- e I
MAT 612 Exam 1 (take-home) Name EDDLJ}\ Fgﬁf\‘\
2/22/2010 {due Monday 3/1/2010, 5 pm)
90 points

All rings are commautative with 1. All modules are unital.

1.(20} (&) Suppose M and N are free F-modules of finite rank. Prove that Hompg{M, N} is a free
H-module, and determine its rank.

Hint: Use the case wheve R s a field for guidance.

{b} Prove, if N 15 & free RB-module, then Homp (M, N} is isomorphic to Hompe(M/ Tor{ M), N) for
any H-module M.

2.(25) (a) Let 0 — M SN £ P s 0 be an exact sequence of R-modules. Suppose there is
an R-module homomorphism o: P — N satisfying g o 0 = idp. Prove there is an R-miodule
homomorphism m: N — M satisfying 7o [ = idy.

Hint: One may assume without loss that M is 2 submodule of N and [ & the inclugion map,

(b) Under the same hypotheses as in part (2}, prove that N is isornorphic to M & P.

Hint: Use o and 7 60 define a homomorphism from N to M $ P, and then apply the {short) five lemma. i

{c) Prove, if 0 — M SN P exact, and P is a free module, then N = M ¢ P,

{d) Suppose 0 — M LN L P o exact, and suppose there is an R-module ¢} such that
FP®Q is a free module. Prove that N = M o P.

(e) Suppose F has the property that, for any module NV and any surjective homomorphism
g: N — P, there iz a homomorphism ¢: P —— N such that g o ¢ = idp. Prove that there
is a module ) such that P @ Q is a free module.

(f) An R-module F is said to be projective if it satisfies the hypothesis of part (e). Prove, il R is

& PID and P is an R-module, then P is projective if and only if F is free.

3.(10} Prove: If R is & P1D, then an ideal I is primary if and only if [ is irrecducible.
4.(15) (a} Find a presentation and free resolution of the Z-module Zz & Zao & E.

(b} Let M be the Z-module generated by three elements v1, vs, v3 subject to the relations

2’!}1_ — 4”02 - 2‘1}3 == ()
10’!)1 - 6’()2 -+ 4’.5‘3 =0
6’1)1 e 12‘02 — Gug = 0.

Find & free resolution of M and the invariant factor decomposition of M, and determine rank({M)
and Tor(J).

5.(3) Let M be the Z-module of Problem 4(b). For each prime ideal P of Z, find the set Mp = {z <
M| yfanniz) = P}, and show that M = BMp.
P



6.(15) Suppose k is an algebraically closed field, and R = k[x|. Since k is algebraically closed, the
irreducible elements of R are of the form o — g, for o £ k, up to multiplication by units. Suppose M is
a cyclic R-module, whose annibilator is a nonzero primary ideal of K. Show that M has a {free) k-basis
B such that the matrix of the linear transformation T M — M given by T(2) = z - v relative to B

has the form

a 1 0 G
0 a 1 0
Co 0
: 1
g 0 a
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