MAT 612 02/05/10, due Friday 02/12/10 25 points

1. Prove the *five lemma*: suppose



is a commutative diagram of R-module homomorphisms with exact rows.

HW #2

(a) Assume  $\alpha$  is onto and  $\beta$  and  $\delta$  are one-to-one. Show  $\gamma$  is one-to-one.

(b) Assume  $\epsilon$  is one-to-one, and  $\beta$  and  $\delta$  are onto. Show  $\gamma$  is onto.

(c) In the diagram below, suppose  $\beta$  and  $\delta$  are isomorphisms, and deduce that  $\gamma$  is an isomorphism.

| $0 \longrightarrow W$  | $\xrightarrow{q} X$   | $\xrightarrow{r} Y$   | $\longrightarrow 0$ |
|------------------------|-----------------------|-----------------------|---------------------|
| β                      | $\gamma$              | δ                     |                     |
| $0 \longrightarrow W'$ | $\xrightarrow{q'} X'$ | $\xrightarrow{r'} Y'$ | <i>−−−−→</i> 0      |

2. (a) Find the Smith Normal Form of

| 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |  |
|---|---|---|---|---|---|---|---|---|--|
| 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 |  |
| 1 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 |  |

(b) Find the rank and torsion submodule of the  $\mathbb{Z}$ -module (abelian group) with generators  $x_1, \ldots, x_9$  and defining relations

$$x_2 + x_3 + 2x_5 = 0$$
  

$$2x_7 + x_8 + x_9 = 0$$
  

$$x_1 + 2x_4 + x_6 = 0.$$

3. Let  $\mathbb{K}$  be a field and  $R = \mathbb{K}[x, y]$ . Find a free resolution of  $\mathbb{K}$  as a trivial *R*-module. (That means  $x \cdot c = c$  and  $y \cdot c = c$  for any  $c \in \mathbb{K}$ . With this structure,  $\mathbb{K}$  is isomorphic to the quotient R/(x, y) as *R*-modules.)