A subgroup H of a group G is maximal if $H \neq G$, and, if K is a subgroup of G satisfying $H \subseteq K \subsetneq G$, then H = K. An ideal I of a ring R is maximal if $I \neq R$, and, if J is an ideal of R satisfying $I \subseteq J \subsetneq R$, then I = J.

Zorn's Lemma Suppose \mathcal{P} is a nonempty partially-ordered set with the property that every chain in \mathcal{P} has an upper bound in \mathcal{P} . Then \mathcal{P} contains a maximal element.

Here a chain $C \subseteq \mathcal{P}$ is a totally-ordered subset: for all $x, y \in C, x \leq y$ or $y \leq x$. A maximal element of \mathcal{P} is an element $x \in \mathcal{P}$ with the property $x \leq y \implies x = y$ for all $y \in \mathcal{P}$. Partially-ordered sets can have several different maximal elements.

Zorn's Lemma says, intuitively, if one cannot construct an ever-increasing sequence in \mathcal{P} whose terms get arbitrarily large, then there must be a maximal element in \mathcal{P} . It is equivalent to the Axiom of Choice: in essence we *assume* that Zorn's Lemma is true, when we adopt the ZFC axioms as the foundation of mathematics.

Theorem 1. If I_0 is an ideal of a ring R, and $I_0 \neq R$, then there exists a maximal ideal I of R with $I_0 \subseteq I$.

Proof. Let \mathcal{P} be the set of proper (i.e., $\neq R$) ideals of R containing I_0 , ordered by inclusion. Then \mathcal{P} is nonempty, since $I_0 \in \mathcal{P}$. Suppose C is chain in \mathcal{P} . Let $B = \bigcup_{J \in C} J$. Then, first of all, B is an ideal of R; to prove this one uses the fact that C is a chain. (For instance, to show B is closed under addition, note that, if $x, y \in B$ then $x, y \in J$ for some $J \in C$, because C is a chain, and then $x + y \in J \subseteq B$.) Moreover, $B \neq R$. To prove this it suffices to show $1 \notin B$, and this holds because $1 \notin J$ for all $J \in C$, since C consists of proper ideals. Thus $B \in \mathcal{P}$. This establishes the hypothesis of Zorn's Lemma. Thus \mathcal{P} has a maximal element I, which has the required properties.

For finite groups the situation is similar.

Theorem 2. If H is a subgroup of a finite group G, and $H \neq G$, then there exists a maximal subgroup M of G with $H \subseteq M$.

Proof. Induct on the index n = |G : H| of H in G. If |G : H| = 1 then H = G and the statement is vacuous. Suppose |G : H| > 1. If H is maximal, take H = G. If H is not maximal, then there exists $H' \leq G$ with $H \subsetneq H' \subsetneq G$. Then |G : H'| < |G : H|, so there exists a maximal subgroup Mof G containing H', by the inductive hypothesis. Then $M \supseteq H$, and the inductive step is complete. Then the statement holds for all $n \in \mathbb{N}$ by mathematical induction. \Box **Example 3.** Let G be the group of rational numbers, under addition. Then G has no maximal subgroups. Indeed, if H is a maximal subgroup of G, then $H \leq G$ since G is abelian. Since H is maximal, G/H has no proper subgroups. (This is an application of the Third Isomorphism Theorem.) Then G/H is cyclic of prime order p. From this it follows that $px \in H$ for all $x \in G$. (Note: We write px instead of x^p because the group operation is written in additive notation.)

Let $y \in G - H$ and let $x = \frac{y}{p}$. Then $px \in H$ by the previous paragraph, but $px = y \notin H$. Contradiction. Thus \mathbb{Q} has no maximal subgroups.

This argument generalizes to *divisible* abelian groups.

Definition 4. A group G is *divisible* if, for every $y \in G$ and for every natural number n, there exists $x \in G$ with $x^n = y$.

It is equivalent that the statement hold for all prime numbers n, since $x^{pq} = (x^p)^q$. The group of rational numbers under addition is a divisible group.

Proposition 5. If G is a divisible group, then G has no nontrivial finite quotients.

Proof. Suppose G is divisible, and $H \triangleleft G$ with G/H finite. Let |G/H| = n. Then $x^n \in H$ for all $x \in G$. (This follows easily from Lagrange's Theorem.) Assume G/H is not trivial, and choose $y \in G - H$. Since G is divisible, there exists $x \in G$ with $x^n = y$. But $x^n \in H$ by the previous observation, while $y \notin H$ by assumption. Contradiction. Thus G has no nontrivial finite quotients.

Proposition 6. For any group G, G has no nontrivial finite quotients if and only if G has no finite-index subgroups.

Proof. One implication is clear. Suppose H is a subgroup of G of finite index n. By a proposition from class (and also Exam 1.1(c)), there is a normal subgroup N of G with $N \subseteq H$ and |G:N| dividing n!. Then G/N is a finite quotient of G.

Proposition 7. For any group G, if G has a nontrivial finite quotient, then G has a maximal subgroup.

Proof. Let $N \leq G$ with G/N finite, and apply Theorem 2 to the trivial subgroup $1_{G/N}$. The statement then follows from the third isomorphism theorem.

Corollary 8. Suppose G has a unique maximal subgroup or is abelian and has a maximal subgroup, then G has a nontrivial finite quotient.

Proof. If G has a unique maximal subgroup M, then M is characteristic. (It is the Frattini subgroup of G.) Then M is normal, and G/M has no subgroups (by the third isomorphism theorem). Then G/M is cyclic of prime order p. If G is abelian, then any maximal subgroup is normal, and the same argument applies.

Theorem 9. Suppose G is abelian and is not divisible. Then G has a maximal subgroup.

Proof. This result requires Zorn's Lemma. Let p be a prime. Since G is abelian, the function $\phi: G \to G$ defined by $\phi(G) = px$ is a homomorphism. (Here we are writing G additively.) Let pG denote the image of ϕ . Since G is not divisible, $pG \neq G$ for some prime p. Then pG is normal in G, and G/pG has the property that py = 0 for all $y \in G/G^p$. Then G/pG is a vector space over the field \mathbb{Z}_p . A familiar application of Zorn's Lemma is the statement that every vector space V over a field has a basis (called a Hamel basis): one applies Zorn to the partially-ordered set of linearly-independent subsets of V. So we have a basis \mathcal{B} of G/pG as a vector space over \mathbb{Z}_p . Pick $b_0 \in \mathcal{B}$ and let \overline{M} be the span of $\mathcal{B} - \{b_0\}$. Then \overline{M} is a maximal linear subspace of G/pG, hence is a maximal subgroup of G/pG. By the third isomorphism theorem, $\overline{M} = M/pG$ for $M \leq G$, and M is a maximal subgroup of G.

Let us put together all these partial results.

Corollary 10. Suppose G is an abelian group. Then the following are equivalent:

- (i) G has a maximal subgroup.
- (ii) G has a subgroup of finite index.
- (iii) G has a finite quotient.
- (iv) G is not divisible.

Corollary 11. Let G be an arbitrary group. Then

- (i) if G has a finite quotient, then G has a maximal subgroup.
- (ii) if G has a maximal subgroup, then G is not divisible.
- (iii) if G has a unique maximal subgroup, then G has a finite quotient.
- (iv) if G has a subgroup of finite index, then G has a finite quotient.

The question that motivated the whole discussion remains unanswered: **Question**: is there an infinite group with a unique maximal subgroup?

I suspect the following is true, but I haven't found a proof.

Conjecture 12. A_{∞} is the unique maximal subgroup of S_{∞} .