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9.3.1 Arguing by contradiction, suppose R is a UFD. Since p(x) = a(x)b(x) in F [x], and
p ∈ R[x], Gauss’ Lemma implies ∃β ∈ F such that βa and β−1b are in R[x]. Since b is monic,
β−1 ∈ R, hence a = β−1(βa) ∈ R[x], a contradiction. We don’t need the assumption that
a and b have smaller degree than p. For the second part, note that (x +

√
2)(x +

√
2) =

x2 + 2
√

2x + 8. The latter polynomial lies in Z[2
√

2], and is monic. But
√

2 6∈ Z[2
√

2]. (If
it were, then

√
2 = a + 2b

√
2 for some a, b ∈ Z, and then

√
2 = a

1−2b ∈ Q, contradiction.)
Thus x+

√
2 6∈ Z[2

√
2], and x+

√
2 is monic. By the first part, Z[2

√
2] is not a UFD. Note:

2
√

2 is irreducible in Z[2
√

2] (exercise), so 8 has two distinct factorizations into irreducibles
in Z[2

√
2]: 8 = 23 = (2

√
2)2.

9.4.2 (a) x4−4x3+6 is irreducible in Z[x] by Eisenstein with p = 2. (b) x6+30x5−15x3+6x−
120 is irreducible in Z[x] by Eisenstein with p = 3. (c) If p(x) = x4 + 4x3 + 6x2 + 2x+ 1, then
p(x− 1) = x4− 2x+ 2, which is irreducible by Eisenstein with p = 2. If p(x) = a(x)b(x), then
p(x−1) = a(x−1)b(x−1). Since a(x) is a unit if and only if a(x−1) is a unit, and similarly for
b, it follows that p(x) is irreducible in Z[x]. (d) f(x) = (x−2)p−2p

x = xp−1 +
∑p−1

k=1

(
p
k

)
2kxp−k−1.

Eisenstein’s criterion applies: p divides
(
p
k

)
, hence

(
p
k

)
2k for each 1 ≤ k ≤ p− 1, and p2 does

not divide
(
p
p−1

)
2p−1 = p = 2p−1 because p is odd by assumption. Hence f is irreducible.

9.4.6(a) From 9.4.1(b), the prime factorization of x3 + x+ 1 over F3 is (x− 1)(x2 + x− 1).
In particular, p(x) = x2 + x− 1 is irreducible over F3[x]. Let F = F3[x]/(p(x)). Since p(x) is
prime in the PID F3[x], (p(x)) is a maximal ideal, hence F is a field. Note that char(F ) = 3,
and the natural map F3 → F is injective. The element α ∈ F represented by x satisfies
p(α) = 0, hence α is algebraic over F3, and mF3

α (x) = p(x), since p is monic and irreducible
over F3. Hence |F : F3| = deg(p) = 2, so |F | = |F3|2 = 9. (Note: the elements of F have the
form a+ bα for a, b ∈ F3, and α2 = 1− α.)

9.4.7 Define f : R[x]→ C by f(p(x)) = p(i). Then f is onto because every element of C can
be expressed in the form a + bi for a, b ∈ R. The kernel of f is the principal ideal generated
by the minimal polynomial of i over R, which is clearly equal to x2 + 1. Thus R[x]/(x2 + 1)
is isomorphic to C.

13.1.1 p(x) = x3 + 9x+ 6 is irreducible over Z[x] by Eisenstein’s Criterion, with p = 3. Then
p(x) is irreducible in Q[x] by Gauss’ Lemma. Let θ be a root of p(x), and let β = 1 + θ.Since
β ∈ Q[θ], which has degree three over Q, β must be a root of a cubic polynomial in Q[x]. We
have β2 = 1 + 2θ+ θ2 and β3 = 1 + 3θ+ 3θ2 + θ3 = 1 + 3θ+ 3θ2 + (−6− 9θ) = −5− 6θ+ 3θ2.
A little linear algebra reveals that β3 − 3β2 + 12β − 4 = 0. Then β(β2 − 3β + 12) = 4. Thus
(1 + θ)−1 = β−1 = 1

4(β2 − 3β + 12) = 5
2 −

1
4θ + 1

4θ
2.
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13.1.2 p(x) = x3−2x−2 is irreducible over Q by Gauss’ Lemma and the Eisenstein Criterion
with p = 2. Let p(θ) = 0. Then θ3 = 2+2θ so (1+θ)(1+θ+θ2) = 1+2θ+2θ2+θ3 = 3+4θ+2θ2.

As in 13.1.1, we set β = 1 + θ + θ2 and compute (using Mathematica to some extent) β2 =
5 + 8θ + 5θ2, and β3 = 31 + 49θ + 28θ2. We then find that β3 − 7β2 + 7β − 3 = 0. Then
β(β2 − 7β + 7) = 3, so β−1 = 1

3(β2 − 7β + 7) = 1
3(5 + θ − 2θ2) Then 1+θ

1+θ+θ2
= (1 + θ)(1

3(5 +
θ − 2θ2)) = 1

3(1 + 2θ − θ2) = 1
3 + 2

3θ −
1
3θ

2.

13.2.2 As shown above in 9.4.6(a), h(x) is irreducible over F3. Similarly, since g(0) = 1 and
g(1) = 1 in F2, g is irreducible over F2, g(0) = −1, g(1) = 1, g(2) = 2 in F3, so g is irreducible
over F3, and h(0) = 1 and h(1) = 1 in F2, so h(x) is irreducible over F2. Then F = F3[x]/(g(x))
is a field with 32 = 9 elements, as shown above, and, similarly, F3[x]/(h(x)) is a field with
33 = 27 elements, K = F2[x]/(g(x)) is a field with 22 = 4 elements, and F2[x]/(h(x)) is a field
with 23 = 8 elements. Here are the multiplication tables - let α denote the image of x in K
and F, respectively.

K 0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

F 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α
0 0 0 0 0 0 0 0 0 0
1 0 1 2 α 2α 1 + α 1 + 2α 2 + α 2 + 2α
2 0 2 1 2α α 2 + 2α 2 + α 1 + 2α 1 + α
α 0 α 2α 1 + 2α 2 + α 1 2 + 2α 1 + α 2
2α 0 2α α 2 + α 1 + 2α 2 1 + α 2 + 2α 1

1 + α 0 1 + α 2 + 2α 1 2 2 + α α 2α 1 + 2α
1 + 2α 0 1 + 2α 2 + α 2 + 2α 1 + α α 2 1 2α
2 + α 0 2 + α 1 + 2α 1 + α 2 + 2α 2α 1 2 α
2 + 2α 0 2 + 2α 1 + α 2 1 1 + 2α 2α α 2 + α

We can see that K× is cyclic of order three, generated by α, and F× is cyclic of order 8.
Looking at the diagonal entries, we see that 2 has order 2, so 1 + 2α has order 4, and thus α
has order 8, so α generates F×. (1 + α = α−1, 2 + 2α = α3, and 2α = α5 also generate F×.)


