MAT 612 02/16/10, due Monday 02/22/10 25 points

1. Let R be a commutative ring with 1. Suppose $f: M \longrightarrow N$ is an R-module homomorphism, and K be an R-module. Show that f induces a homomorphism $f^*: \operatorname{Hom}_R(N, K) \longrightarrow \operatorname{Hom}_R(M, K)$. Show that $(\operatorname{id}_M)^* = \operatorname{id}_{\operatorname{Hom}_R(M,K)}$ and that $(f \circ g)^* = g^* \circ f^*$.

Name _____

HW #3

2. Suppose $0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} P \longrightarrow 0$ is an exact sequence of *R*-modules. Show that the induced sequence $0 \longrightarrow \operatorname{Hom}_R(P, K) \xrightarrow{g^*} \operatorname{Hom}_R(N, K) \xrightarrow{f^*} \operatorname{Hom}_R(M, K) \longrightarrow 0$ is exact at $\operatorname{Hom}_R(P, K)$ and at $\operatorname{Hom}_R(N, K)$.

3. Find an example to show that the induced sequence in Problem 2 need not be exact at $\operatorname{Hom}_R(M, K)$. *Hint: Let* $R = K = \mathbb{Z}$.

4. Exercise A.2.4 from Schenck.

5. Exercise A.2.5 from Schenck.