
Architectural Runtime Configuration Management in
Support of Dependable Self-Adaptive Software

John C. Georgas
jgeorgas@ics.uci.edu

André van der Hoek
andre@ics.uci.edu

Richard N. Taylor
taylor@ics.uci.edu

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425, U.S.A

+1 949 824 5160

ABSTRACT
The dynamic nature of some self-adaptive software systems
can result in potentially unpredictable adaptations, which
may be detrimental to overall system dependability by
diminishing trust in the adaptation process. This paper
describes our initial work with architectural runtime con-
figuration management in order to improve dependability
and overall system usefulness by maintaining a record of
reconfigurations and providing support for architectural re-
covery operations. Our approach—fully decoupled from self-
adaptive systems themselves and the adaptation manage-
ment processes governing their changes—provides for better
adaptation visibility and self-adaptive process dependability.
We elaborate on the vision for our overall approach, present
early implementation and testing results from prototyping
efforts, and discuss our future plans.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
languages; D.2.7 [Software Engineering]: Distribution
and Maintenance—version control

General Terms
Design, Management, Reliability

Keywords
Architectural runtime configuration management, self-adap-
tive software, dependability

1. INTRODUCTION
Architecture-based self-adaptive systems modify their ar-

chitectural composition in order to dynamically change their
behavior or improve their operation in the face of dynamic
deployment conditions. For some self-adaptive systems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WADS’05, May 17, 2005, St. Louis, MO, USA.
Copyright 2005 ACM 1-59593-124-4/05/0005 ...$5.00.

these architectural adaptations are explicitly specified dur-
ing system design; therefore, possible adaptations and re-
sulting architectural configurations which may be exhibited
at runtime can be easily predicted. Other self-adaptive
systems, however, are dynamic in nature and allow for
changes in the manner in which they adapt throughout their
deployment lifetime. As a result of this dynamism, some
architectural configurations reached during adaptation may
be undesirable and harmful to overall system goals.

In general, dependability can be defined as the extent to
which a software system can be trusted to deliver exactly
its intended service [1]. In the domain of self-adaptive
system management, dependability can be seen as the ex-
tent to which a system can be trusted to appropriately
and correctly adapt, considering both the circumstances
triggering adaptation as well as the adaptation’s end-goals.
Dynamic, policy-based self-adaptive systems give architects
fine-grained control over a system’s adaptive behavior dur-
ing runtime; faulty policy design or interpolicy conflicts
may contribute to the potential of undesirable or harmful
architectural modifications. The dynamic and malleable
nature of these systems complicates the task of assuring
their correctness, as appropriate adaptive behavior has to be
ensured over a collection of dynamically changing policies.
In addition, little to no visibility of system adaptations
and their governing processes—especially in the case of
modifications which do not result in immediately apparent
behavioral changes—diminish user trust in this class of self-
adaptive systems. Focusing on adaptation fault recovery
rather than prevention, removal, or forecasting, we identify
certain fundamental facilities which are needed in support
of dependability for self-adaptive systems: monitoring and
recording of adaptations, enhancing adaptation visibility,
and supporting architectural recovery operations.

This paper describes our vision of the Architectural Run-
time Configuration Management (ARCM) system in sup-
port of dependable self-adaptive software. Our vision with
this work is to support adaptation process dependability
through: (1) the monitoring and recording of changes in
architectural configurations during system runtime, (2) the
presentation and graph-based visualization to architects of
configuration changes over the entire system lifetime, and
(3) the provision of recovery facilities to explicitly reverse
harmful or undesirable configurations. Using these facil-
ities, a system architect may easily access a history of
self-adaptive behavior expressed in terms of overall system

configurations reached after enacted adaptations, as well
as manually modify architectural configurations through
rollback and rollforward operations. While still at an early
stage of development, we also present our prototype ARCM
tool support deployed in conjunction with the ArchStudio
3.0 architecture-based development environment [6].

A key feature of ARCM is the system’s architecture-
centric focus: the problem of enhancing the dependability of
self-adaptive software is tackled solely through explicit ar-
chitectural models. In a fully decoupled and modularly ap-
plied manner—independent of the adaptation management
process and the self-adaptive application itself—ARCM pro-
motes the visibility of self-adaptive behavior and provides
facilities which can be used to recover from undesirable
states.

The remainder of this paper is organized as follows:
Section 2 offers background information on architecture-
based self-adaptive systems, which contextualizes this work.
Section 3 outlines our basic vision of architectural config-
uration management and how it promotes dependability,
while Section 4 presents our proof-of-concept prototype tool.
Work related to adaptation management appears in Section
5, and concluding remarks appear in Section 6.

2. BACKGROUND AND RELATED WORK
Architecture-based self-adaptive software [10] is under-

pinned by runtime software evolution using explicit architec-
tural models [11] and approaches the problem of adaptation
management by using the system’s architectural model as
the central artifact. These architectural models—describing
software systems in terms of functional components, connec-
tors encapsulating communication, and links between these
elements [12]—are the focus of the self-adaptive process in
terms of both decision-making and actual change enactment.
The ARCM approach also adopts this architecture-centric
view, by monitoring the system’s dynamically changing
architectural model and expressing the system’s adaptation
history in terms of architectural configurations exhibited
over time.

Framing the ARCM approach is our ongoing work on
the development of self-adaptive software using knowledge-
based reasoning in the context of the KBAAM system [5].
Self-adaptive behavior in this work is expressed and man-
aged using a collection of rule-based policy specifications
which may be dynamically modified during system runtime,
while reasoning over this collection of policies is supported
through knowledge-based expert systems. The high level of
dynamism which this approach engenders introduces a de-
gree of unpredictability to the self-adaptive system’s overall
behavior, which may be detrimental to dependability. Our
work on ARCM, discussed in this paper, is one attempt to
address this unpredictable and dynamic nature of the self-
adaptive systems, which are a main focus of our research.

The approach underlying ARCM is based on the recog-
nition that our problem resembles the issue of multiple
developers making changes to a common code base, changes
which must be historically tracked in order to allow for the
return to previous versions [14, 2]. By replacing developers
with adaptation policies and the code base with the architec-
ture of the running application, the problem is transposed
into the domain of self-adaptive software. Our solution,
therefore, borrows techniques from the field of configuration
management for capturing, storing, and manipulating mul-

Adaptation Management
Decision-making processes driving

self-adaptive behavior.

Evolution Management
Consistent runtime evolution based

on architectural model modifications.

Architectural Runtime

Configuration Management
Change visibility and recovery

operations enhancing dependability.

Architectural Model
A model of the system’s components,

connectors, and links.

Figure 1: An illustration of architectural run-

time configuration management as an independent

process, providing architecture-centric adaptation

visualization and recovery operations.

tiple versions of an artifact. Specifically, each transactional
adaptation is captured as a change, and changes are related
to each other in a version graph. This change graph is based
on software architectural configurations and expressed in
xADL [3], much as laid out in [13].

3. VISION
Our vision of architectural runtime configuration manage-

ment through the ARCM system is aimed at increasing the
dependability of architecture-based self-adaptive systems in
a system-independent manner. Based on our definition of
self-adaptive system dependability as the extent to which
a system can be trusted to correctly adapt, there are two
aspects of dependability which we aim to address: increasing
trust in the adaptation management process through en-
hanced visibility of architectural modifications, and provid-
ing for fault recovery operations through which adaptation
correctness can be partially enforced. Figure 1 outlines the
placement of ARCM’s functionality in relation to other high-
level processes involved in managing self-adaptive software
systems.

3.1 Adaptation Visibility
Architecture-based self-adaptive software pursues behav-

ioral modifications through architectural changes: adap-
tation goals are achieved through appropriate changes to
the software system’s runtime architecture and we assume
that all system adaptations are expressed as architectural
modifications. In this class of systems, the primary means
through which users and architects perceive architectural
adaptations are the resulting changes in system behavior,
which give little insight on the cause of these changes and
the specific architectural modifications which brought them
about. In the case of adaptations which modify system
functionality that is not readily and immediately notice-
able, adaptations become completely invisible. The opaque
nature of most adaptation processes and potential lack of

BA C

D E

Initial configuration

Policy P

Legend

Architectural modification

Architectural configuration

Current configuration

Figure 2: An illustration of an ARCM configura-

tion version graph encompassing architectural con-

figurations, adaptations linking configurations, and

indications of policies which cause adaptations.

visibility of their outcomes result in diminished trust and
confidence in their correct operation.

While the focus of architecture-based approaches on ex-
plicit architectural models increases adaptation visibility
over other approaches relying on artifacts at a lower level of
abstraction (such as source code or dynamic libraries), adap-
tations are still primarily perceived by both users and archi-
tects when system behavior changes. Even when directly
observing an architectural model under adaptation, it is
difficult to discern small- and medium-grained architectural
changes and recognize their impacts on system functionality
for any but the most basic of systems.

Our vision for ARCM aims at addressing this con-
cern through increased adaptation awareness and visualiza-
tion: an explicit configuration version graph records and
displays—during system runtime—the changes that a self-
adaptive system undergoes. As adaptations are enacted,
ARCM maintains a record of these architectural modifi-
cations throughout the system’s lifetime, along with the
causes which triggered them and the resulting architectural
configurations, and graphically displays this information to
interested system stakeholders (most notably, system users
or software architects managing the system at runtime). We
believe that providing this “window” enhances the visibility
of both adaptation processes and the architectural modifica-
tions they enact, therefore resulting in increased confidence
and trust in the adaptation process.

As illustrated in the example of Figure 2, the adaptations
of a system are represented as a directed graph indicating
architectural configurations connected by the modifications
which cause them. An ARCM configuration version graph,
then, is defined as an ordered pair G = (N, E), where
N is a set of nodes representing architectural configura-
tions and E is a set of unidirectional edges connecting
nodes such that E = {(x, y)|x, y ∈ N}. Cycles—directed
paths beginning and ending on the same node—in G are
allowed in order to represent adaptations which transition
a system to some existing configuration, but loops—edges
which have the same head and tail—are disallowed since
they would represent modifications which resulted in no
configuration changes. Only a single unique edge is allowed
between nodes, as distinct architectural modifications may
not result in identical configurations, although anti-parallel
edges—edges connecting the same nodes but with opposite
directions—may be included in order to represent adapta-
tion operations which return the system to its immediately
previous configuration.

ARCM further annotates nodes in N to indicate addi-
tional information. Initial indicates that the configuration
is the first one recorded by the ARCM system, but may
not necessarily correspond to the system’s pre-adaptation
configuration in the case where ARCM monitoring was
initiated after adaptations had already taken place, and
current indicates that the configuration is the one currently
exhibited by the system. Edges in E are annotated with
information as to the cause of the specific modification
represented by the edge; in the particular case of our work
with KBAAM, this is expressed in terms of the rule-based
policy which triggered the change.

The boundary of individual modifications is dependent on
the self-adaptation management process, which is external
to the ARCM system. The configuration version graph
records both atomic and transactional modifications; for
example, an atomic modification may be caused by a simple
adaptation involving the addition of a single component,
while a transactional modification may include additions
and removals of multiple components and connectors.

Using a configuration graph, such as that found in Figure
2, promotes adaptation visibility by providing a runtime
artifact explicitly targeted toward illustrating and recording
adaptations. Given that ARCM graphs do not contain nodes
with duplicate architectural configurations and that adapta-
tions are intuitively and graphically represented in a graph-
based structure, we posit that employing such an artifact is
a smaller, more usable way in which to maintain cognitive
control over a dynamically adapting system; though such
a configuration graph used with systems that change fre-
quently may also drastically scale upwards in terms of nodes
and edges, it will still be more tractable and useful than
only a view of the current architecture. The configuration
graph also provides an adaptation history for the system:
both intermediate configurations which came between the
initial system state and the current configuration, as well as
configurations which were manually rejected, are included
and explicitly marked.

3.2 Recovery Operations
Some self-adaptive systems may only modify themselves

toward specific configurations carefully and explicitly de-
fined during design. However, allowing the rules by which
the self-adaptive process is governed to change during run-
time introduces the possibility of undesirable modifications,
which indicates a need for facilities supporting recovery. It
is important to note that the determination of whether a
configuration is undesirable is architect- or user-determined,
at this point in ARCM’s development. While both the
maintenance of the ARCM version graph and the implemen-
tation of recovery operations are not coupled to a particular
method or criteria for detecting the merit of architectural
configurations, our work to this point relies on human
judgment and intervention for the determination of whether
a configuration must be recovered from.

Addressing this recovery aspect of dependability, ARCM
provides for rollback and rollforward operations. The de-
tails of each are straightforward: rollback reverts from the
current configuration to a previous one, while rollforward
transitions the system to subsequent configurations in the
version graph (in Figure 2, for example, a rollforward op-
eration from node C would transition the system into the
configuration indicated by node E). For both rollback and

rollforward operations, if a graph node n has an in- or out-
degree, respectively, of greater than one, then the selection
of the operation’s destination node is user-determined.

At the most basic level, these operations provide a sys-
tem architect with facilities for explicit intervention into
the adaptation process; while partially short-circuiting self-
adaptation, these operations are a necessary facility in ac-
counting for dynamically changing self-adaptive behavior.
Additionally, these facilities enable system architects to
manually guide adaptations informed by specific insights
gained through observation of adaptive behavior; for ex-
ample, when a combination of adaptation policies leads to
an insecure architectural configuration, architects may use
these recovery operations to revert to a safer alternative and
manually modify the system’s architecture to that end.

Furthermore, invocations of these operations have the
potential of contributing a degree of reflection to the self-
adaptive process by being interpreted as a tangible and ex-
plicit measure of adaptation desirability. A capability which
would be fully realized when integrated with the decision-
making processes guiding adaptation, invocations of these
operations can guide future architectural modifications by
informing these management processes of explicit user pref-
erence. For example, if a particular adaptation policy causes
an architectural reconfiguration which is subsequently re-
verted by the architect through a rollback operation, then
the triggering policy could be automatically disabled: the
manual intervention of the architect is an indication that the
policy is behaving incorrectly given the prevalent conditions.
Other, more complex responses could include modifications
of the body of policies governing self-adaptive behavior such
as policy additions and modifications. While the current
status of our work does not yet include these “feedback”
capabilities, they are a key motivating factor for ARCM’s
future development.

4. ARCM PROTOTYPE
Early development toward the ARCM vision described

in the previous section led to the creation of a prototype,
proof-of-concept tool which implements basic runtime ar-
chitectural configuration management functionality as part
of the ArchStudio environment. Though we believe that
the configuration management methods we describe in this
paper are applicable across a wide variety of architectures,
our work to this point has focused on component-based sys-
tems using event-driven communication facilitated through
explicit, reified connectors.

4.1 ArchStudio
The prototype ARCM component is fully integrated into

the ArchStudio 3.0 architecture-based development environ-
ment [6] as an independent component. The ArchStudio
toolset includes a variety of independently developed tools
for the description, maintenance, and runtime management
of software systems using explicit architectural models;
the most important of these pre-existing tools upon which
ARCM depends on are the Architectural Evolution Manager,
ArchDiff, and ArchMerge.

The Architectural Evolution Manager (AEM) is a soft-
ware component responsible for maintaining consistency
between an adapting architectural model and its runtime
implementation. The AEM instantiates and performs run-
time maintenance of architecture-based systems: an explicit

architectural model is used as a guide for the instantiation
and connectivity of runtime objects implementing system
functionality. Architectural modifications to systems are
expressed as changes to the architectural descriptions main-
tained by the AEM, and as changes are made to these
architectural models, the AEM ensures that these changes
are reflected on the runtime system implementation. The
AEM is ultimately responsible for architectural evolution
concerns relevant to ARCM’s recovery operations, such as
component state restoration during rollback and rollforward
operations or ensuring system quiescence [8] before these
operations are applied. Though fundamental to evolution
management and the enactment of adaptive behavior, these
issues are outside the scope of our work with ARCM.

ArchDiff is responsible for performing differencing be-
tween two architectural configurations and generating diff
descriptions encapsulating the structural changes that one
configuration must undergo in order to be identical to the
second. These XML-based descriptions take the form of
modification directives for the addition and removal of ar-
chitectural elements. The following simple diff description
(with XML namespace information omitted for brevity), for
example, is composed of the removal of a connector and the
addition of a component with the indicated type:

<diff>

<diffPart><remove id="BusConnector"/></diffPart>

<diffPart><add>

<component id="GameLogic">

<type id="GameLogic_type"/>

</component>

</add></diffPart>

</diff>

ArgeMerge modifies architectural models by performing
runtime merging of diff files with target architectural de-
scriptions. Using the contents of the ArchDiff-generated
diff file, ArchMerge applies the modifications indicated; it is
then the responsibility of the AEM to reflect these changes
on the running system to which the target architectural
description corresponds. More detail on ArchDiff and Arch-
Merge and architectural diff files can be found in [15].

4.2 ARCM Driver
The ARCM Driver—a prototype component implement-

ing our vision of architectural runtime configuration man-
agement—monitors software systems maintained by the
AEM at runtime, and is informed of when these systems
undergo adaptation through the detection of notifications
to that effect emitted by the AEM. It then records both the
architectural configuration before the change and the con-
figuration reached after the adaptation is enacted as well as
leveraging the differencing capabilities of ArchDiff to record
the differences between these two architectures. Recording
the diff information during the graph building phase is a sig-
nificant convenience as this data is readily available and does
not have to be generated during the more computationally
expensive recovery operation phase, thus amortizing costs
between these two phases. This information forms the core
of the ARCM configuration version graph and is graphically
presented to the system architect at runtime. For recovery
operations, ARCM uses the diff information stored in the
version graph to determine what changes need to be made
in order to transition from one configuration to another as

Figure 3: A screenshot of our prototype tool being used with our implementation of the KLAX game.

a result of a rollback or a rollforward operation; ARCM
also invokes the capabilities of ArchMerge to perform these
changes at runtime—changes which are then reflected in the
running system implementation by the AEM.

We have experimented with using the tool on various sys-
tems exhibiting adaptive behavior, including the ArchStudio
environment itself. The screenshot found in Figure 3 shows
the component in use during an adaptation of the KLAX
game: in this simple example, the KLAX game is adapted
at runtime from a shape- to a word-matching game, and
then reverted back to its original configuration (both shapes
and letters can be seen as this adaptation takes place).
Both these modification are recorded and illustrated by
the ARCM prototype in a three-node runtime configuration
graph. While the core functionality of the vision we outline
in Section 3 is present in this early prototype, only the
structure of the configuration graph is currently illustrated
(information such as the specifics of configurations, differ-
ences between configurations, and adaptation causes are not
yet visually presented at this point).

The ARCM prototype is at an early stage of work and
under continual refinement: the initial prototype was de-
veloped in an eight week period by a single undergraduate
researcher with the authors’ guidance. While incomplete,
the tool performs the basic facilities we envision for the
ARCM system: runtime architectural modification detec-
tion, persistent configuration and change recording, graph-
based presentation, and manual recovery operations. In
addition to a significant number of enhancements and fea-
ture additions, short-range development plans will address
the tool’s primary shortcomings: the detection of identical
configurations and non-replication of version graph nodes,
for which we intend on leveraging the differencing facilities
already discussed.

5. RELATED WORK
The development of self-adaptive software systems is an

active area of research in software engineering. While the

development of ARCM (as discussed in Section 2) has, so
far, been framed by a specific approach to self-adaptation,
there are a variety of related research efforts.

Garlan and Schmerl use architectural style as the central
decision-making element in their work on architecture-based
self-adaptive systems [4]. In their approach, the existence
of style-specific conditions trigger the application of pre-
specified, style-specific architectural modification operations
which drive self-adaptive behavior. The Chemical Abstract
Machine (CHAM) model of software architectures [7] is used
by Wermelinger [16] as the basis for self-adaptive software.
In this work, an evolution CHAM is used as a reconfiguration
manager driving adaptations of a software system expressed
in terms of abstract molecules and solutions. Expressly
targeted toward distributed systems with unpredictable par-
ticipants, Magee and Kramer [9] present an approach to self-
adaptive systems based on global architectural constraints;
based on these constraints, these self-adaptive systems au-
tomatically self-organize as components enter and leave the
system.

The ARCM approach discussed in this paper is highly
complementary to the representative approaches addressed
here. We have striven to develop ARCM so that its
recording, visualization, and recovery facilities can be modu-
larly applied in tandem with any self-adaptive management
process that uses and maintains explicit architectural mod-
els.

6. CONCLUSION
Enabling the runtime modification of adaptation policies

results in potentially unpredictable self-adaptive systems for
which reaching undesirable configurations during adaptation
becomes a real possibility. The ARCM system discussed
in this paper represents our initial efforts to improve the
dependability of such systems by developing facilities for
adaptation recording, enhancing configuration visibility over
the entire system lifetime, and providing user-driven support
for architectural recovery from undesirable configurations.

We believe our approach offers several contributions in
the domain of self-adaptive software by providing a mecha-
nism for the maintenance of a system’s adaptation history
and the visual presentation of that history in an easily
understood configuration version graph form. Dependability
characteristics of self-adaptive systems are enhanced by
increasing user and architect confidence in the self-adaptive
process through improved adaptation visibility as well as
by providing recovery operations for direct intervention into
the self-adaptive process. Furthermore, our approach is
modular both in concept and implementation: the ARCM
capabilities and tool support are decoupled from the func-
tionality of the systems they are applied to as well as the
processes managing self-adaptation. Provided that explicit
architectural models are used for the maintenance of systems
and adaptations are enacted through the modification of
these models, system architects may adopt our techniques
regardless of specific system functionality or self-adaptation
management processes.

Our future plans for the ARCM system include significant
enhancements to our prototype tool in order to support
version graph multiple branching and refined visualizations.
Additionally, we plan on investigating facilities for the au-
tomated detection of faulty configurations by establishing
architectural support for evaluation criteria to be used in
determining the desirability of configurations. Finally, we
intend to examine a closer integration between the work we
describe here and adaptation policy specifications in order to
leverage the information stored in the version graph and use
ARCM as part of a reflection layer for self-adaptive behavior
management processes.

7. ACKNOWLEDGMENTS
The authors would like to thank Matthew Wastrodowski

for his work on developing prototype tool support, Eric
M. Dashofy for his development of the AEM and evolution
management support, and the anonymous reviewers for their
helpful comments which helped strengthen this paper. This
work sponsored in part by NSF Grants CCF-0430066, CCR-
0093489, and IIS-0205724.

8. REFERENCES
[1] A. Avizienis, J.-C. Laprie, and B. Randell.

Fundamental Concepts of Dependability. Technical
Report 010028, University of California, Los Angeles,
April 2001.

[2] R. Conradi and B. Westfechtel. Version Models for
Software Configuration Management. ACM
Computing Surveys, 30(2):232–282, 1998.

[3] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A
Highly-Extensible, XML-Based Architecture
Description Language. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2001), Amsterdam, The Netherlands,
August 28-31 2001.

[4] D. Garlan and B. Schmerl. Model-based Adaptation
for Self-Healing Systems. In Proceedings of the First
ACM SIGSOFT Workshop on Self-Healing Systems
(WOSS’02), November 2002.

[5] J. C. Georgas and R. N. Taylor. Towards a
Knowledge-Based Approach to Architectural
Adaptation Management. In Proceedings of ACM

SIGSOFT Workshop on Self-Managed Systems
(WOSS 2004), Newport Beach, CA, October 2004.

[6] Institute for Software Research, University of
California, Irvine. ArchStudio, An Architecture-based
Development Environment.
http://www.isr.uci.edu/projects/archstudio/.

[7] P. Inverardi and A. L. Wolf. Formal Specification and
Analysis of Software Architectures Using the Chemical
Abstract Machine Model. IEEE Transactions on
Software Engineering, 21(4):373–386, April 1995.

[8] J. Kramer and J. Magee. Dynamic Configuration for
Distributed Systems. IEEE Transactions on Software
Engineering, 11(4):424–436, 1985.

[9] J. Magee and J. Kramer. Self Organising Software
Architectures. In Proceedings of the Second
International Software Architecture Workshop
(ISAW-2), pages 35–38, San Francisco, CA, 1996.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. An Architecture-based
Approach to Self-Adaptive Software. IEEE Intelligent
Systems, 14(3):54–62, May-June 1999.

[11] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-Based Runtime Software Evolution. In
Proceedings of the 20th International Conference on
Software Engineering (ICSE’98), pages 177–186,
Kyoto, Japan, April 1998. IEEE Computer Society.

[12] D. E. Perry and A. L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40–52, 1992.

[13] R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and
N. Medvidovic. Mae—A System Model and
Environment for Managing Architectural Evolution.
ACM Transactions on Software Engineering and
Methodology, 13(2):240–276, 2004.

[14] W. F. Tichy. RCS—A System for Version Control.
Software—Practice and Experience, 15(7):637–654,
1985.

[15] C. van der Westhuizen and A. van der Hoek.
Understanding and Propagating Architectural
Changes. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture 2002 (WICSA
3), pages 95–109, Montreal, Canada, August 2002.

[16] M. Wermelinger. Towards a Chemical Model for
Software Architecture Reconfiguration. In Proceedings
of the Fourth International Conference on
Configurable Distributed Systems, pages 111–118,
Annapolis, Maryland, May 1998.

