MAT 612 $$\rm HW\ \#5$$ 03/24/10, due Wednesday 03/31/10 25 points

Name ____

1. (a) A field extension $E \supseteq F$ is algebraic if every element of E is algebraic over F. Prove that $E \supseteq F$ is algebraic if and only if every element of E is contained in some field K with $F \subseteq K \subseteq E$ and |K:F| finite.

(b) Let $E \supseteq F$ be fields, and let $A = \{ \alpha \in E \mid \alpha \text{ is algebraic over } F \}$. Show that A is a field.

(c) Consider $\mathbb{Q} \subseteq \mathbb{C}$ and let $A \subseteq \mathbb{C}$ be the field of algebraic elements over \mathbb{Q} , as in part (b).¹ Show that $|A : \mathbb{Q}| = \infty$ by showing that $|A : \mathbb{Q}| \ge n$ for every natural number n. (Thus A is an algebraic extension of infinite degree.)

¹It is easy to see that A is countable – there are countably many polynomials over \mathbb{Q} and each of them has finitely many roots – hence $A \neq \mathbb{C}$.

2. Let $E \supseteq F$ be a field extension, with $E = F(\alpha)$, with α transcendental over K.² Let $\beta \in E - F$. Show that α is algebraic over $F(\beta)$. Conclude that β is transcendental over F. (We say that E is a *purely transcendental* extension of F.)

3. Let R be a UFD and let $f \in R[x]$ be a monic polynomial. Let F be the field of quotients of R, and suppose $\alpha \in F$ satisfies $f(\alpha) = 0$. Show $\alpha \in R$. (Hint: Use Gauss' Lemma from class.) Apply this result to show that $\sqrt[n]{m}$ is irrational if it is not an integer, for any positive integers m, n.

²An element $\alpha \in E$ is *transcendental* over F iff α is not algebraic over F.