Name _

1. Suppose E be a finite field of order q, with prime subfield $F \cong \mathbb{Z}_p, q = p^n$.

(a) Prove that E is the splitting field over F of the polynomial $f(x) = x^q - x$.

(b) Using (a), prove that, for any prime p and positive integer n, there exists a field E of order $q = p^n$, which is unique up to isomorphism.¹

(c) In the notation of part (a), prove that f is separable over F, and conclude that E is Galois over F.

(d) Show that the mapping $x \mapsto x^p$ is an *F*-automorphism of *E*. Deduce that $\operatorname{Gal}(E, F)$ is isomorphic to \mathbb{Z}_n .

2. Prove that the Galois group of the polynomial $f(x) = x^4 - 2$ is isomorphic to the dihedral group D_4 .

3. Suppose F is a field containing an element ω satisfying $\omega^n = 1$, and such that all roots of $x^n - 1$ are powers of ω . (ω is called a *primitive* n^{th} root of unity.) Let $E = F[\alpha]$, where $\alpha^n = a \in F$. Suppose char(F) does not divide n.

(a) Show that E is Galois over F, and that $|\operatorname{Gal}(E,F)|$ divides n.

(b) Show that there is an *F*-automorphism $\phi \colon E \to E$ satisfying $\phi(\alpha) = \alpha \omega^k$, for some k, 0 < k < n.

(c) Choose ϕ so that k is minimal with $\phi(\alpha) = \alpha \omega^k$. Show that ϕ generates Gal(E, F), hence Gal(E,F) is cyclic.

4. Let $f(x,y) = x^2 + x^3 - y^2 \in \mathbb{C}[x,y]$.

(a) Show f is irreducible. (Consider f as a polynomial in y over the PID $\mathbb{C}[x]$; apply Eisentein's Criterion.)

(b) Let I = (f) and $R = \mathbb{C}[x, y]/I$. Since f is irreducible, R is an integral domain. Let E be the quotient field of R. Show that E is (up to isomorphism) an extension field of \mathbb{C} .

(c) Show that x represents a transcendental element of E over \mathbb{C} , and E is algebraic over $\mathbb{C}(x)$.

(d) Show that F is Galois over $\mathbb{C}(x)$ and identify the Galois group.²

¹This field is called "the Galois field of order q," denoted GF(q).

²The inclusion $\mathbb{C}(x) \hookrightarrow E$ corresponds to the projection from the curve f(x, y) = 0 onto the x axis.