MAT 511 8/30/13, due Friday 9/6/13 25 points Name _____

1. (Isaacs' Problem 1) Let G be a group of functions from a set Ω to itself, with the product defined by composition of functions.

(a) Show, if G contains a one-to-one function, then G is a subgroup of the symmetric group S_{Ω} . (Do not assume Ω is finite.)

(b) Find an example with $|G| \ge 2$ such that G does not contain any one-to-one functions.

2. Let G be a group of permutations of a set Ω (under composition), i.e., G is a subgroup of S_{Ω} . Suppose that G is abelian, and that G acts transitively on Ω , that is, for very x and y in Ω there exists $f \in G$ such that f(x) = y. Prove that the action of G on Ω is free, that is, if g(x) = x for some $x \in \Omega$, then $g = id_{\Omega}$.

3. (a) Suppose H and K are subgroups of a group G, and $G = H \cup K$. Show that H = G or K = G.

(b) Suppose H_{α} is a proper subgroup of G for each α , and $G = \bigcup_{\alpha} H_{\alpha}$. Suppose xy = yx for every $x \in H_{\alpha}, y \in H_{\beta}$, with $\alpha \neq \beta$. Show that G is abelian. Hint: Let $x \in H_{\alpha}$ and let $K = \{y \in G \mid xy = yx\}$. Observe that K is a subgroup of G. (K is the centralizer of x in G.) Apply part (a).