MAT 511 12/18/13 250 points Final Exam

Name SOLUTIONS

1.(25) Suppose $f \colon G \longrightarrow H$ and $g \colon G \longrightarrow H$ are homomorphisms.

(a) Show that the set $\{x \in G \mid f(x) = g(x)\}$ is a subgroup of G. Let $\{x \in G \mid f(x) = g(x)\}$ Since f and g are homomorphisms, $f(e_G) = e_H$ and $g(e_G) = e_H$ so $f(e_G) = e_H$ so

(b) Suppose $S \subseteq G$ satisfies $\langle S \rangle = G$. Prove: if f(x) = g(x) for all $x \in S$, then f = g.

By hypothesis $S \subseteq K$ (notation from part (a)). Since $K \subseteq G$, $\langle S \rangle \subseteq K$. Then $G \subseteq K$ so f(x) = g(x) for all $X \in G$. Thus f = g.

2.(25) (a) Prove: if G is a finite simple group, and $\varphi \colon G \longrightarrow G$ is a nontrivial homomorphism, then φ is an automorphism.

ker (φ) & G and G (φ) & G then ker (φ) = 1

Then φ is injective. Then $|\varphi(G)| = |G|$, so $\varphi(G) = G$ Since $|G| < \varphi$ and $\varphi(G) \leq G$. Thus φ is switchise

(b) Let $\varphi: G \to H$ be a homomorphism of finite groups. Prove $|\operatorname{im}(\varphi)|$ divides both |G| and

 $im(\varphi) \cong G/\ker(\varphi)$ by the first isomorphism theorem then $lim(\varphi)! = |G:\ker(\varphi)|$, and $|G| = |G:\ker(\varphi)|$ [ker(φ)] so $lim(\varphi)!$ divides |G|. Also $im(\varphi) \leq H$, so $lim(\varphi)!$ divides |G|. Also $im(\varphi) \leq H$, so $lim(\varphi)!$

3.(20) Let R be a commutative ring and let a be an element of R. Prove that $I_a := \{x \in R \mid ax = 0\}$ is an ideal in R.

Since a. D=D, D=Ja. Let xy = Ja. Then

ax = 0 and ay = 0. Then a(x+y) = ax-ay = 0-0=0.

Thus x-y = Ja. Then I is an additive subject bet

x = Ja and r = R. Then ax = 0 = a(xr) = fax | r = 0.r

= 0, = xr = Ja. Since R is annotative, r x = Ja.

Thus I a is a (2-sided) ideal in R

4.(20) Suppose G is a group, and H is a subgroup of G. Prove that the number of conjugates H^x , $x \in G$, of H in G divides the index $|G: \mathbb{N}_G(H)|$ of the normalizer $\mathbb{N}_G(H)$ in G.

Gacts on the set Q of subgroups of G by conjugation. The orbit of H is $\{H^* \mid x \in G\}$.

and the stabilizer of H is: $\{x \in G \mid H^* = H\} = N_G(H). \text{ Then by the orbit } - \text{ stabilizer theorem}, \quad |\{H^* \mid x \in G\}| = |G: N_G(H)|.$ Since $H \leq N_G(H)$, $|G: H| = |G: N_G(H)| ||N_G(H): H|.$ $= |\{H^* \mid x \in G\}| \cdot ||N_G(H) \circ H|.$ Thus $|\{H^* \mid x \in G\}| \cdot ||N_G(H) \circ H|.$

- 5.(25) Suppose the group G acts on the left on the set Ω .
 - (a) Let $x \in \Omega$, $g \in G$ and $y = g \cdot x$. Show $G_y = (G_x)^g$.

Let he G. Then how = y \Leftrightarrow h. $(g \cdot x) = g \cdot x$ $(g \cdot hg) \cdot x = g \cdot x \Leftrightarrow g' \cdot (hg) \cdot x) = g' \cdot (g \cdot x) \Leftrightarrow$ $(g' hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$ $<math>(g \cdot hg) \cdot x = (g' g) \cdot x \Leftrightarrow (g' hg) \cdot x = x = thus he G,$

(b) Using (a), show, if G is abelian and the action is faithful and transitive, then $G_x=1$.

If G is abelian then $G_1 = (G_2)^2 = G_2$, and since the action is transitive, for every $y \in \mathcal{Q}_2$, $y \in g \times G_2 \times G_3 \times G_4 \times G$

6.(35) Suppose G is a group of order 1225. Show G is abelian. List all possibilities for G, up to isomorphism.

IGH= 1225 = 5°.7°. ng = 1 mod 7 and ng | 5°=25.

Then ng = 1 since 8,15. do not divide 25.37-subgp)

Than 3 K & 6 with | K| = 7°. / Also ns = 1 mod 5,

and ns | 7°=49. Since 6,11,16,21,26 do not

divide 49, ns = 1. Then 3 H & G with | H| = 5°.

(H is the unique Sylow 5-subgp.). Nois KNH = 1 since

| KNH | divides both | K| and | H|, and | K| and | H| are

relatively prime. Then | KH| = | K| | H| / | KNH| = | K| | H| =

5°-7° = | G|, hence KH = G. Then G = K x H.

K and H are abelian since any group of order p°, prime

is abelian. Thus G is abelian. By the classification

of finite abelian groups, G = 225 & 240 = 2725 or

250250249 = 250245 or 225 & 27827 = 298205 or

250250249 = 250245 or 225027 = 298205 or

- 7.(35) Recall a group G is metabelian iff there is a normal subgroup N of G such that N and G/N are abelian.
 - (a) Give an example of a metabelian group that is not abelian.

Dy is not abelian, but to ? By is abelian and index two in Py, honce to 30 Dy and to 2 By and Pyles & Bo are abelian. Then Pyles metabelian. (53 is another (smaller) example.)

(b) Let $G = G^{(0)} \supseteq G^{(1)} \supseteq G^{(2)} \supseteq \cdots$ be the derived series of $G^{(1)}$ Prove: if $G^{(2)} = 1$ then G is metabelian.

 $G^{(1)} = \{G,G\}$ is normal in G, and $G/G^{(1)}$ is abelian. $\{G^{(1)},G^{(1)}\} = G^{(2)} = \{G^{(2)}\} = \{G^{(2)}\} + \{G^{$

(c) Suppose $\varphi \colon G \longrightarrow H$ is a surjective homomorphism, with H a metabelian group. Prove there is a surjective homomorphism $\bar{\varphi} \colon G/G^{(2)} \longrightarrow H$ satisfying $\bar{\varphi}(xG^{(2)}) = \varphi(x)$.

Let $N \ge H$ with H/N abelian and N abelian. Since H/N is abelian, $H^{(1)} = [H,H] \le N$. Since N = 1 is abelian, [N,N] = 1. Then $H^{(2)} = [H^{(1)},H^{(1)}]$ [N,N] = 1, so $H^{(2)} = 1$. Since $p(6^{(2)}) \le H^{(2)}$ (as is easily shown), $p(6^{(2)}) = 1$, so $G^{(2)} \le kor(p)$. Then, by a result from lecture (N + 2), (N +

 $^{{}^{1}}G^{(k)} = [G^{(k-1)}, G^{(k-1)}] \text{ for } k \ge 1.$

to \mathbb{Z} . Prove $B \cong A \times C$. Since C= 2, C is a free 2-module Cor free abelian group) Then we can construct o: C->B satisfying posside, as Gallans: Write G= <c> (so a corresponds to 1 ∈ 2). Since B is onto, c= B(b) for some beB. Define o(c)=6, and extend to a well-defined homom. 6 = C-B, o(c) = b. Then Book() = c, so Boc = ide by Problem 1(b). Let K=Im(x) and H=Im(o). Then K&B, H&B. 9.(25) A simple ring is a ring with no nonzero proper ideals. The center of a ring R is $Z(R) = \{x \in R \mid rx = xr \text{ for all } r \in R\}$. Show that the center of a simple ring with 1 is a field. First 2(R) is a subring : r. D= O= O. T V reR so D=2(R); exext and ryent for all rep => r(xy)=rx-ry= xr-yr=(x-y)r, = x,y < 2(R) => x-y < 2(R). Also (xy)= (xx)y = (xx)y = x(yy) = x(yr) =(xy)r, so x,y & 2/R) => xy \(\in \(2\ker)\) Chearly \(2\ker)\) is commutative. It remains to show every \(x \in \(2\ker)\) has a multiplicative inverse in \(2\ker)\). Let \(x \in \(2\ker)\) \(x \in \(2\ker)\). \(\x \in 10.(20) Let R be a ring and M a right R-module. For (right) submodules I and J of M, let $(I:J) = \{r \in R \mid Jr \subseteq I\}$. Prove that (I:J) is the annihilator of the submodule (I+J)/I of the module M/I. Suppose re(I:J). Then Jr & I. Thon, if y & I+J, (y+I)r = yr+I, and, writing y=u+v with u ∈ I, v ∈ J, Yr= ur + vr, and ur = I because I is a right ideal, and MEI since re(I:I). Then MreI so MrtI=I, and (y+I) = I = ORA. Thus ream (I+J/I). Conversely, let reann (I+J/I), and let y & J. Then G+I)r= y+I=Owi=I, so y1+I. Then r ((I:I). Thus (I:I) = ann (I+I/I).

8.(20) Let $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ be a short exact sequence of abelian groups, with C isomorphic

B contid. $y \in C$ and $\beta(x) = 0$ since $x \in im(\alpha) = ker(\beta)$.

Then $y = \beta \circ \delta(y) = \beta(x) = 0$, so $x = \delta(y) - \delta(0) = 0$.

Thus $K \cap H = 0$, Claim K + H = B. Indeed,

if $x \in B$, then $x = (x - \delta(\beta(x)) + \delta(\beta(x))$, $\delta(\beta(x)) \in im(\delta) = H$, and, since $\beta(x - \delta(\beta(x)))$. $\delta(\beta(x)) \in im(\delta) = H$, and, since $\beta(x - \delta(\beta(x)))$. $\delta(\beta(x)) \in ker(\beta) = im(\alpha) = K$. Thus $K \cap H = B$.

Then $B \subseteq K \oplus H$. Since $\beta \circ \delta = iM_C$, δ is injective, and κ is injective, so $H \cong C$ and $K \subseteq A$.

Thus $B \subseteq A \times C$ (or, better, $A \oplus C$).

(Claim y \in \in (\rangle)) Then since R is simple, \times \(R \in R \in R \in \text{3 yer}) \)

Claim \(y \in \in (R) \), Let \(r \in R \in \text{ Then } \) \(y \in \in \text{3 well.} \)

= \(y \left(i \times \right) \), Let \(r \in R \in \text{ Then } \text{ yr = (y r) \cdot 1 = (y r) \cdot (xy)} \)

Therefore \(\frac{1}{2}(R) \) is a field.