
Raging Incrementalism: Harnessing Change with
Open-Source Software

John C. Georgas
Institute for Software Research
University of California, Irvine

Irvine, CA 92697, U.S.A
+1 949 824 5160

jgeorgas@ics.uci.edu

Michael M. Gorlick
The Aerospace Corporation

P.O. Box 92957
Los Angeles, CA 90009, U.S.A

+1 310 336 8661

gorlick@aero.org

Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697, U.S.A
+1 949 824 6429

taylor@ics.uci.edu

ABSTRACT
Change is a bitter fact of life for system developers and,
to a large extent, conventional practices are aimed at
arresting change and minimizing its effects. We take
the opposite view and are exploring system engineering
practices that harness the forces of change for the ongoing,
incremental improvement of systems—a view we name
raging incrementalism. We harness three powerful forces
to ride the waves of change: open-source software, commod-
ity hardware, and web-like, representational state transfer
architectures. This paper describes an early experiment in
applying raging incrementalism to a complex system: large-
scale digital video capture, distribution, and archival for
launch range operations. We outline the methodology of
raging incrementalism, describe the vital role open-source
plays in system development and construction, and offer
insights on the programmatic consequences of embracing
open-source software.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—life cycle

General Terms
Design, Experimentation, Management

Keywords
Raging incrementalism, open source, representational state
transfer

1. INTRODUCTION
Change is inescapable in computing systems appearing

as shifting requirements, the evolution of deployment en-
vironments, and ongoing improvements in the software and
hardware building blocks that compose these systems. Most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Open Source Application Spaces: Fifth Workshop on Open Source Software
Engineering (5-WOSSE)May 17, 2005, St Louis, MO, USA.
Copyright 2005 ACM 1-59593-127-9 ...$5.00.

technologies relevant to computing—such as storage capac-
ity or the speed of computation—exhibit a doubling period
over which time the performance/price ratio for that tech-
nology doubles. While the exact span of doubling periods
varies with the technology under consideration, they yield
exponential improvements in technological capabilities.1

Further examination of these doubling periods, however,
reveals that they themselves are shrinking; these two factors
combined—exponential improvement and a shortening of
the doubling periods—lead to a hyperexponential rate of
technical improvement [6].

In our specific domain of interest—launch range oper-
ations for space vehicle launch—change of this pace and
magnitude calls into question all of the accepted canons
of system engineering and development. Conventional
practices, such as early commitments to specific hardware
configurations and “freezing” requirements, are aimed at ar-
resting and minimizing the effects of change, often resulting
in systems that are obsolete long before they are delivered.

Raging incrementalism is a system engineering methodol-
ogy that accounts for change by embracing it in all aspects
of system design and development. The methodology
relies on three key principles to create scalable systems
capable of absorbing ongoing change: open-source software,
commodity hardware, and explicit architectural models
based upon REpresentational State Transfer (REST). Rag-
ing incrementalism leverages the resources of the “creative
commons” by exploiting open-source software at all system
levels and confines software development solely to domain-
specific software for which there are no available or suitable
open-source alternatives. Commodity hardware platforms
are easily deployed, readily available, inexpensive, and
continually improving. Finally, “RESTful” systems can
be cast as highly decoupled peer-to-peer architectures, an
architectural style that eases the task of integrating hetero-
geneous open-source with domain-specific components.

Surfing the wave of change leads to profound alterations
in the system development process as we shift the em-
phasis from planning and development toward integration,
experimentation, rapid prototyping, and continual system
refinement. To this end, we propose a process centered on

1For example, the doubling period for disk drive capacity is
approximately 15 months, the doubling of transistor density
on integrated circuits occurs roughly every 24 months, and
the doubling period for the price capacity of flash memory
is less than 18 months. Other disciplines, however, may
exhibit doubling periods measured in years or even decades.

18

naturalistic architectures that promote flexibility and ease-
of-integration: these are architectures that are shaped to
accommodate the available open-source components rather
than forcing the components to match the expectations
and demands of the architecture. In addition, program
management must account for a fundamental shift in goals,
moving away from custom development toward ongoing
integration.

To gain experience with raging incrementalism we de-
veloped a prototype digital video system for launch range
operations. Constructed entirely from open-source software
and commodity hardware, the RAnge Video Experiment
(RAVE) served as testbed and “exploritorium” for the
efficacy and utility of raging incrementalism.

The remainder of this paper is organized as follows:
Section 2 offers background information on raging incremen-
talism and its principles, while Section 3 outlines the conse-
quences of its adoption from the perspectives of software
architecture, development processes, and programmatics.
The architecture, components, and domain background of
our experimental system, RAVE, are described in Section 4,
while concluding remarks appear in Section 5.

2. BACKGROUND
Raging incrementalism [5] is a system engineering method-

ology that relies on the use of open-source software, com-
modity hardware, and REST-based software architectures.

2.1 Open-Source Software
No single group of developers, no matter how talented

or energetic, is capable of matching the development pace
set by the open-source community. The reach and quality
of open-source software has increased tremendously over
the past decade and we speculate that open-source soft-
ware, like other technical domains, is experiencing dou-
bling periods in which its performance/price ratio (where
performance is measured in terms of function points and
price is measured in terms of labor-hour equivalents) sees
exponential improvement (though those doubling periods
must be measured in years). We also suspect, though
do not attempt to prove at this time, that open-source
doubling periods are shrinking as well. If that is the case,
then open-source software is undergoing hyperexponential
improvement. However, irrespective of the precise pace of
improvement, there is an astonishing wealth of open-source
infrastructure, middleware, libraries, and applications. Or-
ganizations seeking to reduce development costs or shorten
schedules can ill afford to ignore these resources.

2.2 Commodity Hardware
Raging incrementalism relies upon inexpensive and high-

performance commodity hardware for general-purpose com-
puting platforms and deliberately eschews custom hardware
solutions. Relying on fungible hardware speeds procure-
ment, eases deployment, and simplifies hardware upgrades.
The unprecedented availability and low cost of commod-
ity computing hardware implies that processing and data
storage—for the domain and scale of applications that
concern us—cost so little as to be practically irrelevant.
Furthermore, many challenging system design problems can
be economically attacked and resolved with sheer brute
force. For many launch range systems the hardware costs, as
a fraction of total lifecycle costs, are in the noise; software,

personnel, and maintenance costs come to dominate launch
range budgets. From this perspective, commodity hardware
that substantially reduces overall system costs is a wise
investment.

2.3 Software Architecture
Emphasizing the rapid, flexible, and ongoing integration

of open-source components as a substitute for expensive,
custom-built software, raging incrementalism rests heavily
on the system equivalent of “naturalistic architecture,” a
school of building design that exploits—whenever feasible—
the building materials found in the local environment.
Representational state transfer, explicated as the design
principles underling the modern web [4], emphasizes de-
coupled compositions of independent computing elements
communicating via the exchange of resource representations.
REST is uniquely suited to incremental development, rapid
change, and the integration of heterogeneous components as
it accommodates disconnected operation and fluctuations in
resources and membership while maintaining transparency
and decoupling in component interactions.

3. IMPACTS AND CONSEQUENCES
In this section, we briefly explore the architectural and

programmatic consequences of raging incrementalism. First,
our system designs are centered on continually evolving
naturalistic architectures crafted to promote flexibility and
ease of integration. The system process must account for
the infusion of open-source infrastructure and components,
commodity hardware, and a continual process of experi-
mentation, refinement, and redeployment. The measures of
program success must change to account for the changes in
focus: integration versus custom code development, open-
source evaluation and comparison versus the evaluation
and comparison of closed products, and continuous change
versus frozen requirements and specifications. Finally, even
the staffing requirements for raging incrementalism differ
from those for conventional projects.

3.1 Software Architecture
Raging incrementalism is distinctive in its emphasis on

naturalistic architecture—system design driven by the open-
source “building materials” that are at hand. Oftentimes
in conventional practice, the system architecture precedes
and frames component development; in other words, the
software components are built around the architecture. In
contrast, raging incrementalism reverses this order—open-
source component discovery and evaluation prefaces and
frames the architecture. We liken open-source software to
naturally available building materials found in the local
environs and insist that the architecture draw from, and
depend upon, these materials (components). This ordering
is the software equivalent of the school of naturalistic ar-
chitecture, a philosophy and practice of building design and
construction that emphasizes the use of local, indigenous
resources (wood, stone, or adobe for example).

Raging incrementalism emphasizes that developers are
better able to pace technical progress by developing “early
and often.” Projects in which long periods lapse between
design, implementation, and deployment are more likely
to deliver obsolete products ill-suited to the needs of the
customer. Since time is precious and resources (money or
personnel) scarce, the forces of hyperexponential improve-

19

ment suggest that developers avoid wastefully reinventing or
redeveloping infrastructure for which adequate open-source
implementations are readily available. Far better instead
that the skills and resources of a team be devoted to the
narrow and specific elements of their problem domain for
which no adequate open-source solutions exist.

In the world of open-source software development, the
chances are excellent that someone else, somewhere else has
already solved your problem, in which case, it is a foolish
waste of effort to solve it again. On the other hand, it
may easily be the case that no adequate or suitable open-
source solution exists for some vital and critical element
of your problem. Therefore, developers must organize
their architectures and processes to establish a clear and
bright delineation between those elements of the problem
domain for which open-source components are available and
adequate, and those for which a custom implementation is
required. Our experiences suggest that developers often
grossly misjudge the extent to which their application
requirements are “special” or “unique.” Critical analysis
often reveals that the vast bulk of their requirements are
neither unique nor even worthy of special consideration, and
are easily satisfied by widely available, low-cost, components
and infrastructure.

Naturalistic architecture does not dictate the form of a
structure or its purpose (however, the materials themselves
may strongly bound the structure as in, for example,
the limited height of a wall constructed from adobe)—
it simply suggests that builders give first consideration
to the environment and materials at hand. There is
an obvious tension between architecture and materials,
as effective architectures rely upon the properties of the
underlying materials. However, in our view, the value of
the materials (here open-source components, libraries, and
infrastructure) outweighs the niceties of architecture and,
where required, architectures may (and should) be bent to
either accommodate or ameliorate the limitations of the
materials.

The open-source components in hand may well, as a
consequence of their designs, implementations, or interfaces
dictate numerous, fundamental system interactions, again
requiring that we architect around the available materials
rather than shaping expensive (that is, custom-built) mate-
rials to fit the architecture. Under raging incrementalism,
most of the labor is expended in integrating existing com-
ponents rather than constructing new ones.

Since integrating diverse open-source software elements is
the basic order of the day, we are best off adopting compo-
sitional mechanisms that support flexibility and heterogene-
ity. REST, a protocol-centric architectural style based on
stateless interactions, permits combining components whose
implementations and forms of interaction may vary widely
in kind, scale, and frequency. Raging incrementalism rides
on the back of architectural models that are maintained
throughout design, development, and deployment—bringing
sanity to a process (sketched in Figure 1) that, by definition
and design, is subject to constant refinement and revision.

3.2 Development Process
While conventional launch range development practices

include elements of parallel design and development ac-
tivities, these processes emphasize the early binding of
design decisions and premature commitments to deployment

Elicit

Requirements

Evaluate Commodity

Hardware

Evaluate Open-

Source Software

Refine Architecture

IntegrateDevelop

Prototype

Test Prototype

Evaluate

Results

Draft

Requirements

Hardware

Candidates

Software

Candidates

Architectural

Model

Refined

Architecture

Revised

Architecture

Prototype

System

Test

Results

Evaluation

Results

Develop Software

Architecture

Rapid

System

Engineering

Rapid

System

Prototyping

Figure 1: An overview of our proposed raging

incrementalism development process illustrating

coarse-grained process steps as well as their inputs

and products.

specifications. Unfortunately, these decisions are often made
far too early in the system lifecycle—long before developers
have a clear view of system needs and growth. This, coupled
with multi-year development cycles, often results in systems
that are inflexible and outdated soon after (if not before)
their delivery and deployment.

Raging incrementalism, in contrast, delays binding de-
cisions for as long as possible while explicitly retaining
the flexibility to take advantage of changes in hardware,
components, and architectures. The overarching goal is
to minimize, to the fullest extent possible, the amount of
project- or domain-specific software development, reserving
such development for those absolutely critical portions of
the system whose requirements can not be met by any open-
source offering.

A process model for raging incrementalism is illustrated
in Figure 1. In spirit, it resembles the spiral development
model [3], and iterates through a core set of steps that
are centered on an explicit architectural model; the two
subprocesses, with the software architecture in the center,
may be pursued in parallel.

The top outer-half of Figure 1 defines a rapid system
engineering (RSE) process concerned with the evaluation,
selection, and composition of open-source components and
commodity hardware. Beginning with the elicitation of a
set of draft requirements (given the current understanding of
the system) the process continues with an examination of the
available and relevant open-source offerings and identifies
candidate packages; the primary aim of this selection step is
to identify components that meet as many of the system’s
functional requirements as possible. The next step, informed
by the requirements of the open-source software selected
in the previous activity, examines and identifies available
commodity hardware best suited to the requirements. The
sub-process concludes with the elucidation of a draft system
architecture that incorporates and integrates the candidates
from the list of open-source components identified while
also keeping in mind the performance characteristics of the
available commodity hardware.

20

The bottom outer-half of the process illustrated in Figure
1 defines a rapid system prototyping (RSP) effort whose
focus is the rapid development and evaluation of prototype
systems. Using the architectural model as a basis, a
prototype is quickly constructed (construction times must
be on the order of weeks to months at most). It is important
to note that this system prototype may well be significantly
more complete than conventional early prototypes since
open-source components may easily span the vast bulk of the
required functionality. The system prototype is then tested
and evaluated and the outcomes of these two activities guide
the refinement and revision of the system architecture.

Further iterations of either sub-process begin using the
architectural model as a starting point. The results of rapid
prototyping, improvements in open-source offerings, or the
appearance of new open-source components may stimulate
a radical “rethinking” of the architecture, the software con-
stituents, and the hardware platforms, which may require
architectural revisions and refinements (illustrated in the
inner cycles of Figure 1).

3.3 Programmatics
While the programmatic consequences of raging incre-

mentalism are still unclear, early experience provides us
with some insight on two issues: productivity measures and
project staffing.

The emphasis raging incrementalism places on the use
of open-source software has significant consequences for
personnel productivity metrics. Conventional methods for
measuring productivity are based on source code artifacts
such as lines-of-code or function points [2]. While reasonable
in contexts where there is significant internal project- or
domain-specific development, these measures are useless and
irrelevant in a development process whose principal goals are
crafting system architectures and integrating off-the-shelf,
open-source components. As an alternative we suggest that
productivity be measured, and project milestones be set,
in terms of the number of integrated components, thereby
encouraging a focus on system quality and function rather
than the quantity or size of the artifacts employed in the
process.

Embracing raging incrementalism also places novel re-
quirements on project staffing. Superlative programmers,
while still important, are no longer the most desirable
members of a development team. Since significantly more
effort is expended on architecture and integration, program
managers must recruit skilled architects and integrators.
These tasks require a deep knowledge of a variety of
programming languages, a strong sense for and knowledge
of architectural styles [7], and the ability to quickly grasp
the important features of multiple components. Moreover,
the need for a special role becomes apparent: an open-
source software surveyor. This is a software engineer who
concentrates on staying current on the latest developments
in the open-source community and has a deep knowledge
and understanding of the capabilities and limitations of
particular open-source software packages as well as poten-
tial interpackage conflicts—critical knowledge during both
development and deployment.

4. EXPERIMENTATION
To better understand the consequences of raging incre-

mentalism and open-source-centric development, we ex-

perimented with the construction of a wide-area digital
video collection, distribution, and archival system: the
RAnge Video Experiment (RAVE). The following sections
discuss the characteristics of the problem space, the RAVE
architecture, our experience with the system’s development,
and lessons we learned.

4.1 Problem Space
Vandenberg Air Force Base in Lompoc, California hosts

the Western Launch Range: approximately 100,000 acres
of space vehicle launch pads and missile testing facilities
and the only United States site suitable for polar orbital
launches. Launch range operations are monitored through
a collection of hundreds of analog video cameras. These
cameras are essential tools for range operations includ-
ing launch preparation and monitoring, launch vehicle
engineering, post-launch analysis, and physical security.
The system in place at the Western Range requires an
enormous, circa-1984, video switch and a dedicated cable
plant. Cameras, video switch, and cable plant are all
obsolete and increasingly difficult to repair and maintain.

The RAVE system, a prototype replacement for the
range legacy video infrastructure, aims to provide an all-
digital video system that matches or exceeds, in every
respect, the performance of the system now in place, while
simultaneously reducing maintenance costs and removing
barriers to upgrades or reconfiguration. To this end,
we applied the principles of raging incrementalism and
developed a prototype system entirely from open-source
software products and commodity hardware.

The majority of video cameras on launch ranges are
black and white security cameras and their performance
characteristics were adopted as the benchmark for our
prototyping. To match the current solution, our prototype
system was required to:

• Produce full color, 320 × 240 video at a minimum of
15 frames per second

• Generate high-quality, standards-compliant, com-
pressed video

• Scale to hundreds of individual cameras

Additionally, our system would add significant additional,
new functionality including:

• Remote network camera control for on/off, focus, color
balance, frame rate and other characteristics

• Support for heterogeneous video clients ranging from
desktop hosts to terabyte-scale archives

• Arbitrary video switching, with every video camera
accessible by any client

4.2 RAVE Architecture
The overall architecture of the RAVE system is illustrated

in Figure 2. The system is composed of independent and
decoupled bricks: individual host machines dedicated to
a single function, or encapsulations of a family of closely-
related functions. For example, a RAVE camera brick is
a dedicated host running only the software necessary for
video capture. Isolating system functions in bricks imposes
system modularity, increases reliability, and eases upgrade
and repair since it is a comparatively small matter to replace
one brick with another.

The RAVE system contains four kinds of bricks: camera,
proxy, streaming, and archive. Camera bricks are small

21

C a m e r aB r i c k
S t r e a m i n gB r i c k

A r c h i v eB r i c k A r c h i v eB r i c k N e t w o r kN e t w o r k

C a m e r aB r i c k C a m e r aB r i c k
S t r e a m i n gB r i c k S t r e a m i n gB r i c k S t r e a m i n gB r i c kS t r e a m i n gB r i c kS t r e a m i n gB r i c kS t r e a m i n gB r i c k S t r e a m i n gB r i c k N e t w o r k

P r o x yB r i c kP r o x yB r i c k

Figure 2: The architecture of the RAVE system,

consisting of a peer-to-peer construction of com-

ponents for video capture, stream proxying and

rerouting, multicast streaming, and archival.

form-factor hosts connected to industry-standard, Firewire-
compliant cameras [1] and generate MPEG-4 digital video
streams using a software codec. Proxy bricks are protocol
bridges that insulate camera bricks from the details of
communication with streaming bricks. Streaming bricks
are high-performance hosts collecting multiple unicast video
streams from proxy bricks and performing multicast dissem-
ination of those streams to clients. Finally, archive bricks are
specialized clients (namely, terabyte-scale video archives)
that subscribe to, and record, video streams for review at a
later date. Additional clients, such as desktop video players,
may subscribe to video streams by connecting to streaming
bricks.

4.3 Open-Source Software
Open-source digital video relies upon a complex, diverse

collection of software components, and the RAVE system
depends entirely on a number of open-source software
packages for its constituent bricks; we itemize the most
important of these:

• Debian Linux and FreeBSD are the brick operating
systems

• libdc1394 is a library for IIDC-compliant Firewire
cameras used in the camera brick

• spook is a video broadcaster and camera control
application deployed on the camera brick

• xViD is an MPEG-4 codec used by the camera brick
to generate MPEG-4 encapsulated streams

• mencoder is an MPEG-4 encoder and container gen-
erator deployed on archive bricks to create video
recordings

• Darwin Streaming Server is the backbone of streaming
bricks for video distribution

• mplayer is used for video playback by client hosts
accessing either video streams or recordings

• MySQL is an open-source relational database used
by archive bricks for indexing video recordings and
associated metadata

• The live.com RTP/RTSP library is used for the man-

agement of media streams by proxy bricks (in addition
to providing RTP/RTSP support for mplayer and
mencoder)

• Mozilla Firefox is used as the web front-end for the
network-based camera control user interface

• The RTP, RTSP, HTTP, TCP, and UDP protocols are
used throughout for streaming and control

The large number of complicated open-source packages
used by RAVE imposed a steep learning-curve—the library
dependencies were particularly troublesome–however, the
effort was far less labor-intensive than that which would have
been required to implement this functionality from scratch.
In many cases, lack of adequate documentation (the Darwin
Streaming Server and MySQL are two notable exceptions)
was an impediment to swift and painless integration. In
general, the poor quality and scope of open-source docu-
mentation is perhaps one of the most substantial barriers to
the widespread adoption of open-source software.

4.4 Commodity Hardware
Raging incrementalism dictates that commodity hardware

be used where possible to reduce costs, simplify procure-
ment procedures, ease maintenance, and promote system
longevity. The deployment platforms for the RAVE system
are all commodity hosts purchased over the web.

The RAVE video cameras were low-cost Firewire cameras
conforming to the IEEE 1394 standard [1]; a wide range of
cameras are available and Firewire ports are commonplace
on commodity computing platforms. Camera brick hosts
were small form-factor Shuttle platforms,2 while streaming
servers and prototype archive bricks were hosted on server-
grade hosts.3 The video archive bricks are 4U rack mount
servers containing approximately four terabytes of RAID
storage. They were assembled to our specifications by a
server vendor a few years ago and are constructed entirely
from widely available commodity components. At the
time of purchase they cost approximately $6000 each, but
comparable “data bricks” can be assembled for considerably
less now.

4.5 RAVE Performance
As of this writing RAVE exists as a laboratory system

with several cameras deployed on The Aerospace Corpo-
ration campus. The camera bricks are extremely robust
and run for weeks at a time unattended, but would have
to be repackaged in waterproof enclosures before we would
consider deploying them to the range. In addition we
would like to reduce their size, power requirements, and
heat output. We are seriously considering re-hosting the
camera bricks on a Mini-ITX single-board computer or
cannibalizing an Apple Macmini.4 The camera bricks
generate 30 frames/second MPEG-4 video, twice the rate
called for in the requirements, at a (modest) bandwidth of
approximately 200–300 kbs per camera. Consequently, we
intend to explore increasing the frame size to 640 × 480 at
the cost of a decreased frame rate and increased bandwidth
consumption.

2http://us.shuttle.com
3Adequate 1U rack-mounted servers can be purchased online
for well under $1000.
4http://www.mini-itx.com and http://www.apple.com/
macmini

22

Our primary complaint is that several components, in-
cluding the Darwin Streaming Server and the live.com

RTP/RTSP library employed by the proxy brick insist on
buffering the video stream and introducing needless delay
between the camera and client. While the delay is irrelevant
for some clients (such as the video archive brick), the long
delays (on the order of 7–10 seconds in some circumstances)
violate range requirements for some applications. We are
considering replacing the Darwin Streaming Server with a
custom-built server for the streaming bricks, which would
allow us to dispense with the proxy bricks altogether,
simplify the streaming brick, and eliminate the superfluous
buffering. The Darwin Streaming Server would still be
useful in some range applications, for example, as a service
for replaying video clips stored on the video archive.

Finally, there is the question of transferring a prototype
to the Western Launch Range for test and evaluation.
The Spacelift Telemetry Acquisition and Reporting System
(STARS), developed by The Aerospace Corporation and
deployed at the Western Range and at Aerospace headquar-
ters, monitors and analyzes the real-time performance of
launch vehicle systems and their payloads before, during,
and following launch. We are investigating integrating the
RAVE prototype with STARS on the Western Range to
augment the analog video feeds from the launch pads.

4.6 Lessons Learned
Development of the RAVE prototype was performed in

parallel following the process described in Figure 1. Each
brick was developed independently before final integration
and testing; a task made comparatively simple by a RESTful
architecture that supports strong component decoupling.
The entire development process occupied one full-time and
one part-time developer for a period of six weeks. This
is an amazingly abbreviated development period for any
complex system; though only a prototype in scale, the RAVE
system offers more functionality than the legacy system it
is intended to replace at a fraction of the cost. If nothing
else it is a graphic demonstration of the power and con-
venience of open-source software and commodity hardware.
Architecture-centric integration demands a different set of
skills than does “clean slate” development, and to some, may
seem overly complex and difficult. However, it is one of the
few practices capable of pacing accelerating technological
change.

5. CONCLUSION
Unrelenting change is a defining feature of the modern

technical landscape. By ignoring change developers risk
wasting effort building systems that are obsolete long before
they are delivered or deployed. Raging incrementalism is
an architecture-centric system development methodology
relying upon open-source software, commodity hardware,
and RESTful, peering architectures. Raging incrementalism
embraces change at all points in the system lifecycle and
makes every effort to exploit change rather than shunting it
aside or attempting to minimize its effects.

Launch ranges are challenging operating environments
with stringent requirements for safety, availability, and
reliability. We believe that, for selected application domains,
open-source software offers exciting possibilities for radically
shorter development times at substantially lower cost when
compared to traditional methods of custom system devel-

opment. RAVE is one in a series of prototypes for launch
ranges that demonstrates the utility and promise of open-
source software, commodity hardware, and architecture-
centric integration.

However, raging incrementalism does not come without a
price and requires a substantial shift in development prac-
tices including planning, management, design, development,
deployment, and sustainment. We intend to refine RAVE as
a demonstration of the ability of raging incrementalism to
pace technical change and improvement. In addition, we are
exploring other launch range domains such as launch vehicle
telemetry distribution, adaptive telemetry processing, radio
frequency monitoring, and security perimeter control.

Change is both inevitable and threatening. We anticipate
that large-scale system engineering will be transformed
by the adoption of open-source software—a powerful and
essential tool for addressing ongoing, unrelenting change.

6. ACKNOWLEDGMENTS
This work was sponsored by the Research and Develop-

ment Program Office of The Aerospace Corporation.

7. REFERENCES
[1] 1394 Trade Association, Santa Clara, California. IIDC

1394-based Digital Camera Specification, version 1.30
edition, July 2000.

[2] A. J. Albrecht. Measuring application development
productivity. In IBM Applications Development
Symposium, pages 83–92, Monterey, CA, 1979.

[3] B. W. Boehm. A spiral model of software development
and enhancement. Computer, 21(5):61–72, May 1988.

[4] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Transactions on
Internet Technology (TOIT), 2(2):115–150, 2002.

[5] M. M. Gorlick. Raging incrementalism—system
engineering for continuous change. In Proceedings of the
2004 Ground System Architecture Workshop,
Manhattan Beach, CA, March 2004.

[6] R. Kurzweil. The law of accelerating returns. March
2001. www.kurzweilai.net/articles/art0134.html.

[7] M. Shaw and P. Clements. A field guide to boxology:
Preliminary classification of architectural styles for
software systems. In Computer Software and
Applications Conference, pages 6–13, 1997.

23

