- 1.(20) Let $F \subseteq E$ be a field extension.
 - (a) Suppose $\alpha \in E$ is transcendental over F. Prove that $F[\alpha]$ is isomorphic to F[x]. (Hence $F(\alpha)$ is isomorphic to F(x).)
 - (b) A subset $S = \{\alpha_1, \ldots, \alpha_n\}$ of E is said to be algebraically dependent over F if there is a nonzero polynomial $p \in F[x_1, \ldots, x_n]$ such that $p(\alpha_1, \ldots, \alpha_n) = 0$. A set is algebraically independent if it is not algebraically dependent.

Suppose $\{\alpha_1, \ldots, \alpha_n\}$ is an algebraically independent subset of E. Prove that $F[\alpha_1, \ldots, \alpha_n]$ is isomorphic to $F[x_1, \ldots, x_n]$. (Hence $F(\alpha_1, \ldots, \alpha_n)$ is isomorphic to $F(x_1, \ldots, x_n)$.)

- (c) Suppose $\{\alpha_1, \ldots, \alpha_n\}$ is a maximal algebraically independent subset of E. Prove that E is algebraic over $F(\alpha_1, \ldots, \alpha_n)$.
- 2.(20) Suppose $F \subseteq K \subseteq E$ are field extensions.
 - (a) Suppose $\alpha \in E$ is algebraic over F. Prove α is algebraic over K and $m_{\alpha}^{K}(x)$ divides $m_{\alpha}^{F}(x)$ in E[x].
 - (b) Suppose $\alpha, \beta \in E$ are algebraic over F, and $m_{\alpha}^{F}(x)$ and $m_{\beta}^{F}(x)$ have relatively prime degrees. Prove that $m_{\alpha}^{F}(x) = m_{\alpha}^{F[\beta]}(x)$.
- 3.(15) Suppose $E = F[\alpha]$ with α algebraic over F. Prove that $|\operatorname{Gal}(E, F)| \leq |E|$. (Hint: Consider the roots of $m_{\alpha}^F(x)$ in E.)
- 4.(15) Suppose $F \subseteq E$ is a field extension.
 - (a) Let $\alpha, \beta \in E$. Suppose there exist distinct elements $s, t \in F$ such that $F[\alpha + s\beta] = F[\alpha + t\beta]$. Prove that $F[\alpha, \beta] = F[\alpha + s\beta]$.

(Note: The hypothesis will hold if F is infinite and there are only finitely many fields K with $F \subseteq K \subseteq E$.)

- (b) Suppose E and F are finite. Show $E = F[\alpha]$ for some $\alpha \in E$.
- 5.(20) Let $R = \mathbb{k}[x_1, \dots, x_n]$, \mathbb{k} a field. A monomial in R is an element of the form $cx_1^{a_1} \cdots x_n^{a_n}$, where $0 \neq c \in \mathbb{k}$ and each a_i is a non-negative integer. This element is denoted $c\mathbf{x}^{\mathbf{a}}$ where $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n$. (For example, $(x, y, z)^{(2,0,3)} = x^2 z^3$.) Then $\mathbf{x}^{\mathbf{a}} \mathbf{x}^{\mathbf{b}} = \mathbf{x}^{\mathbf{a}+\mathbf{b}}$.

A monomial ideal in R is an ideal generated by monomials.

- (a) Suppose I is a monomial ideal. Show that I is prime if and only if I is generated by a subset $\{x_{i_1}, \ldots, x_{i_k}\}$ of the variables $\{x_1, \ldots, x_n\}$.
- (b) Suppose I is a monomial ideal, and $f \in R$. Note that f can be written in the form $\sum_{\mathbf{a} \in S} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}$ for some finite set S of vectors in \mathbb{N}^n , where $c_{\mathbf{a}} \in \mathbb{K}$ for $\mathbf{a} \in S$. Suppose $f \in I$. Show that every term of f is in I.

Notational hint: write $I = (\mathbf{x}^{\mathbf{a}_1}, \dots, \mathbf{x}^{\mathbf{a}_k})$. (Why only finitely many? Why no c's?)

(c) Let I be the ideal generated by $\{ad, ae, bcd, be, ce, de\}$ in $R = \mathbb{k}[a, b, c, d, e]$. Express I as an intersection of prime ideals, and answer these questions: is I radical? does I have any embedded primes?

Hint: Use ideal quotient.

(over for solutions)

- O(a) Let $\varphi = ev_{\alpha} : F(x) \longrightarrow F(x)$, $f \longmapsto f(\alpha)$. Then φ is surjective. If $f \neq 0$ lies in ter (φ) , then $f(\alpha) = 0$, implying α is algebraic, a contradiction. Thus $\ker(\varphi) = 0$ and φ is an isomorphism.
 - (b) As in (a), let $\varphi \in F[x_1, \cdot, \cdot, x_n] \rightarrow F[x_1, \cdot, \cdot, \cdot, \cdot]$ be defined by $\varphi(\varphi) = \varphi(x_1, \cdot, \cdot, \cdot, \cdot)$. Then φ is surjective, and $\ker(\varphi) = 0$ because $\{x_1, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$ is algebraically independent. Thus φ is an isomorphism.
 - (c) Let $\alpha \in E$. Then $\{x_1, \dots, x_n, \alpha \}$ is algebraically dependent, by the maximality assumption. Then $\exists p \in F(x_1, \dots, x_n, x_1, \dots, p \neq 0, such that <math>p(\alpha_1, \dots, \alpha_n, \alpha) = 0$. Then $p \in F(x_1, \dots, x_n) \in x_1$ and $p(\alpha) = 0$, so α is algebraic over $F(x_1, \dots, x_n)$.
- Da) Let $\varphi: K(x) \longrightarrow E$ be defined by $\varphi(\varphi) = p(\alpha)$. Since K(x) is a PIO, ker- (φ) is a principal ideal, generated by m_{α} , by definition. Since $F \subseteq K$, $m_{\alpha} \in K(x)$. Since $m_{\alpha} \in K(x)$ is algebraic over K. Also $m_{\alpha} \in K(\varphi)$, hence $m_{\alpha} \in K(\varphi)$, hence $m_{\alpha} \in K(\varphi)$.
 - (b) Note: since β is algebraic over F, $F[\beta] = F(\beta)$ is a field. By part (a), in F[B] divides max is since both are monic it suffices to show they have the same degree. We have $|F[\alpha, \beta] : F| = |F[\alpha, \beta] : F[\beta] ||F[\beta] : F] = |\deg m_{\alpha}^{F(\beta)}| (\deg m_{\beta}^{F}) \text{ and } |F[\alpha, \beta] : F[= |F[\alpha, \beta] : F[\alpha] || |F[\alpha] : F[\alpha] || |F[\alpha] : F[\alpha] || (\deg m_{\alpha}^{F}) . Then deg m_{\alpha}^{F} divides (\deg m_{\alpha}^{F(\beta)}) (\deg m_{\beta}^{F}) . Since deg m_{\alpha}^{F} and deg m_{\beta}^{F} are relatively prime deg m_{\alpha}^{F} divides deg m_{\alpha}^{F(\beta)} . Then deg m_{\alpha}^{F} since m_{\alpha}^{F} divides m_{\alpha}^{F} and deg m_{\alpha}^{F} are relatively prime deg m_{\alpha}^{F} divides deg m_{\alpha}^{F} are deg m_{\alpha}^{F} since equality holds. D$

- 2(b) (continued) Here is an example: $m_{3/2}^{2}(x) = x^{3} 2$ and $m_{5/2}(x) = x^{2} 2$, so $x^{3} 2$ is irreducible over 10/5?
- (3) Let α_1 , α_p be the roots of $m_{\alpha}(x)$ in E. If $\varphi \in Gal(E,F)$, then $\varphi(m_{\alpha}(x)) = m_{\alpha}F(x)$, so $m_{\alpha}F(x) = 0 \Rightarrow m_{\alpha}F(\varphi(x)) = 0$. Hence $\varphi(\alpha) = \alpha_1$ for some i. Since $E = F[\alpha]$, $\varphi : E \to E$ is uniquely determined by $\varphi(\alpha)$ (since $\varphi|_F = id_F$). There are at most φ possibilities for $\varphi(\alpha)$, hence $|Gal(E,F)| \leq \varphi$. But $m_{\alpha}F(x)$ has at most φ mosts, where $\varphi = \deg m_{\alpha}F = |E : F|$, hence $|Gal(E,F)| \leq |E : F|$.
 - (4) Suppose $F[x+s\beta] = F[\alpha+t\beta] = K$, with $s \neq t$, s, $t \in F$. Then $(\alpha+s\beta) - (\alpha+t\beta) \in K$, so $(s-t)\beta \in K$. Since $s-t \in F \subseteq K$ and $s-t \neq 0$, $\beta = (s-t)^{-1}(s-t)\beta \in K$. Then $\alpha = (\alpha+t\beta) - t\beta \in K$, so $F[\alpha,\beta] \subseteq K$. Obviously $K = F[\alpha+s\beta] \subseteq F[\alpha,\beta]$. Thus $F[\alpha,\beta] = K = F[\alpha+s\beta]$. Note: if F is infinite and there are only finitely many fields K with $F \subseteq K \subseteq E$, then F is F with $F \subseteq K \subseteq E$, then F is F with $F \subseteq K \subseteq E$, then F is F with $F \subseteq K \subseteq E$, then F is F with $F \subseteq K \subseteq E$, then F is F with F is F with F is F in F with F is F in F
 - (b) Since E is finite, $E^* = E \{0\}$ is explic. Let $w \in E$ such that $\langle \alpha \rangle = E^*$. Then every $\beta \in E F$ can be written $\beta = \rho(\alpha)$ where $\rho(x) = x^k$. Thus $E = F[\infty]$.
- (S) Let $I = \langle x^{a_1}, ..., x^{a_p} \rangle$ be a monomial ideal. Assume I is prime. Suppose $a_i = b + c$ where b, $c \in \mathbb{N}^n$ are both nonzero. Then $x^{a_1} = x^{b_1} \cdot x^{c_2}$. Since I' is prime; $x^{b_1} \in I$ or $x^{c_1} \in I'$. Say $x^{b_1} \in I$. Then x^{a_1} can be replaced by x^{b_1} in the generating set,

since any multiple of x^{aj} is a multiple of x^{b} . (1)
Thus, we may assume, for each j; $1 \le j \le k$,

By cannot be written as a sum of nonzero vectors in IN. It follows that aj = 0 or 1 for every j; and at most one a_i is nonzero. Then $x^{aj} = x_{ij}$ for $1 \le i \le i \le k - \le i_k \le n$. Thus I is generated by a subset of the wriables.

(see below)

- (b) Let I be a monomial ideal in $R = |k\{x_1, \dots, x_n\}$. Since R) is noetherian, T is generated by finitely many monomials.* $T = (c_1 x^{a_1}, \dots, c_n x^{a_m})$ for some $a_i \in N^n$ and $c_i \in k$.

 Since k is a field, c_i is a unit (if nonzero), hence may assume without loss that $c_i = 1$ $\forall i$. Suppose f = Z $c_1 x^a \in T$, with $c_2 \in k$. Then B $f \in R$ for $1 \le k \le m$ such that $C_i \in k$. Then $C_i \in k$ $C_i \in k$.

 Write $f_k = Z$ $C_k \in k$. Then $C_i \in k$ $C_i \in k$ $C_i \in k$.

 Let $a_i \in S$, with $c_i \in K$. Then $c_i \in k$ $C_i \in k$ $C_i \in k$ $C_i \in k$ $C_i \in k$.

 Is ken and $b_i \in S_k$, $b_i + a_k = a_i$. Then $c_i \in k$ $C_i \in k$. In $C_i \in k$ is in $C_i \in k$.
 - * Since P is noetherian, the family of ideals I & I generated by finitely many monomials has a maximal element, which one can existly show must be equal to I.
- (c) Suppose $f \in R$ and $g \in (I:f)$. Then $f_g \in I$. By (b) this means that every honzero term of f_g is in I. It follows that $(J:f_i+f_z)=(J:f_i) \cap (J:f_i)$, so if (J:f) is prime we may assume f is a monomial. Also $g \in (J:x^2)$ if f every term of gx^2 is

in I, if and only if every term of g is in (I: x2). Thus (I:x2) is a monomial ideal. Using (a), we need to find subjets 5 of {a,b,c,d,e} and monomials xª such that $(I:x^{\alpha})=(S)$. I=(ad,ae,bcd,be,ce,de). Setting a = (1,0,0,0,0), (I:a) = (d,e); a = (0,1,0,0,0) =) (I:b) = (cd,e), not prime. Continuing, (I:c) = (bd,e), not primes (I:d) = (a, bc,e), not prime, (I:e) = (a,b,c,d); (I:ab) = (d,e), (I:ac) =(d,e), (I:ad)=R, (I:ae)=R, (I:be)=(d,e),(I: bd) = (a,c,e), (I:be) = R, (I:cd) = (a,b,e), (I:ce)=R, (I:de)=R, (I:abc)=(d,e). All other monomials x^a lie in I, so $(I : x^a) = R$. So the associated primos of I are: (d,e), (a,b,c,d), (a,c,e), and (a,b,e). (Note: all equalities are proved using 6).) $I = (a,b,c,d) \cap (a,c,e) \cap (a,b,e) \cap (d,e)$. This would follow from a proof that I is radical lusing the primary decomposition of I). And I is radical because none of its generators have repeated factors, as follows: let f= Zcnx = eVI, s= f" e I. Then, by (b), x gotten e I for any and -, an es. In particular, $(x^9)^n \in I$ for every $g \in S$, this implies (x²) is a multiple of one of the generators. Then ma = k(1.0,0,1,0) or k(1.0,0,0,1), etc., for some k, which implies a has the same property, hence $x^a \in I$. * I is called a "square free monomial ideal." But we can prove the claim directly, using (b). We have $I \subseteq (a,b,c,d) \cap (a,c,e) \cap (b,d) \cap (d,e)$ automatically Let $f \in (a,b,c,d) \cap (a,c,e) \cap (a,b,e) \cap (d,e)$. Then every term of f lies in the intersection also, so we may assume without loss that f is a monomial. Then f is a multiple of d or e. Case 1: f = gd. Then g is a multiple of a,c, or e, so f is a multiple of ad, cd, or de, In the first and last asses, $f \in I$. If f = hcd, then h is a multiple of a,b, or e, since $f \in (a,b,e)$. Then f is a multiple of acd, bcd, or cde, hance f is in I. Case 2: f = ge. Then g is a multiple of a,b, c, or M, hence f is a multiple of ae, be, ce, or de, hence $f \in I$. This proves equality.

Since I is an intersection of prime ideals, this is a standard primary decomposition, so there are no embedded primes, and I is radical.