
Supporting An Architecture-Based Approach to Mission
Modeling

John C. Georgas and Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697, U.S.A.
+1 949 824 5160

{jgeorgas, taylor}@ics.uci.edu

ABSTRACT
Designing a space exploration mission involves many varied yet
interconnected domains which are often found to be in conflict
with each other. A conceptually coherent architectural model
with a solid syntactic base provides for the identification and
resolution of these relationships and conflicts with automated
facilities, as well as enabling advanced analysis and simulation
capabilities. This presentation presents the results of leveraging
the domain independent XML-based framework associated with
the xADL project to provide the mission design field with the
technical infrastructure needed to make the most of architectural
models.

1. INTRODUCTION
The design of a space exploration mission is a complex process
involving a large number of different groups. Each of these
groups is charged with the design of heterogeneous artifacts; the
work of the control software team, for example, is very different
from the work of the cost analysis group. Further differentiating
the domains within which these groups operate are differences in
tools, process, and, perhaps most importantly, in the underlying
models that represent the artifacts these groups deal with.

As different as these domains dealing with the different aspects
of a mission are, they may still have significant relationships
between them. The result of these relationships is that the work
of one group may have far-reaching effects on the work of
another. Significant problems arise during mission design
because these effects are only implicitly represented in the
various artifacts produced by domain experts. Conflicts and
cause-effect relationships are mostly reconciled through
interpersonal communication between designers.

The Architecture Working Group (AWG) within the Consultative
Committee for Space Data Systems (CCSDS) is engaged in

efforts to rectify some of the mentioned problems by establishing
an overall CCSDS approach to the architectural models used in
mission design as well as the development process [2]. To
support the conceptual underpinnings developed by this effort,
we present an architecture-based approach to the modeling of
missions using concepts and technologies rooted in the domain of
software architecture.

Specifically, we leveraged the XML-based framework described
in [4] to support the specification of mission models and their
syntactic representation, provide mission-specific tools to support
the mission design process, and offer the basis for mission
simulation using tools from the Ptolemy project.

2. ARCHITECTURE-BASED APPROACH
High-level software architecture descriptions provide a way to
reason about the constituent components of an overall system and
the interconnections between them [6]; system behavior is
expressed as the collaborations between components. The
development framework associated with xADL 2.0 [3] provides a
domain independent framework to define an architecture
description language (ADL) as well as a collection of tools which
provide substantial support for the representation and
manipulation of systems described in this ADL [4]. Though
originating in the field of software engineering, these
technologies are essentially domain independent. It is this
domain independence that enables the use of this framework in
the field of space mission design.

The initial efforts in this architecture-based approach revolve
around five main tasks: model specification, syntactic
representation, tool use, space mission specific support, and
simulation.

2.1 Model Specification
Eliciting and specifying a model that can be used to describe
space missions is a challenging undertaking. The various
domain experts involved in all the facets of a mission have to
reach an agreement about a great number of concepts including
the types of components present in a system, their interactions,
and the optimal way to model these elements. Though the
specification of this concrete model lies at the very core of any
attempt to create a meaningful development framework, it was
not the main concern of our effort. After all, it is the domain

experts that are best-suited to define the models that are used in
their field.

Instead, our main contribution to the specification of these
models centered around enabling the transparency of
relationships between models representing the many varied
domains of a space mission. For example, there is a very strong
relationship between the models governing the physical artifacts
comprising a space probe with the models representing the
communication attributes of the overall mission. In current
practice, these relationships are embedded into each domain's
model. It takes a significant amount of cross-domain knowledge
and experience in mission design for an individual to recognize
these complex relationships, the effects they have on the overall
space mission design, and the best way by which to resolve any
arising conflicts.

The solution we propose is the treatment of these cross-model
relationships as first-class entities – treating them as objects
themselves rather than attributes of other objects. Once
identified, these relationships can then be easily monitored and
maintained as the mission design evolves toward its final form.
Furthermore, by making these relationships so visible, the
amount of domain knowledge that is needed for their monitoring
and maintenance is significantly lessened. In the models used as
part of this effort, cross-domain relationships are maintained
separately from the models they link and, in essence, form their
own domain. Links from each relationship entity to the elements
from other domains to which it pertains are maintained.
Therefore, changes in these linked elements would trigger any
sort of automated response deemed necessary by the mission
designer, such as the addition of affected relationships to a
mission designer's "to-do" list for later consideration.

Additional concepts incorporated in the model specifications
include construct versioning, typing, and sub-architecture
definition capabilities.

2.2 Model Representation
Essential for the manipulation of these specified models is a
well-defined syntactic representation. The technological basis of
the framework we used is XML, so the structure of these models
is first specified using XML schemas. These schema definitions
are used as an input to 'apigen', a framework-provided tool that
generates Java data binding libraries allowing the manipulation
of architectural documents through function calls rather than
direct editing of the XML specification. This provides a higher
level of abstraction and provides functions that deal with the
constructs that a mission designer would expect to deal with such
as components and connectors. By providing an interface to the
manipulation and maintenance of model representations that uses
concepts familiar to mission designers, the barrier of technology
adoption is significantly lowered.

2.3 Tool Support
Architectural descriptions are not very useful without the
necessary tool support to provide editing and visualization
capabilities. Adoption of the set of xADL technologies offers
more capabilities than just the generation of data binding
libraries that 'apigen' performs.

The framework includes ArchEdit, which is a context-aware,
lightweight editor. ArchEdit adjusts to handle any given set of
data-binding libraries that is used, meaning that there needs to be
no modification of the editor for use with new or modified
architectural schemas. The editing capabilities of ArchEdit are,
however, text-driven and low-level. Nevertheless, always having
an available editor for any set of schemas defining a model is a
significant benefit in that no customized editing solution needs to
be created or customized every time new models are created or
old ones modified.

2.4 Mission-Specific Support
Even though generic tools are valuable, in order to fully provide
conceptual models with utility, domain-specific support is
required. The specialized tools created for this mission-modeling
effort center around design-time sanity checking of mission
architectural descriptions, and the maintenance of first-class
relationship entities.

In any complex domain such as space mission design, there is a
variety of constraints placed on the manner in which components
and connections between them may be established. In essence,
these are the semantic constraints placed upon a design. To
develop components that maintain these constraints, we
leveraged the Critic framework of ArchStudio 3.0 [1].
ArchStudio 3.0 is a software development environment
incorporating the XML-based framework already discussed, and
the Critic framework is a combination of an API and a collection
of reusable managerial components that ease the development
process of design-time critic components. In addition to the
maintenance of the first-class relationship objects already
discussed, the initial Critic components we developed monitored
basic concepts such as type-matching and required properties.
The facilities of type-matching revolve around ensuring that a
component or connector instance reflects the properties and
characteristics of the type the instance belongs to; this enables
type-based analysis of resulting mission designs. Further
functionality that mission-specific Critics implement is the
ability to require that designers complete certain information
vital to a mission design. A simple example of this is requiring
that any mission component has a name value associated with it.

2.5 Simulation Framework
Mission simulation is perhaps the most interesting functionality
that a well-specified mission-design architectural model would
enable. As an attempt to provide facilities for this, we attempted
an initial integration with the Ptolemy simulation framework [5].
The Ptolemy project provides a collection of libraries supporting
simulation in various domains. Ptolemy files are saved in the
Modeling Markup Language (MoML), an XML-based format.
Given the core similarity between the formats of the architectural
files our approach generates and of those used by Ptolemy, an
integration between the two systems is particularly appropriate.

Our translation component generates a MoML description of a
mission architecture for use with the Ptolemy libraries. This
description is limited by the fact that the modeling concepts we
used, in their current form, have little semantic information
about the behavior of the elements they contain. This is simply
due to the limited time available for this integration effort and is
not indicative of any technological limitations of the framework

itself. Therefore, what our translation generates is a framework
outlining the general structure of a Ptolemy model mirroring the
simulated mission architecture; in order for the simulation to be
complete, a mission designer would have to use the Ptolemy
editing tools to fully specify the semantics of element behavior.
A more robust mission model could support a more detailed level
of semantic translation to the Ptolemy framework.

3. IMPORTANT QUESTIONS
During the course of our work, we confronted a variety of
interesting questions about the nature of mission-design models.
Satisfactorily addressing these issues will be an important task if
an overall architectural model is to be established in this domain.
Two of the most interesting of these concerns revolve around the
coupling between design and implementation, and model design.

Abstract models of complex constructs are used in a variety of
domains. These models allow designers to achieve clarity of
vision about their work as well as to effectively communicate
design ideas. Furthermore, in most of these domains, models
correspond to concrete constructs. For example, the models used
in our effort contain elements that correspond to sensors,
maneuvering thrusters, or computer control systems. An
important consideration for any of these domains is the tightness
of the coupling between the model and the concrete
implementation that this model abstracts, including ways to
ensure this coupling remains strong throughout the design
lifecycle. A technique in the software engineering domain, for
example, is to automatically generate source code based on
model specifications. Is a generative approach such as this
appropriate in the mission design domain, and exactly what
kinds of constructs would be generated? Are there any other
ways to achieve a tight coupling between mission models and
their eventual implementations? Architectural mission design
models are very valuable during design-time, but questions such
as these need to be answered in order for their utility to extend
throughout the mission lifecycle.

Space exploration missions, as already mentioned, involve
various interconnected domains. Yet, missions are collectively
composed of this multitude of domains. The approach we have
taken in our work is to represent each of these heterogeneous
domains as a separate model, and designate connections between
them as first-class entities. This allows for a clear separation
between models for clarity, and well-separated model version
management. However, this is not the only approach that could
have been taken. If these various domains compose the whole of
a mission, a comprehensive model can perhaps be constructed.
The collection of models interconnected by various relationships
is replaced by a central model containing the exact same
concepts. It is not clear whether this kind of central model would
be any more useful than other approaches, or indeed even
possible. But, as it is commonly thought that the different

aspects of complex constructs are only different views of a
central entity; perhaps it is this central entity that needs to be
modeled.

4. CONCLUSION
A well-defined syntactic base for mission design models is
necessary to support the technical underpinnings needed for a
full-fledged development environment and a tight coupling to the
resulting mission implementation. We have leveraged domain
independent xADL-related technologies to provide this syntactic
support and show a possible structure of a mission-design
development environment, as well as the kinds of analytic and
simulation support it could provide. Adopting the technology
framework that we used in support of an architecture-based
mission modeling approach eases the development process of
new mission modeling concepts and tools, as much of the
infrastructure for their rapid development is already provided.
This allows the various domain experts to focus on the elicitation
and definition of space mission models, and experimentation
with the ramifications of modeling choices rather than be
concerned with the details of the technical infrastructure.

5. ACKNOWLEDGMENTS
The authors would like to thank Peter Shames and Nicolas
Rouquette of the Jet Propulsion Laboratory for their support
during this effort.

6. REFERENCES
[1] ArchStudio 3.0. URL:

http://www.isr.uci.edu/projects/archstudio/

[2] CCSDS. URL: http://www.ccsds.org/

[3] E. Dashofy, A. van der Hoek, and R. N. Taylor. A Highly-
Extensible, XML-Based Architecture Description Language.
In Proceedings of the Working IEEE/IFIP Conference on
Software Architectures (WICSA 2001), Amsterdam,
Netherlands.

[4] Eric M. Dashofy, André van der Hoek, and Richard N.
Taylor. An Infrastructure for the Rapid Development of
XML-based Architecture Description Languages. In
Proceedings of the 24th International Conference on
Software Engineering (ICSE2002), Orlando, Florida.

[5] Edward A. Lee. Overview of the Ptolemy Project.
Technical Memorandum UCB/ERL M01/11, University of
California, Berkeley, March 6, 2001.

[6] D.E. Perry and A. L. Wolf. Foundations for the Study of
Software Architectures. ACM SIGSOFT Software
Engineering Notes, pages 40-52, October 1992.

