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A subgroupH of a groupG is maximal ifH 6= G, and, ifK is a subgroup ofG satisfyingH ⊆ K $ G,
then H = K. An ideal I of a ring R is maximal if I 6= R, and, if J is an ideal of R satisfying
I ⊆ J $ R, then I = J .

Zorn’s Lemma Suppose P is a nonempty partially-ordered set with the property that every chain
in P has an upper bound in P. Then P contains a maximal element.

Here a chain C ⊆ P is a totally-ordered subset: for all x, y ∈ C, x ≤ y or y ≤ x. A maximal element
of P is an element x ∈ P with the property x ≤ y =⇒ x = y for all y ∈ P. Partially-ordered sets
can have several different maximal elements.

Zorn’s Lemma says, intuitively, if one cannot construct an ever-increasing sequence in P whose
terms get arbitrarily large, then there must be a maximal element in P. It is equivalent to the
Axiom of Choice: in essence we assume that Zorn’s Lemma is true, when we adopt the ZFC axioms
as the foundation of mathematics.

Theorem 1. If I0 is an ideal of a ring R, and I0 6= R, then there exists a maximal ideal I of R
with I0 ⊆ I.

Proof. Let P be the set of proper (i.e., 6= R) ideals of R containing I0, ordered by inclusion. Then
P is nonempty, since I0 ∈ P. Suppose C is chain in P. Let B =

⋃
J∈C J . Then, first of all, B is

an ideal of R; to prove this one uses the fact that C is a chain. (For instance, to show B is closed
under addition, note that, if x, y ∈ B then x, y ∈ J for some J ∈ C, because C is a chain, and then
x+ y ∈ J ⊆ B.) Moreover, B 6= R. To prove this it suffices to show 1 6∈ B, and this holds because
1 6∈ J for all J ∈ C, since C consists of proper ideals. Thus B ∈ P. This establishes the hypothesis
of Zorn’s Lemma. Thus P has a maximal element I, which has the required properties.

For finite groups the situation is similar.

Theorem 2. If H is a subgroup of a finite group G, and H 6= G, then there exists a maximal
subgroup M of G with H ⊆M .

Proof. Induct on the index n = |G : H| of H in G. If |G : H| = 1 then H = G and the statement
is vacuous. Suppose |G : H| > 1. If H is maximal, take H = G. If H is not maximal, then there
exists H ′ ≤ G with H ( H ′ ( G. Then |G : H ′| < |G : H|, so there exists a maximal subgroup M
of G containing H ′, by the inductive hypothesis. Then M ⊇ H, and the inductive step is complete.
Then the statement holds for all n ∈ N by mathematical induction.



Example 3. Let G be the group of rational numbers, under addition. Then G has no maximal
subgroups. Indeed, if H is a maximal subgroup of G, then H E G since G is abelian. Since H
is maximal, G/H has no proper subgroups. (This is an application of the Third Isomorphism
Theorem.) Then G/H is cyclic of prime order p. From this it follows that px ∈ H for all x ∈ G.
(Note: We write px instead of xp because the group operation is written in additive notation.)

Let y ∈ G − H and let x = y
p . Then px ∈ H by the previous paragraph, but px = y 6∈ H.

Contradiction. Thus Q has no maximal subgroups.

This argument generalizes to divisible abelian groups.

Definition 4. A group G is divisible if, for every y ∈ G and for every natural number n, there
exists x ∈ G with xn = y.

It is equivalent that the statement hold for all prime numbers n, since xpq = (xp)q. The group of
rational numbers under addition is a divisible group.

Proposition 5. If G is a divisible group, then G has no nontrivial finite quotients.

Proof. Suppose G is divisible, and H / G with G/H finite. Let |G/H| = n. Then xn ∈ H
for all x ∈ G. (This follows easily from Lagrange’s Theorem.) Assume G/H is not trivial, and
choose y ∈ G − H. Since G is divisible, there exists x ∈ G with xn = y. But xn ∈ H by the
previous observation, while y 6∈ H by assumption. Contradiction. Thus G has no nontrivial finite
quotients.

Proposition 6. For any group G, G has no nontrivial finite quotients if and only if G has no
finite-index subgroups.

Proof. One implication is clear. Suppose H is a subgroup of G of finite index n. By a proposition
from class (and also Exam 1.1(c)), there is a normal subgroup N of G with N ⊆ H and |G : N |
dividing n!. Then G/N is a finite quotient of G.

Proposition 7. For any group G, if G has a nontrivial finite quotient, then G has a maximal
subgroup.

Proof. Let N E G with G/N finite, and apply Theorem 2 to the trivial subgroup 1G/N . The
statement then follows from the third isomorphism theorem.

Corollary 8. Suppose G has a unique maximal subgroup or is abelian and has a maximal subgroup,
then G has a nontrivial finite quotient.

Proof. If G has a unique maximal subgroup M , then M is characteristic. (It is the Frattini subgroup
of G.) Then M is normal, and G/M has no subgroups (by the third isomorphism theorem). Then
G/M is cyclic of prime order p. If G is abelian, then any maximal subgroup is normal, and the
same argument applies.

Theorem 9. Suppose G is abelian and is not divisible. Then G has a maximal subgroup.



Proof. This result requires Zorn’s Lemma. Let p be a prime. Since G is abelian, the function
φ : G→ G defined by φ(G) = px is a homomorphism. (Here we are writing G additively.) Let pG
denote the image of φ. Since G is not divisible, pG 6= G for some prime p. Then pG is normal
in G, and G/pG has the property that py = 0 for all y ∈ G/Gp. Then G/pG is a vector space
over the field Zp. A familiar application of Zorn’s Lemma is the statement that every vector space
V over a field has a basis (called a Hamel basis): one applies Zorn to the partially-ordered set of
linearly-independent subsets of V . So we have a basis B of G/pG as a vector space over Zp. Pick
b0 ∈ B and let M be the span of B − {b0}. Then M is a maximal linear subspace of G/pG, hence
is a maximal subgroup of G/pG. By the third isomorphism theorem, M = M/pG for M ≤ G, and
M is a maximal subgroup of G.

Let us put together all these partial results.

Corollary 10. Suppose G is an abelian group. Then the following are equivalent:

(i) G has a maximal subgroup.

(ii) G has a subgroup of finite index.

(iii) G has a finite quotient.

(iv) G is not divisible.

Corollary 11. Let G be an arbitrary group. Then

(i) if G has a finite quotient, then G has a maximal subgroup.

(ii) if G has a maximal subgroup, then G is not divisible.

(iii) if G has a unique maximal subgroup, then G has a finite quotient.

(iv) if G has a subgroup of finite index, then G has a finite quotient.

The question that motivated the whole discussion remains unanswered:
Question: is there an infinite group with a unique maximal subgroup?

I suspect the following is true, but I haven’t found a proof.

Conjecture 12. A∞ is the unique maximal subgroup of S∞.


