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Abstract—Static diagrams are the most prevalent artifact used
in visualizing component-and-connector architectures and sup-
porting software architecture learning. The use of such artifacts
exhibits a fundamental disconnect from the dynamic nature of
software systems, deemphasizes the importance of architectural
interactions with a focus on static structure, and does not
support a high degree of learner engagement. This paper presents
our work in addressing these challenges by developing runtime
visualization techniques that better support learning through the
use of visual vocabularies that leverage insights from computer
graphics and human perception. We also present evaluative data
drawn from user studies and associated insights, which provide
positive indicators that our work is effective in supporting our
target learning outcomes.

Keywords-software architecture; runtime; computer science
education

I. INTRODUCTION

Design pervades the entire range of artifacts and layers of
abstraction that software engineers work with and has a funda-
mental impact on the functional and non-functional properties
of software systems. The area of software architecture, con-
cerned with understanding and capturing the modular structure
of software systems, has emerged as an important focal point
for the design activity in software engineering, which informs
the importance of effectively supporting software architecture
learning.

Architectural models—along with techniques for their rep-
resentation and visualization—are key learning artifacts in
supporting software architecture learning. In the pedagogical
context of component-and-connector architectures and archi-
tectural style learning, canonical software architecture depic-
tions exhibit a fundamental drawback, namely the use of static
representations for inherently dynamic software processes. In
response, instructors typically center discussions with learners
on how an architecture or architectural style behaves on static
architectural depictions with ad hoc annotations for represent-
ing dynamic interactions and how these interactions change
over time. This is particularly problematic for architectural
style learning, as static models place undue attention on the
structure of architectures rather than the interactions between
elements that are critical in shaping the behavior of software
systems. Finally, we feel that static models are not particularly

effective in supporting a high level of learner interest and
engagement.

In order to address these challenges, we are developing
methods and tools that infuse dynamism in supporting soft-
ware architecture learning. Our work is fundamentally focused
on exploring novel visualization techniques that we aim to be
engaging to learners and better align with the dynamic nature
of software systems. Given the importance of communication
in supporting architectural learning, our current focus is on
visualizing inter-component communication rather than an
exhaustive set of architectural characteristics. We achieve this
by instrumenting running software systems and exposing their
architectural behavior through real-time, interactive visualiza-
tions. Our work goes beyond decorating static visualizations
of architectures or animating existing predominantly-static
visualizations or viewpoints by leveraging graphics and human
perception insights and using color, animation, shape, and
spatial relationships to improve software architecture learning.

This paper is focused on describing our overall approach to
supporting software architecture learning as well as the results
from two studies involving learners from our undergraduate
computer science program and contributes: (a) an overview of
two distinct visual vocabularies for depicting runtime architec-
tural behaviors; (b) details on two user studies involving our
target learner population; and (c) lessons drawn from analyzing
evaluative data and how these lessons inform our continued
work in this area.

II. BACKGROUND AND RELATED WORK

Our approach is broadly informed by learning theories,
software architecture and architectural styles, runtime architec-
tural visualization, and work in computer graphics and human
perception.

A. Learning Theories

The pedagogical approach embodied by our focus on real-
time visualization is centered on insights from constructivism
[1], which focuses on the importance of learner interactions
with each other and their environment to support knowledge
gains. Our visualization-based perspective on supporting learn-
ing adopts this view by allowing learners to become active
in creating hypotheses about in situ systems and actively



examining and interacting with both the running software and
its associated architectural visualization. Naturally, this broad
theory provides the foundation for more focused approaches:
Situated learning [2] stresses the importance of providing
a close match between the learning environment and the
context in which knowledge will be applied, which resonates
with our focus on linking software architecture instruction
and learning to operational software systems. The interactive
nature of our work, which has learners explore the runtime
architectural characteristics of software behaviors, also draws
from discovery-based learning [3]. These modes of learning
support a high degree of learner attention and engagement,
as does the high degree of variation provided by dynamic
visualization—attention and engagement are identified in the
ARCS motivational model [4] as key strategies through which
to foster learner motivation and learning achievement.

B. Software Architecture and Modeling

The study of software architecture is underpinned by graph-
ical and non-graphical models that capture the principal design
decisions of a software system [5], particularly those relating
to decomposing software systems into interconnected compo-
nents. Our work is particularly concerned with a component-
and-connector (C&C) view of software, with components
capturing computational tasks associated with a system and
connectors focused on facilitating component communication
[6]. Patterns of composition for particular functional and
non-functional characteristics are codified into architectural
styles [7]. Architectural styles reinforce the importance of
considering and representing connectors as first-class entities,
which makes a C&C view of software architecture with first-
class connectors ideal for the pedagogical context of our work
as opposed to, for instance, an object-oriented view.

Modeling notations for C&C architectures fundamentally
shape the manner in which users perceive and interact with
software architectures, and vary widely in the level of detail
they expose, the degree to which they leverage textual and
graphical elements, and the sophistication of their associated
toolsets [5]. Canonical visualizations associated with well-
established architecture description languages (ADLs) [8] cap-
turing C&C views are primarily static in nature and do not
inherently support a visual vocabulary that incorporates run-
time characteristics of a system’s operation, which is a primary
focus of our work. While the Unified Modeling Language
(UML) [9] contains models useful for capturing behavioral
aspects of software systems, the models themselves are also
primarily static without special consideration of dynamism in
the visual vocabulary they use. Furthermore, UML exhibits
important drawbacks in the context of C&C architectures [10]
particularly in (a) allowing ambiguity through multiple valid
methods of representing elements of such architectures and
(b) in overloading object-oriented visual design elements for
C&C models; these drawbacks are particularly problematic in
an instructional context.

C. Runtime Visualization

Related work using xADL-based [11] depictions in the
field of architectural visualization provides augmentations for
conventional depictions of architecture while linked to runtime
systems [12], much like our approach. Other work using cus-
tom notations [13] only somewhat integrates dynamism in its
depictions and does not strongly represent C&C architectural
elements. While this work satisfies some of our goals, it does
not explore the pedagogical utility of visual vocabularies that
adopt architectural dynamism by design.

Other related work explores the graphical representation
of runtime software system characteristics: HotAgent [14]
visualizes component interactions with an emphasis on a
three-dimensional visual vocabulary. Jinsight [15] focuses on
exposing the lifetime of objects in memory and object com-
munication in multithreaded Java programs and uses custom
visualizations for that purpose. Other work focuses on creating
UML visualizations based on trace information collected from
a target system [16] and relies on storing information during
a system’s execution to be visualized later. Javavis [17] shows
how object and sequence diagrams change during runtime
by using breakpoints, which overrides the system’s native
timing between activities. Our work is differentiated by a
focus on C&C architectural views, which are particularly
well-suited to the study of architectural styles, and by better
bridging the temporal disconnect between visualization and
the runtime behavior of target systems by focusing on runtime
visualization.

D. Graphics and Perception

Our approach is also informed by work in studies of human
perception, particularly Gestalt theory and motion perception,
as they pertain to information visualization [18]. Gestalt theory
is based on a number of principles used by the human
visual system to comprehend patterns in images: We leverage
the principle of proximity, for example, to lead learners to
associate objects that appear closer together as more tightly
associated.

Other visualization decisions have been influenced by the
field of information design including Tufte’s critiques and
recommendations for the representation of graphical data [19],
Cleveland’s graphical specifier hierarchy [20], and a host of
other work in information visualization including taxonomic
approaches for transforming data, analytical abstractions, and
visualization abstractions [21].

III. APPROACH

Our fundamental research goal is to support improve-
ments in C&C architecture and architectural style learning
by developing a new approach and accompanying toolset to
support runtime architectural visualization of target systems
that goes beyond augmentations of conventional architectural
depictions. More specifically, by adopting visual vocabularies
that embrace the inherently dynamic nature of software and
an interactive toolset for student use we aim to improve
learning outcomes across a number of important software
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Fig. 1. High-level design of our toolset for runtime architectural visualization.

system characteristics that are not strongly supported through
the instructional use of conventional architectural depictions:

• Investigate and interpret associations between externally
observable software system behaviors and architectural
element activities that drive such behaviors;

• Compare architectural elements and their relative activity,
identifying their relative centrality to a software system’s
operation; and

• Identify and evaluate dynamic shifts in architectural ele-
ment interactions over time.

A. Instructional Context and Motivation

Our work is primarily grounded in the context provided
by our university’s course in software architecture, deliv-
ered in a 16-week semester format. The course, intended
for juniors and seniors in computer science, broadly ad-
dresses topics in software architecture with an emphasis on
reusable design elements, namely C&C architectural styles
and object-oriented design patterns. Specific topics covered
in this course include fundamental architectural concepts and
elements, multi-viewpoint modeling, applications of software
architecture methodologies for developing software systems
of various scales, architectural styles, first-class connectors
and middleware, architectural modeling notations and ADLs,
product-line architectures, architectural visualization, object-
oriented modeling and design patterns, adaptive architectures,
and domain-specific architectures. The module on architectural
styles supports substantial coverage of basic and derived
architectural patterns and styles, including the layered, data-
flow, shared memory, implicit invocation, and hybrid families
of architectural styles. A series of projects provide learners
with the opportunity to reverse engineer and document the
architecture of an open-source system, re-design this architec-
ture according to the guidelines of a variety of architectural
styles, and formally capture architectures using a variety of
modeling approaches and languages.

The emphasis this course places on architectural styles is a
key motivator for our work, as it brings to the foreground the
fundamental mismatch between the static nature of canonical
software architecture depictions and the dynamic and changing

interactions at the heart of architectural styles. While behav-
ioral models of systems, such as those found as part of UML,
provide a link to the runtime behavior of software systems
exemplifying a particular style, they are often not appropriate
for modeling software architectures at the C&C level and they
fall short of providing the engaging connection to a running
software system that our work aims to support. As a result,
our instructional methods to date have focused on introducing
active learning activities [22]–[24], ad hoc annotated diagrams
based on static architectural depictions to capture dynamic
interactions and how these interactions change over time,
and instrumented example systems for architectural styles of
interest that provide log information on software events. Our
work on runtime visualization is aimed at providing artifacts
and tools for supporting software architecture and architectural
style learning that embrace dynamism by design.

B. Toolset Implementation

Our visualization toolset is developed in the ActionScript 3
language [25] and uses the Adobe Flash Starling framework
[26] that provides a graphics processing unit accelerated two-
dimensional scene graph application program interface acces-
sible from ActionScript. The toolset architecture, outlined in
Figure 1, follows the model-view-controller pattern with the
dominating software concern being the maintenance of a two-
dimensional scene graph capturing the visualization’s state.
Currently our work is built to support target systems built using
the C2 framework [27], with information about the system
collected by leveraging instrumented connectors that forward
runtime events to our visualization toolset.

C. Dynamic Visual Vocabularies

Developing appropriate visual vocabularies, i.e. coherent
sets of symbols used to visually depict related concepts,
with features appropriate for runtime visualization of software
architectures is fundamental to achieving our research goal
of supporting learning improvements. Our work has thus far
been focused on developing and deploying two such visual
vocabularies, a tethered-entity and a layer-based visualization,
with details on each appearing in the following sections.



Fig. 2. In this tethered-entity visualization example, a user has clicked the
B3 element to show extended connectivity information.

1) Tethered-Entity: The tethered-entity visualization, an
example of which appears in Figure 2, uses labeled circle
primitives to represent C&C architectural elements with initial
positions that minimize connection crossings and make sure
that component layers are preserved. Animations and visual
attributes of these primitives are used to represent dynamic
features of the runtime architecture:

• Size, relating the event activity of an architectural entity
relative to others in the architecture;

• Notification color, shading the proportion of notification
messages received by an architectural entity;

• Request color, shading the proportion of request messages
sent by an architectural element;

• Position, relating architectural communication by adjust-
ing the position of architectural entities relative to others
in the architecture; and

• Path, defining line segments from the initial position of
an architectural entity to its present position.

The area of a circle represents the number of messages sent
from the entity relative to the number of messages sent from all
entities, with an entity exhibiting its minimum size of a point
if it sends no messages and its maximum size if it is the only

entity sending out messages. In a system where many entities
may be sending messages, the size of each entity is related
to the overall number of actively communicating architectural
entities, so circle area is a visual indicator of activity with
larger circles representing elements that communicate more
than entities represented with smaller circles.

Circles are colored with a notification color (blue) and a
request color (yellow) and are shaded with each color propor-
tional to the number of notification messages and request mes-
sages sent. In the example shown, these colors are vertically
split to convey the idea of event directionality, which is a key
aspect of the C2 style. For example, in Figure 2, the element
labeled “NTL” is communicating requests almost exclusively,
“B3” is communicating notifications almost exclusively, and
“B1” is communicating an even mix of both.

The position of a circle is based on its communication with
other architectural elements, so the line segment formed from
an element’s original and current position is an indicator of not
just activity (captured by its length) but also what elements that
activity is primarily associated with (captured by its direction).
While the scene graph renders at approximately 60 frames-per-
second, position calculations are expanded to consider a two-
second window that helps emphasize short bursts of messages.
The displacement of a circle from its initial position is then
computed based on the current position of other components
and weighted by the amount of overall system communication.
The displacement magnitude is scaled to prevent degenerate
animation results by applying the inverse tangent function to
the number of messages, which emphasizes large fractional
changes in the number of messages and dampens the effect of
messages for already large message sets.

Interactive attributes provide learners with a mechanism
to explore features not directly related in the primary visual
vocabulary that only appear when elements are clicked. These
properties include:

• Request count summary, which provides specific statis-
tics on the number and percentage of requests sent per
architectural entity;

• Notification count summary, which provides specific
statistics on the number and percentage of notifications
sent per architectural entity;

• Message count summary, which provides specific statis-
tics on the number of messages sent per entity; and

• Arrow links, which capture the directionality of messages
exchanged between entities within a small time window
with a scaled thickness proportional to the number of
overall messages exchanged.

Within the visualization toolset, learners can click on a cir-
cle or label to get this more detailed message flow information
in the form of text boxes and arrows. For example, Figure 2
illustrates how these annotations appear when the “B3” entity
is clicked, showing arrows with scaled thicknesses based on
the strength of communication with connected elements and a
text box showing summary information.

2) Layer-based: The layer-based visualization, an example
of which appears in Figure 3, uses a variety of visual attributes



to represent static and dynamic features of the architecture
with an emphasis on the layered arrangement of architectural
elements in the architecture.

The following attributes relate to static features of the
architecture:

• Rectangular widgets, which correspond to components;
• Layer numbers, which indicate the vertical position of

components in a static architectural arrangement; and
• Solid lines, which indicate how connectors are linked to

components and other connectors.
The initial positions of these visual elements are based

on the layered arrangement of architectural elements in the
architectural description. Connectors are represented by solid
lines connecting widget layers. If a component is linked to
a connector above it in the architecture diagram, then the
corresponding component widget is adjacent to a solid line
above it in the visualization. A similar concept applies to
components with links below them in the architecture diagram.
The semi-circle arcs on the right side of the visualization
capture links between connectors.

This visualization uses a collection of visual attributes to
represent dynamic features of the architecture with each of
these updated during runtime:

• Bar height, which indicates the number of messages sent
from a component;

• Bar color, which indicates the type of messages sent from
a component;

• Text display, which indicates the number of messages sent
from a component in text format; and

• Rectangular widget horizontal position, which indicates
the ranking of components in a layer according the
number of messages of a certain type sent by those
components.

Each rectangular widget can contain up to six colored bars
below the component label. The height of a bar from the
bottom of the widget is based on the number of messages of
a certain type sent from the component within some amount
of time. The width of each widget is evenly divided among
the widgets in a layer, and the bar widths are evenly divided
among bars in a widget.

There are two main types of bars: fraction bars and window
bars, which are distinguished by the amount of time that they
keep track of messages sent. For fraction bars, the fractional
height corresponds to the ratio of messages of a certain type
sent from the component to the number of messages of that
type sent from all components since the beginning of system
execution. A fraction bar for requests has no height if it has
sent no requests and achieves the maximum height if it is the
only component that has sent requests. For window bars, the
bar height corresponds to a function of the number of messages
of a certain type sent from the component in a two-second time
window. This function is based on the inverse tangent of the
number of messages, which limits the maximum height of the
bar and emphasizes large fractional message changes.

Optionally, the horizontal position of each widget within

Fig. 3. In this layer-based visualization example, a user has selected to
display additional information on the fraction of total notifications sent from
each component and total number of messages sent in a two-second time
window.

each layer can change based on sorting criteria such as the total
number of requests, notifications, or requests plus notifications
sent from components since the beginning of the visualization.
The widgets animate their position changes every second so
that they are sorted from left to right within a layer based on
the sorting criteria.

Interacting with the layer-based visualization is accom-
plished through the following controls:

• Pan and zoom, which allows the user to isolate and center
certain parts of the visualization;

• Display mode, which allows the user to change between
the bar view and text view for widgets;

• Sort mode, which allows the user to change the sort
method for widgets within each layer;

• Visible bars, which allows the user to select which bars
should be visible in the widget bar view; and

• Layer view, which allows the user to show or hide a
summary view of information in a particular layer.

IV. DEPLOYMENT AND EVALUATION

We deployed our toolset with students from our target
learner population in the context of two studies that allowed us



to qualitatively and quantitatively evaluate our work in runtime
architectural visualization and its utility as an instructional
tool. One study focused on gathering formative feedback on
early work with the tethered-entity visualization as compared
to static architectural depictions, with the second larger-scale
study focusing on a comparison between the use of dynamic
event log messages and the layer-based visualization.

Both studies addressed the fundamental research question
driving our work by focusing on core dimensions of interest:
the usefulness of runtime visualization for learner ability to
identify, describe, and compare architectural behaviors and
their changes over time. Additionally, we examined learner
perceptions regarding the value of runtime visualization in ar-
chitecture learning. Overall, the results provide strong positive
indicators that our work is effective and useful in supporting
architectural learning and is perceived as helpful to the learn-
ing process by our students.

A. Klax

In an effort to provide an engaging context for participating
students, both studies used a C&C-centric port of the Klax
video game developed as part of the C2 project [27]. From
a pedagogical perspective, this interactive video game is
engaging and exhibits a rich set of architectural behaviors
that are linked to user interface elements and externally
observable behaviors. The game involves matching colored
tiles: Tiles drop through a chute at the top of the screen,
are caught by players by moving a palette in the middle,
and are dropped into wells at the bottom of the screen. The
object of the game is to not miss any dropped tiles while
also matching tiles of the same color in the wells. The C2
implementation of this game exhibits a layered architecture,
with all communication facilitated through explicit connectors
and components arranged in groups that handle game state,
game logic, and the game’s user interface.

B. Case Study: Tethered-Entity Evaluation

Our aim in this study was to provide a foundation for better
understanding how the tethered-entity visualization compares
to conventional static means of understanding a software
system’s architecture, namely through an examination of the
system’s implementation and a static visualization of its C&C
structure.

A focus group discussion was central to this study, so we
kept the participant group small. The user group consisted of
eight students randomly selected from a set of 18 volunteers all
drawn from our undergraduate computer science program. Five
participants were male and three were female. Five participants
were in their third year of study in the program and were
enrolled in an introductory course in software engineering that
includes a two week module in software architecture at the
time of the activity. Three participants were in their fourth
year of study and, in addition to previous study in the context
of a software engineering course, had completed a semester-
long course specifically devoted to software architecture. Par-

ticipants were randomly assigned into pairs for this study to
better distribute varying levels of architectural expertise.

1) Study Protocol: Each participant pair was provided the
following artifacts and tools: (a) a running instance of the
Klax game; (b) our visualization toolset with a tethered-
entity visualization active and linked to the Klax game; (c)
an instance of the Eclipse development environment1 with the
complete Java-based source code of the Klax game; and (d) a
static visualization of the C&C architecture of the Klax game.

The study started with participants having 30 minutes to
use provided artifacts and answer worksheet-guided questions
about the Klax system and its runtime behavior. Participants
were free to use any of the artifacts available to them, as we
wanted to allow them the freedom to gravitate toward whatever
artifact they felt was most appropriate. The worksheet was
aimed to provide a structured experience for learners, as might
be provided to them as an assignment in an instructional
context, and asked them questions pertaining to dynamic
runtime behaviors of the Klax game and relative architectural
element activity (e.g. “which entity sends the most messages
overall?”) and connections between game events and architec-
tural activity (e.g. “which entities send messages when a tile
lands on the palette?”).

Participants then completed an anonymous nine-question
Likert-type questionnaire: The first part of this instrument
asked participants to assess their perceived learning gains from
the experience of using our runtime architectural visualization
toolset and is based on the Student Assessment of their Learn-
ing Gains (SALG) methodology [28]. The second part asked
participants to gauge their perceptions regarding the usefulness
of the visualization as compared to an examination of the
target system’s static architectural visualization and source
code in answering worksheet questions. All participant pairs
completed this instrument and—to minimize social desirability
bias—study moderators were not present while participants
completed this questionnaire.

The study concluded with a 40-minute open focus group
discussion with participants. While the discussion was allowed
to be open-ended, moderator prompts were aimed at eliciting
feedback on the usefulness of core visualization design de-
cisions (discussed in Section III-C1) in exposing static and
dynamic aspects of software architecture.

2) Study Results: The SALG-oriented questionnaire posed
questions aimed at gathering indicators as to the perceived
benefits of engaging in the worksheet-guided exploration of
runtime visualization for learners: Q1 through Q3 addressed
their perceptions of whether the activity enhanced their un-
derstanding of Klax, the C2 style, and software architecture
in general. Q4 through Q6 probed at perceptions regarding
their perceptions on increased understanding of matches and
connections between the Klax source code, the game’s ar-
chitecture, and the game’s runtime behaviors. Finally, Q7
through Q9 asked them to rate the usefulness of Klax’s
static architectural depiction, the game’s source code, and the

1www.eclipse.org



TABLE I
PARTICIPANT RESPONSES TO A QUESTIONNAIRE FOCUSED ON PERCEPTIONS OF LEARNING GAINS THROUGH THE USE OF RUNTIME ARCHITECTURAL

VISUALIZATION.

Group Identifier
Question G1 G2 G3 G4 Average
Q1: Understanding of Klax 3 4 4 4 3.75
Q2: Understanding of the C2 style 5 5 4 3 4.25
Q3: Understanding of software architecture 3 4 4 5 4.00
Q4: Match between Klax implementation and architecture 3 5 4 1 3.25
Q5: Match between Klax architecture and runtime 4 5 4 2 3.75
Q6: Match between Klax implementation and runtime 2 1 2 1 1.50
Q7: Usefulness of static depiction in worksheet 2 3 5 3 3.25
Q8: Usefulness of Klax implementation in worksheet 1 1 2 1 1.25
Q9: Usefulness of tethered-entitity visualization in worksheet 4 5 4 4 4.25

tethered-entity visualization in answering worksheet questions.
Table I truncates the full questions that participants saw—Q4,
for example, was phrased as “How much did the experience
help to improve your understanding of how the Klax code
matches up with the Klax architecture?” The instrument uses
a five-point scale, with a score of one indicating that students
perceived the activity as being “no help” and five being
perceived as “very good help.”

Questionnaire data indicates that participants found the
experience of using our visualization tool useful in improving
their understanding of Klax, software architecture, and C2,
with all groups scoring Q1 through Q3 above the scale mid-
point. Notably, the highest average rating among participants
was assigned to the perceived usefulness of our toolset in
supporting their understanding of the C2 architectural style,
with styles being a critical element of software architecture
learning. Participants also perceived the experience as enhanc-
ing their understanding of the connections between source
code and architecture and architecture and running system.
Given our work’s focus on software architecture and design-
level elements, it is not surprising that participants felt our
toolset was not very helpful in understanding how runtime
behaviors relate to source code.

Most importantly, we note that participants strongly identi-
fied our runtime visualization toolset as the most useful artifact
in answering their worksheet questions. Our worksheet was
oriented toward exploring runtime behaviors, so this result
provides a positive indicator that our work is perceived by
learners as effective and useful in supporting learning on
dynamic aspects of software architecture.

The focus group discussion concluding this study suggested
that our approach to runtime visualization is perceived as valu-
able by learners as a way to convey architectural information.
A number of comments, such as “[t]here’s a lot of connections
being made, and you can’t really see that through the [static
architectural depiction],” focused on the utility of a runtime
view of architecture and how this view had higher utility than
either the static architectural depiction or the target system’s
source code in understanding the behavior of the system during
runtime. Participants also indicated that using entity size as a
visual vocabulary element was a good technique for capturing
differences in the number of messages an architectural element

is sending and that animating an element’s position was a good
technique for indicating the directionality of message flows.
More importantly, the combination of these visual elements
was perceived as being particularly effective, with one student
noting that “it was helpful for me to look at the buses in terms
of the size of the circles to show the traffic going between
components and then just looking at the components just to
see what direction they were changing to.” Participants also
suggested that adding end-to-end tracking, pause, playback,
and frame tracing would be very helpful in providing the
means through which to address more fine-grained and de-
tailed questions about the target system’s runtime operation.

C. Case Study: Layer-based

One of the simplest and most common techniques for aug-
menting instruction with information on the runtime behavior
of a software architecture is the use of log messages that
accompany component and connector actions and information
exchanges. Our aim in the activity described in this section was
to explore how runtime architecture visualization compares to
this use of log messages for architectural behaviors and to
enable more concrete conclusions by expanding the sample
size of study participants. The central activity of this study
was a randomized order 15-question worksheet that asked
participants questions about runtime characteristics of the
target system.

The user group for this study consisted of 51 student
volunteers drawn from our undergraduate computer science
program. Of these participants, 46 were male and five were
female. For this work, we drew on our sophomore population,
with 36 student participants enrolled in our data structures
course—a course that immediately follows our two-course in-
troduction to programming and computer science and precedes
our software engineering and software architecture courses—
at the time of this study and the remaining 15 students having
already completed the course.

Participants were randomly assigned to the control or exper-
imental groups, with the control group comprising 21 of our
participants. The experimental group was further sub-divided
into two groups, with one group using the tethered-entity
visualization and the other using the layer-based visualization.
Our data analysis thus far and the focus of this discussion



will center on a comparison between the control group and
the experimental group using the layer-based visualization,
which comprised ten of our participants. In this subgroup, nine
participants were male and one female, with seven enrolled in
our data structures course and three already having completed
the course.

1) Study Protocol: Each group’s activities started with a
ten-minute review of event-based systems, the C2 architectural
style, and Klax. We added this instructional element in this
study to account for the fact that, given their sophomore
status, participants lacked in-depth exposure to software ar-
chitecture concepts. This review included an overview of
the artifacts available to them while working through the
study’s worksheet. Participants had up to 50 minutes during
which to complete this worksheet, which was built using
SurveyGizmo2, and recorded both participant answers and
timing information about their responses—correct responses
for each worksheet question were collaboratively determined
by the authors who are experts in software architecture and
the implementation of Klax used in the study.

Each participant in the control and experimental groups
was provided with the following artifacts and tools: (a) a
running instance of the Klax game and (b) a static depiction of
Klax’s C&C component and connector architecture. The con-
trol group was also provided with (a) an instance of the Eclipse
development environment with the complete Java-based source
code of the target system and (b) a text-based display within
the Eclipse environment displaying the type of message and
the names of the sending and receiving architectural elements
for each event during the game’s runtime operation. Instead
of the source code and text-based display, experimental group
participants were provided with our visualization toolset with
a layer-based visualization active and linked to the running
instance of Klax. Control group materials were intended as an
approximation of a low-overhead approach that an instructor
might reach for to infuse an in-class presentation of an
architecture with runtime information rather than only rely on
static architectural depictions—a technique we have previously
used in our own instructional activities.

2) Study Results: The questions contained in the worksheet
were designed to be answerable by all participants in both
the control and experimental groups, since our focus was
to examine differences in performance based on the set of
available artifacts. Each worksheet question appeared in a
random order for each participant to better isolate any training
effect dependencies between questions. Worksheet questions
were equally categorized into three general types:

• Entity comparison, comprised of questions that asked
participants to rank specific components or connectors
according to the relative number of messages they sent
(e.g., “Rank components in layer 2 from highest (rank of
1) to lowest (rank of 3) number of messages sent.”);

• Entity identification, which asked participants to indicate
which components or connectors are sending messages
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Fig. 4. Box plot comparing correct responses for the control and layer-based
experimental groups.

or have sent messages during certain game states (e.g.,
“Identify the component that only sends out messages
while clicking the arrow keys.”); and

• Game event identification, which ask participants to in-
dicate which game events are occurring while certain
components or connectors send messages (e.g., “Identify
the game event that occurs when the Relative Position
Logic component sends notifications.”).

Our principal goal was to determine whether our toolset
enables higher learning, as determined by assessing differences
in the number of correct responses to the runtime questions
for the control and experimental groups and differences in
how much time was spent on each question. A box plot of the
number of correct responses for each group is shown in Figure
4. After accounting for the division into sub-groups within our
experimental group, we found strong positive evidence of the
merits of our approach to runtime visualization.

Our data set did not meet the assumptions of equal variance
and normally distributed error terms that are necessary for
running an ANOVA test. Additionally, we observed a number
of low scores that pulled the mean number of correct answers
down significantly for groups that did not have the layer-
based visualization. In this context, we elected to focus on
the median as the best measure of the center value for the
number of correct responses by group, since the median value
is less affected by outlier values and perform permutation-
based t-tests to assess differences in median score between
groups.

More specifically, we performed a one-sided hypothesis test
to see if the median score for the layer-based visualization
group was higher than the median score for the control group
with a significance level of α = 0.05. Since the median total
score for the control group was 8 and the median total score
for the layer group was 11.5, we sampled 10,000 permutations
to find the probability of observing a difference of 3.5 or
greater in the median score for a sample, assuming there is no
difference in the population median score. After the Bonferroni
correction was applied to address the problem of multiple



comparisons, we found a p = 0.03. This p-value suggests
there is statistically significant evidence that the median score
for the layer visualization group was higher than the median
score for the control group, indicating that our layer-based
visualization better supports learners when examining runtime
characteristics of software architecture.

The range and spread of the scores also provide strong
evidence of the effectiveness of the layer-based visualization.
The highest score in the layer-based experimental group was
14, and was higher than the highest score in the control
group, which was 12. This suggests that the layer-based
visualization provides increased opportunity to build better
runtime architectural comprehension. The lowest score for the
layer-based group at 8 was higher than the lowest score for
the control group, which was 5. In fact, no participant in
the layer-based group scored below the median score of the
control group. Looking at the spread of the data, the scores are
much tighter for the layer-based experimental group than the
control group—the interquartile range for the layer group was
3, while the interquartile range for the control group was 4.
These characteristics suggest that there is significant utility by
visualizing runtime architectural information using the layer-
based visual vocabulary as compared to examining raw event
log information.

We also analyzed the total amount of time participants used
to complete worksheet questions for each group. The median
completion time for the control group was 1026 seconds, while
the median completion time for the layer group was 1249
seconds. By performing another permutation-based test with a
Bonferroni correction, we did not find statistically significant
evidence for differences between the median completion times
for each group. In practice, however, we note that the question
of time investment may require additional investigation as
there are more interaction features provided with the layer-
based visualization, giving users more options when exploring
runtime architectural characteristics.

V. DISCUSSION AND FUTURE WORK

Results from our evaluative studies provide significant posi-
tive indicators that validate our overall approach and reinforce
important visual vocabulary design decisions. However, our
work with target population learners also brings to the fore-
ground a number of interesting research questions and future
work directions. In addition to introducing visual refinements,
such as shading and textures that accommodate color-blind
users, important issues relate to developing more sophisti-
cated visual vocabularies, identifying sudden or subtle changes
during runtime visualization, and incorporating complex event
dependency analysis.

A. Designing Visual Vocabularies

Our work with learners provides positive indicators that
our focus on using animation as a key element of visual
vocabularies is an effective way to depict runtime architectural
behaviors. Study participants pointed out that animated relative
sizes of architectural elements were particularly effective in

depicting differences and changes in architectural entity activ-
ity levels. In addition to validating a core design decision, this
also motivates further investigation into other visual techniques
that use animation to capture architectural activity and inter-
component communication. One such future direction we are
investigating, for example, is to animate component commu-
nication patterns by depicting sets of components merging
together into aggregate graphical entities should they almost
exclusively communicate with each other and drifting back
apart once more when this relationship no longer holds, i.e.
logically-dependent “blobs.”

B. Infrequent Events

Student participants also pointed out that some changes in
the visualization can be difficult to notice, with frequent and
intense architectural activity visually overwhelming infrequent
and transient activity. In the Klax system, for example, cer-
tain high-level system events such as tile matching happen
infrequently and only trigger a limited number of events over
a short time window. Architectural entities involved in these
activities are animated only for a short time, which may make
noticing these activities challenging.

In order to compensate, participants in our studies described
a number of techniques: One student commented that “you’ve
got to do it like multiple times in order to see where the
spikes are occurring,” indicating an iterative approach where
behaviors of interest can be repeatedly triggered so that the
architecture can be observed. Other students pointed out that
the static architectural diagram can be used in a complemen-
tary way, commenting that “we couldn’t tell from just the
visualization itself, so we kind of made our own hypothesis
based on the architecture and then looked for any drastic
changes between what the possibilities could be and then
looked at it through the visualization.”

While the learners that worked with us found ways to
identify these infrequent architectural events, this challenge
motivates an investigation of visual elements aimed at pro-
viding a more effective depiction of short-lived but possibly
important architectural behaviors. Techniques to mitigate this
challenge might include adding pause-playback functionality
or the addition of graphical trails to the movement of visual
vocabulary elements, so that both the current and recent past
position is visible for each element—this, of course, introduces
the possibility of overloading the visualization with too much
information to remain an effective communication tool.

C. Event Dependencies

Participating learners indicated that they sometimes had
difficulty in determining causality when faced with software
behaviors that inherently involve multiple architectural events
over a short amount of time. The tight timing between the
visual representation of these behaviors makes it more difficult
to decompose the aggregate visual behavior in a way that
allows event dependency inferences. Without limiting our
toolset to architectural models that explicitly capture and
represent event dependencies, we are investigating introducing



complex event processing [29] into our visualizations that
can better identify—and therefore visualize—complex event
chains. Given our focus on runtime visualization, this also
motivates considering probabilistic models that can build event
dependency inferences as the system operates and the available
data set grows.

VI. CONCLUSION

In the context of supporting software architecture learning,
particularly for C&C architectures and architectural styles,
conventional instructional methods do not adequately capture
the dynamism inherent to the runtime operation of software
systems. Our work is aimed to address this challenge by
providing runtime visualizations that learners can use to ac-
tively explore the association between architectural events and
externally observable system behaviors, compare architectural
elements and their relative activity, and evaluate dynamic
runtime shifts in architectural element interactions over time.

Evaluative studies and activities with students provide
strongly positive indicators that our visualization toolset is
effective at allowing learners to more accurately identify run-
time architectural characteristics, when compared to conven-
tional instructional methods. Furthermore, learners themselves
perceive their experience with our toolset as beneficial to
their learning gains, particularly regarding concepts relating to
architectural styles and the dependencies between a system’s
architecture and its runtime behavior.

Our future work targets refinements in our currently used
visual vocabularies while also exploring novel vocabular-
ies that incorporate additional concepts from graphics and
perception. We are also investigating techniques that more
clearly depict infrequent and sudden architectural events and
incorporate runtime complex event processing for visualizing
and supporting learning on event dependencies.
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