Background. Each Mindstorms kit is comprised of
Technic pieces which are used to build the structure of robots, servo motors,
and a variety of sensors (the commercial kit includes ultrasonic, light, sound,
and touch sensors). Computer control for the sensors and motors is provided by
an NXT brick: each brick supports enough ports to accommodate a maximum
of three motor and four sensor connections, and also supports a USB port and a
Bluetooth wireless connection. These kits are extremely affordable (at the time of
this writing, the kits cost about $250 US) but resource constrained: processing is

5 http://mindstorms.lego.com/Overview/



Fig. 5. A picture of the Archie Mindstorms robot: a three-wheeled design with a
grasping arm and a number of mounted sensors along with the NXT processor brick.

provided by a 32-bit ARM7TDMI microprocessor with 64KB of RAM available
to it and 256KB of flash memory for non-volatile program storage.

From a software perspective, the basic platform supports development in two
ways: the NXT processing brick firmware can execute user-written programs,
and the development and compilation of these programs is supported through the
NXT-G visual programming environment. More advanced users may leverage a
large variety of third-party libraries and firmware replacements for a variety of
programing languages. In the context of our discussion on self-adaptive systems,
it is important to once more note that Mindstorms robots are developed as
single units of code with no pre-existing support for or consideration of runtime
change.

Architecting Archie. Building on the work described in the previous section,
we continued by developing the Archie Mindstorms robot; a picture of the
robot in our lab can be seen in Fig. 5.

The physical platform of the robot is a modification of a basic three-wheeled
Mindstorms design. Movement is provided by two motors, each controlling one
of the side wheels while the third wheel is unpowered and can freely rotate to
any movement direction. A third motor opens and closes the grasping arm of the
robot. The robot is equipped with the following sensors: A touch sensor which
is mounted in place to detect when an object is within grasping range, a light
sensor which detects the light reflectivity of the surface the robot is on, and an
ultrasonic sensor providing motion detection as well as range-finding in the front
arc of the robot.
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The software architecture of Archie is built in the RAS style, and appears
in Fig. 6. Once more, we abandon the traditional methods of building robot
architectures in this domain, and construct Archie in a component-based
manner. The additional complication to integrating information providers and
information consumers, in this domain, is the lack of the NXT brick’s on-board
processing power. As a result, Archie adopts a tele-operation design: the bulk of
the processing is performed on a PC running the PBAAM infrastructure, while
the Mindstorms NXT brick is responsible for executing commands sent to its
actuators and transmitting sensor data over the robot’s Bluetooth connection.
The deployment can be seen in Fig. 6, where the Bluetooth connection is
indicated by the curved connection connecting the multi-platform architecture.
This divide between the adaptive system and the facilities governing adaptation
is not an essential challenge to developing robots using this approach, but was
a solution driven by the limited resources of the NXT brick, which prevented us
from deploying the PBAAM toolset on-board.

While limiting the range of the robot to that of the Bluetooth connection
(roughly 10 meters), the solution was more than adequate for us to demonstrate
self-adaptive behavior in our lab. We adopted the LeJOS icommand API
(version 0.6) – a Java implementation of an NXT Bluetooth interface – and
we replaced the default firmware of the Mindstorms platform with the LeJOS

NXJ firmware update (version 0.4)6.

With this architectural configuration, Archie travels to a pre-defined
location in our lab and grasps objects (in this case, small balls) if they are
there. If it finds the object at the indicated location, it delivers it to its starting
location. Navigation is implemented by the Tachometer Navigator component
in the sequencing layer, which keeps track of the robot’s location based on

6 http://lejos.sourceforge.net/
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tachometer information from its motors. The Grasper Control component of
the reactive layer provides control for the robot’s grasping arm, and basic robot
functionality resides in the skill layer.

Self-Adaptive Mindstorms. The need for adaptation in the Archie robot
is naturally motivated by the nature of the architecture itself. Due to driver
incompatibilities between the Bluetooth libraries used by the NXT and the PC
we used for development (running Mac OS X 10.4), the connection is unreliable
and exhibits intermitted data loss and errors. Since the Tachometer Navigator

component relies on reports from the robot’s motors in order to calculate
positioning data, corrupted information means that position information can be
grossly mistaken, which makes navigation impossible. With this failure (currently
self-diagnosed by Tachometer Navigator through a determination of whether
data conforms to a reasonable envelope), the robot can no longer correctly
navigate nor find its way back to the starting position.

One way to address this failure is through architectural self-adaptation. To
this end, we developed a self-adaptive version of Archie by managing the
architecture with the PBAAM toolset: this augmented architecture appears in
Fig. 7. We use PBAAM’s adaptation management tools to deploy an adaptation
policy that restores navigational support to the robot when Tachometer

Navigator fails. The policy definition, elided for brevity, follows:

<AdaptationPolicy id="ReplaceNavigation">

<ObservationList>

<StringObservation>

(navigation_report {failure ==true})

</StringObservation>



</ObservationList>

<ResponseList>

<RemoveComponentResponse>

<RemoveComponent>

Tachometer Navigator

</RemoveComponent>

</RemoveComponentResponse>

<AddComponentResponse>

<AddComponentIdentifier>

Ultrasonic Navigator

</AddComponentIdentifier>

...

</AddComponentResponse>

</ResponseList>

</AdaptationPolicy>

The new Ultrasonic Navigator component maintains no state information –
which is the reason it is inserted into a lower RAS layer – but simply locates a
wall using the robot’s ultrasonic sensor and continues to follow the lab’s walls
until it locates the starting location that it detects using the light sensor to
measure the reflectivity of the floor (the starting location is wall-adjacent and is
more reflective than the remainder of the lab’s floor). Archie’s components are
also designed in the state-based way used for the Robocode platform to account
for synchronicity assumptions in the underlying development framework.

As with the Robocode case study, our goal was to establish the feasibility
of applying architecture-based self-adaptation techniques to a domain in which
they had not previously been demonstrated, namely autonomous mobile robotic
systems. So, while the architecture and behavior of Archie are simple, they
nevertheless demonstrate a practical self-adaptive solution to a practical problem
as well as a successful application of our tools and techniques in this domain.
And, despite the simplicity of the platform, we are confident our feasibility claim
is valid due to the number of difficulties and challenges our Mindstorms robot
shares with more complex robotic systems, such as the:

– necessity of integrating data from multiple sensors (sensor fusion) to
determine courses of action;

– demands on timely actions in response to sensor information so that the
robot’s actions are current and actions are not performed too late, and;

– unreliability of sensor information and communication channels that the
robot must account for in its control system.

These are just some examples of the kinds of difficulties shared by both real-
world robotic systems and the types of Mindstorms robots we are developing.
These systems are real, mobile, unreliable and resource constrained platforms,
which is why we feel justified in the validity of a case-study using this platform.



5 Discussion

This section explores some of the interesting questions and trade-offs we
encountered and offers some of our insights into the cross-section of self-adaptive
architectures and robotic systems.

5.1 Architectural Mismatch

One of the difficulties we faced in our case studies was the architectural mismatch
between the robotic frameworks we were working with and the assumptions
of an architecture- and component-based approach. The PBAAM development
framework was designed and built to support the development of component-
based systems that use asynchronous events for communication and have no
assumptions of shared state between them. These high-level design principles
are critical in enabling the degree of modularity and decoupling that our work
in developing self-adaptive systems relies on.

Robotic systems, on the other hand, tend to be constructed with architectural
assumptions about synchronicity and strict temporal ordering of operations in
mind. Many robotic libraries, for example, define interfaces to actuators and
sensors that operate in a blocking manner: control is not returned until they have
completed execution, which is particularly problematic in the case of long-term
actions such as movement. This allows systems to be designed with great ease as
long as they’re constructed in a monolithic manner: it is quite easy to develop
behaviors by chaining together a sequence of operations when these operations
are invoked sequentially from a single unit of code. It is significantly more
challenging, however, to compose these behaviors when fine-grained actions are
distributed among many independent and potentially distributed components.

This mismatch between the fundamental design decisions of these domains
was challenging to overcome, and required care in component design to account
for the lack of synchronicity and the lack of guarantees about event ordering. The
benefit, of course, from investing in this effort is the higher degree of modularity
and enablement of runtime adaptation that this approach to building systems
supports.

The conclusion from this necessity for more effort, of course, is not to dismiss
the integration of architecture-based adaptation with robotics, but to recognize
when the trade-off becomes worthwhile. Unless there is a driving need for self-
adaptive behavior – and therefore the necessity to support a great deal of
modularity and runtime evolvability – the effort to build robotic systems in
a component-based manner and according to the RAS style while having to
bridge this mismatch is not worth the benefits. It is interesting to note that a
great deal of effort is currently being invested by the robotics community toward
supporting the development of component-based robots and integrating software
engineering technologies in their construction, as exemplified by the IEEE RAS
TC-SOFT7.

7 http://robotics.unibg.it/tcsoft/



5.2 Platform Selection

Our goal of examining the integration of architecture-based adaptation with
robotics – rather than the development of industrial-strength robots that is work
best left to domain experts – guided our selection of the Mindstorms system
for experimentation: The platform compares favorably with other commercially
available platforms and development tool sets such as the iRobot or K-Team

platforms in terms of flexibility as well as cost. While there is a clear loss
of sturdiness compared to these pre-manufactured robots, the Mindstorms

platform provides a degree of flexibility that other packages can’t match: a new
type of physical structure is only a matter of a few hours of (fun) re-assembly.
Most important is the degree of broad availability and appeal of the LEGO
kits: the kit supports both Windows and Macintosh platforms in a variety of
programming languages, is supported by a large and dedicated community, has
sold millions of units throughout the years, and seems to quickly capture the
imagination and attention of those exposed to it. As we are interested in both
disseminating our research tools and techniques as well as teaching self-adaptive
architectures to university students, the Mindstorms platform is an ideal and
affordable choice for such needs.

6 Future Work

There are a number of directions we plan on pursuing in continuing our work
in the intersection of robotic systems and self-adaptive architectures. In the
long term, the most important aspects of robotic construction which must be
addressed involve examining, understanding, and improving the scalability and
reliability of these architectures. This is both an issue of learning more about
the implications of using architecture-based techniques in the robotics domain
as well as a matter of refining our notations and tools: we expect, for example, to
refine our conceptualization of constraints and express them in terms of behavior
as opposed to structure.

We also plan on further strengthening our feasibility claims by continuing to
build more sophisticated and complex robotic architectures. One such avenue
of development involves the construction of mixed deployment, distributed
architectures in which the more computationally intensive elements of a robotic
architecture remain on a PC platform and communicate through the wireless
connection, but where more efficient elements are deployed on the robot platform
itself. We hope that these hybrid architectures will ease the difficulty of bridging
the architectural mismatch we discussed in the previous section, and significantly
improve the performance and stability of our robots.

7 Conclusion

The work presented in this paper is an exploration into the application of
architecture-based techniques to the robotics domain in order to support the



development of self-adaptive robotic systems. One of the critical challenges of
this effort is supporting the dynamic modification of adaptive behaviors during
runtime.

Our previous work in architecture-based self-adaptive systems has been
focused on supporting exactly this capability through the use of adaptation
policies that are decoupled from the architectures they relate to; these policies
are independently managed and the tools we have developed support their
runtime modification. We therefore applied this work to the robotics domain
by performing two case studies: The first focused on developing a self-adaptive
robot for the Robocode robotic combat simulator, while the second involved
the development of a self-adaptive Mindstorms NXT robot.

We believe that our efforts were successful in multiple ways. Most impor-
tantly, our case studies establish the feasibility of applying an architecture-based
approach to self-adaptive robotic software by demonstrating practical solutions
to practical robotic problems. Furthermore, our work also contributes an initial
understanding of the difficulties involved in transitioning our particular approach
– and others component-based approaches like it – to the robotics domain due
to the architectural mismatch between the assumptions of architecture-based
approaches and the actual practice of robotic system development. Finally, we
continue to realize that the policy language of our approach is adequate for
specifying adaptive behavior in a variety of settings.

The field of robotics is a rich application domain for software engineering
research which provides dividends for both communities. Robotic software
development greatly benefits from the application of software engineering
research to the challenges of the domain, and software engineering researchers
gain rigorous test settings and realistic scenarios for their work in a domain that
stresses issues such as safety, reliability, and adaptation completeness which are
more relaxed in other settings. We plan to continue to examine the intersection
of robotic control systems and self-adaptive architectures, particularly with the
Mindstorms platform as an easily accessible and inexpensive experimental
testbed.
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