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ALGEBRAICALLY CLOSED GROUPS AND SOME

EMBEDDING THEOREMS

M. SHAHRYARI

Abstract. Using the notion of algebraically closed groups, we obtain a
new series of embedding theorems for R-groups and their generalizations
Rπ-groups. We show that any group of this type can be embedded in
a simple exponential group. We also apply our method to determine
the structure of R-groups whose non-trivial subgroups intersect non-
trivially.

AMS Subject Classification Primary 20E45, Secondary 20E06.
Key Words Conjugacy classes, R-groups; Rπ-groups, algebraically closed
groups; HNN-extension; Q-groups; non-trivial intersection of subgroups; em-
bedding theorems.

The group Z2 is the only finite group which has just two conjugacy classes.
Is there any infinite group with the same property? Denis Osin [6], proved
that the answer is yes and in fact there is a finitely generated infinite group
with exactly two conjugacy classes. His method is based on the small can-
cellation theory over relatively hyperbolic groups. Another example of such
groups is obtained by Higman, Neumann and Neumann using their well-
known embedding methods, [2]. In this article, we prove that any R-group
can be embedded in a Q-group which has only two conjugacy classes. We
use this idea to prove that, if any two non-trivial subgroup of an R-group
G have non-trivial intersection, then G is a subgroup of Q. Remember that
a group G is called R-group, if for any integer m, the equality xm = ym

implies x = y. We also give a generalization of these groups and define an
Rπ-group to be a group G such that the equality xm = ym implies x = y,
whenever m is a π′-number. We prove that any Rπ-group can be embedded
in a simple Qπ-group, whose elements of the same orders are conjugate.

As an application of our method, we investigate the groups in which every
two non-trivial subgroup have non-trivial intersection. Clearly such a group
is torsion free or a p-group for some prime. The groups Z, Q and Zp∞

are examples of such groups. It seems that the general case of this type of
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groups is hard to recognize. In this article we show that if such a group is
also an R-group, then it can be embedded in Q.

1. Algebraically closed groups

A group G is called algebraically closed (a.c. for short), if any finite
consistent system of equations and inequations with coefficients from G has
a solution in G. A system

S = {wi(ḡ, x̄) = 1; (1 ≤ i ≤ r), wj(ḡ, x̄) 6= 1; (r + 1 ≤ j ≤ s)} (I)

with coefficients ḡ in G is called consistent, if there is a group K containing
G, such that S has a solution in K. One can generalize this definition to
an arbitrary class of groups: Let X be a class of groups. A group G ∈ X is
called a.c. relative to X, if every X-consistent system S has a solution in G.
Here, X-consistency means that there exists a group K ∈ X which contains
G and S has a solution in K.

The next lemma and theorem are proved in [7] for the class of all groups,
but we give here the proofs again for the sake of completeness of this note.
Remember that a class of groups is called inductive, if it contains the union
of any chain its elements.

Lemma 1.1. Let X be an inductive class of groups which is closed under
the operation of taking subgroups. Let G ∈ X. Then there is a group H ∈ X

with the following properties,

1- G is a subgroup of H.
2- Every X-consistent system S of the from (I), has a solution in H.
3- |H| = max{ℵ0, |G|}.

Proof. We may assume that G is infinite, so let |G| = κ. Clearly the cardi-
nality of the set of all systems of the form (I) is also κ. We suppose that
this set is well-ordered as {Sα}α. Let G0 = G and suppose that Gγ ∈ X is
already defined in such a way that |Gγ | = κ and β < γ implies Gβ ⊆ Gγ .
Let

Kα =
⋃

γ<α

Gγ .

Clearly, Kα ∈ X and |Kα| = κ. If Sα is not X-consistent, then we set
Gα = Kα, otherwise there is a K ∈ X which contains Kα and Sα has a
solution, say ū = (u1, . . . , un) in K (n is the number of indeterminate in
Sα). Let

Gα = 〈Kα, u1, . . . , un〉 ≤ K.

Then Gα ∈ X and |Gα| = κ. So, for any α < κ, we have defined a Gα. Note
that, we have also

β < α ⇒ Gβ ⊆ Gα.

Now, the group H = ∪Gα ∈ X has the required properties. �
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Theorem 1.2. Let X be an inductive class of groups which is closed under
the operation of taking subgroups. Let G ∈ X. Then, there exists a group
G∗ ∈ X, with the following properties,

1- G is a subgroup of G∗.
2- G∗ is a a.c. relative to X.
3- |G∗| = max{ℵ0, |G|}.

Proof. Let G0 = G and G1 = H, where H is the group constructed in the
lemma. Suppose Gm is already defined and Gm+1 is the group which is
proved to does exist for Gm in the lemma. Let G∗ = ∪Gm. Therefore,
G∗ ∈ X, satisfies conditions 1 and 3. To prove 2, suppose S is a consistent
system, with coefficients from G∗. Since S is finite, so there is an m such
that all of the coefficients of S belong to Gm. So, S has a solution in
Gm+1 ⊆ G∗. �

As an application of this theorem, we prove that there are countable tor-
sion free groups with exactly two conjugacy classes. Note that we can use a
similar arguments to prove the existence of torsion free groups of any infinite
cardinality with just two conjugacy classes. Also note that the type of the
group we are giving here, is not new, it is known from works of Higman,
Neumann and Neumann [2].

Corollary 1.3. There exists a countable torsion free group with exactly two
conjugacy classes.

Proof. Suppose X is the class of all torsion free groups. Hence X is inductive
and closed under the operation of taking subgroups. We, begin with the
group G = Z. Suppose G∗ ∈ X is the a. c. group relative to X, which
is constructed for G in the theorem. We show that G∗ is the required
group. Let a, b ∈ G∗ be two non-identity elements. Consider the equation
xax−1 = b. Let

G∗

a,b = 〈G∗, t : tat−1 = b〉

be an HNN-extension of G∗. We know that every torsion element of this
HNN-extension is conjugate to a torsion element ofG∗, soG∗

a,b is torsion free.

It also contains G∗ as a subgroup and clearly t is a solution for xax−1 = b

in G∗

a,b. Therefor, there is already a solution in G∗. Hence G∗ is a countable
torsion free group with just two conjugacy classes. �

As we know from [1], the group G∗ has many interesting properties: every
X-group with a solvable word problem embeds in G∗, so G∗ contains every
torsion free hyperbolic group. However G∗ is not finitely generated and even
it has no recursive presentation.
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2. Embedding theorems for R-groups

In this section we use the concept of algebraically closed groups to inves-
tigate the groups in which every two non-trivial subgroup have non-trivial
intersection. Clearly such a group is torsion free or a p-group for some prime.
The second case is very easy to investigate (Proposition 2.3 bellow). The
groups Z, (Q,+) and Zp∞ are examples of such groups. It is easy to see
that all torsion free abelian group with this property can be embedded in Q.
Torsion free non-abelian groups with this property are constructed by Adian
and Olshanskii, [5]. In [8], the author defined a topology-like structure over
groups and he began to study the properties of groups equipped with such
a topo-systems. Here we don’t need to go on details of topo-groups and re-
lated concepts. But it will be very helpful, if we say that the problem of
recognizing groups with non-trivial intersection of subgroups is appeared to
the author, when he was working on the structure of Hausdorff topo-groups
with respect to the cofinite topo-system.

Theorem 2.1. Let G be an R-group in which any two non-trivial subgroups
have non-trivial intersection. Then G can be embedded in Q.

Proof. Suppose X is the class of all R-groups. Then X is inductive and closed
under subgroups. We have G ∈ X. So by the previous section there exits a
group G∗ which is algebraically closed in the class X and it contains G. We
prove that G∗ has just two conjugacy classes. Let a, b ∈ G∗ be non-trivial.
We consider the following HNN-extension

G∗

a,b = 〈G∗, t : tat−1 = b〉.

We know that G∗ ⊆ G∗

a,b and the equation uau−1 = b has a solution in G∗

a,b.
Therefore, if we prove that G∗

a,b ∈ X, then we will conclude that a and b are

conjugate in G∗. Suppose u, v ∈ G∗

a,b and uk = vk. We show that u = v.
First, suppose u and v have cyclically reduced form

u = u0t
ǫ1u1t

ǫ2 . . . tǫnun

v = v0t
η1v1t

η2 . . . tηmvm,

where all ui, vj ∈ G∗ and ǫi, ηj = ±1. Since, u and v are cyclically reduced

and uk = vk, so using the lemma of Britton [2], we most have m = n and
all ǫi = ηi. So, we have

v = v0t
ǫ1v1t

ǫ2 . . . tǫnvn.

Now, we have

1 = ukv−k = u0t
ǫ1u1 . . . t

ǫnun . . . u0t
ǫ1u1 . . . t

ǫnunv
−1
n t−ǫn . . . t−ǫ1v−1

0 . . .

If m = n = 0 then uk0 = vk0 and since G∗ ∈ X we get u = v. The case m = 0
and n 6= 0 (or m 6= 0 and n = 0) is impossible again by the Britton’s lemma.
So, we assume that m,n > 0. The right hand side of the above equality
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most be reduced, so for example we have ǫn = 1 and unv
−1
n ∈ 〈a〉. Hence

there is a j such that
tǫnunv

−1
n t−ǫn = bj .

Therefore tǫnvn = b−jtǫnun. Hence

v = v0t
ǫ1v1 . . . t

ǫn−1vn−1b
−jtǫnun.

Let v′n−1 = vn−1b
−j . Then

v = v0t
ǫ1v1 . . . t

ǫn−1v′n−1t
ǫnun.

Continuing this way, finally we get

v = v′0t
ǫ1u1 . . . t

ǫn−1un−1t
ǫnun.

This implies that uk−1 = vk−1v′0u
−1
0 . Expanding, we obtain

1 = u0t
ǫ1u1 . . . t

ǫnun . . . u0t
ǫ1u1 . . . t

ǫnunu0(v
′

0)
−1u−1

n t−ǫn . . . ,

and hence, for example we obtain ǫn = 1 and unu0(v
′

0)
−1u−1

n = aj for some

j. Therefore v′0u
−1
0 = u−1

n a−jun and so

uk−1 = vk−1u−1
n a−jun

= vk−2v′0t
ǫ1u1 . . . t

ǫna−jun.

But, since a−jun ≡ un (mod 〈a〉), so we get uk−1 = vk−1 and therefore
induction shows that u = v.

Now, suppose that u or v is not cyclically reduced. We know that

u = w1u
′w−1

1 , v = w2v
′w−1

2 ,

where u′ and v′ are cyclically reduced. We have

(w−1
2 w1)u

′k(w−1
2 w1)

−1 = v′
k
.

If w1 = w2, then the result follows from the previous case. If w1 6= w2, then
the right side of the above equality is cyclically reduced while the left side
is just reduced, which is impossible.

Hence we proved that G∗

a,b ∈ X, and so G∗ has two conjugacy classes. We
conclude that the group G∗ is divisible, because for any 1 6= u ∈ G∗ and
any natural number n, the elements u and un are conjugate, so there is z

such that u = zunz−1 and hence u = (zuz−1)n. Now, in addition G∗ is an
R-group, so it is a Q-group.

Now let x, y ∈ G be non-trivial elements. Then 〈x〉∩ 〈y〉 6= 1, so there are

non-zero integers p and q such that xp = yq. Therefore y = x
p

q and hence if
we fix x the result follows. �

Note that the group G∗ obtained in the above proof is a Q-group (it is
divisible and R-group), it has just two conjugacy classes, and any R-group
with solvable word problem embeds in G∗. The proof also shows that the
next corollary is true.

Corollary 2.2. Every R-group can be embedded is a Q-group with two con-
jugacy classes.
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As we said in the introduction, a group with non-trivial intersection of
non-trivial subgroup is torsion free or a p-group for some prime p. The
next proposition shows that the second case can be investigate by a very
elementary argument, and so the hardest part of the problem, is the case of
torsion free groups which are not R-groups.

Proposition 2.3. Let G be a p-group such that the intersection of any two
non-trivial subgroups is non-trivial. Then G has a unique subgroup of order
p. The converse is also true.

Proof. Let G be a p-group and the intersection of any two non-trivial sub-
group of G be non-trivial. Suppose x is a non-identity element of G. Then
〈x〉 has a subgroup A of order p. For any 1 6= B ≤ G, we have A ∩ B 6= 1,
so A ⊆ B and hence A is a unique subgroup of G of order p. Conversely let
G has a unique subgroup of order p, say A. Then clearly for any non-trivial
subgroup B, we have A ⊆ B, and hence every two non-trivial subgroups of
G have non-trivial intersection. �

Note that the subgroup A in the proof the above proposition is minimum
in the set of non-trivial normal subgroups of G. So, by a well-known theorem
of Birkhoff, such a group G is sub-directly irreducible.

Corollary 2.4. Any p-group with non-trivial intersection of non-trivial sub-
groups is sub-directly irreducible.

The author encountered another class of groups, when he was working on
the structure of groups which are Hausdorff with respect to normal topo-
system. These are groups G, satisfying the condition

〈x〉 ∩ 〈y〉 = 1 ⇒ 〈xG〉 ∩ 〈yG〉 = 1.

Theorem 2.5. Let G be a group satisfying the condition

〈x〉 ∩ 〈y〉 = 1 ⇒ 〈xG〉 ∩ 〈yG〉 = 1.

Then for any a, u ∈ G, there are non-zero integers m and n such that
uxnu−1 = xm. Further, if G is also an R-group, then there exists a Q-group
G∗ and a family of subgroups Ai ≤ G∗, such that

1- G ⊆
⋃

i Ai.
2- Ai

∼= Q.
3- Ai ∩Aj = 1, for i 6= j.

Proof. Let A = G \ 1 and define a binary relation on A by

x ≡ y ⇔ 〈x〉 ∩ 〈y〉 6= 1.

This is an equivalence relation on A. Let E(x) be the equivalence class of x
and {Ei : i ∈ I} the set of all such classes. Then we have

G =
⋃

i

⋃

y∈Ei

〈y〉.
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Now, since

〈x〉 ∩ 〈y〉 = 1 ⇒ 〈xG〉 ∩ 〈y〉 = 1,

so, 〈xG〉 ⊆
⋃

y∈E(x)〈y〉. Let u ∈ G be arbitrary. Then there is a y ∈ E(x)

such that uxu−1 ∈ 〈y〉. Hence, for some i,m and n we have

uxu−1 = yi, xm = yn.

Therefore, for any x, u ∈ G, there are non-zero integers m and n such that
uxnu−1 = xm. Now, suppose G is R-group. As we saw before, there exists
a Q-group G∗ containing G as a subgroup. Let Ei = E(x). Then we have

Ei = {y ∈ G : ∃m,n 6= 0, xm = yn}

⊆ {xα : α ∈ Q}

⊆ G∗.

Suppose Ai = {xα : α ∈ Q}. Then any Ai is a subgroup of G∗ and we
have 1-2-3. �

3. One more embedding theorem

In this section, we generalize the embedding theorem of R-groups proved
in the previous section to more general classes of groups. Let π be a set of
prime numbers. We consider the ring

Qπ = {
m

n
∈ Q : n is a π′ − number}.

If π consists of a single element p, then we denote this ring by Qp. A group
G is an Rπ-group, iff for any x and y and any π′-number n, we have the
implication

xn = yn ⇒ x = y.

The order of any element of such a group is infinite or a π-number. We say
that G is π-divisible, iff for any x ∈ G and any π′-number n, there exists
y ∈ G, such that yn = x. Note that if a group G is both Rπ-group and
π-divisible, then there is a unique y satisfying yn = x, for a given π′-number

n. So, we denote this element by x
1

n . Now, a group which is both Rπ-group
and π-divisible, can be regarded as an exponential group over the ring Qπ

(or Qπ-group for short) via x
m
n = (x

1

n )m. The reader most consult [3] and
[4] for the theory of exponential groups. Note that any Qπ-group is also
Rπ-group and π-divisible. We are now ready to prove the main theorem of
this section.

Theorem 3.1. Let G be an Rπ-group. Then there exists a Qπ-group G∗

containing G such that
1- G∗ is simple,
2- element of the same order in G∗ are conjugate,
3- G∗ is not finitely generated,
4- and every finite π-group embeds in G∗.
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Proof. The proof is almost the same as 2.1 and [2]. Let Xπ be the class of
all Rπ-groups. This class is also inductive and closed under subgroup. Since
G ∈ Xπ, so there exists a group G∗ ∈ Xπ containing G, which is algebraically
closed in the class Xπ. Suppose 1 6= a, b ∈ G∗ have the same order. We show
that a and b are conjugate. Suppose the HNN-extension

G∗

a,b = 〈G∗, t : tat−1 = b〉.

It is enough to show that G∗

a,b belongs to Xπ. But the proof of this part

is similar to the proof of 2.1 (except in the induction step, in this case we
don’t argue by induction, since k − 1 may not be a π′-number. Instead we
continue to reduce k − 1 to k − 2 and so on to get u = v). This shows
that elements of the same order in G∗ are conjugate. To show that G∗ is a
Qπ-group, let x ∈ G∗ and n be a π′-number. We know that the orders of x
and xn are equal. Hence there is a z ∈ G∗ such that x = zxnz−1. Suppose
u = zxz−1. Then un = x and hence G∗ is Qπ-group.

We show that G∗ is simple. Note that G∗ ∗ 〈x〉 is an Rπ-group. This
follows from the fact that G∗ is an Rπ-group and the uniqueness of the
reduced form of elements in free products. Let 1 6= a,w ∈ G∗ be arbitrary
elements and suppose u = wxw−1x−1 and v = axw−1x−1. Then u and v

are reduced in the free product and so they have infinite orders. Hence we
can consider the HNN-extension

M = 〈G∗ ∗ 〈x〉, t : tut−1 = v〉.

With the same argument as for G∗, we see that M is also an Rπ-group. The
equation

twxw−1x−1t−1 = axw−1x−1

has a solution for t and x in M , therefore it has already a solution in G∗.
We have

a = (twt−1)(txw−1x−1t−1)(xw−1x−1),

so a ∈ 〈wG∗

〉. Hence, for all 1 6= w ∈ G∗, we have G∗ = 〈wG∗

〉. This proves
that G∗ is simple.

Now, since G∗ is non-abelian simple group, we have Z(G∗) = 1. On the
other hand, for any finite subset a1, . . . , am ∈ G∗, the system

a1x = xa1, . . . , amx = xam, x 6= 1,

has a solution in the Rπ-group G∗×〈x〉, so it has a solution in G∗. Therefore

CG∗(〈a1, . . . , am〉) 6= 1.

This proves that G∗ is not finitely generated.
Finally, suppose that H is a finite π-group and

H = {1 = g0, g1, . . . , gm}.

For any 1 ≤ i, j ≤ m there exists a unique 0 ≤ k(i, j) ≤ m, such that
gigj = gk(i,j). The group G∗ ×H is clearly an Rπ-group and the system

xixj = xk(i.j), x1 6= 1, . . . , xm 6= 1
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has a solution in G∗×H and hence it has a solution in G∗. This shows that
H is embedded in G∗.

�

Corollary 3.2. Suppose G is an Rp-group such that non-identity elements
of G have order p. Then G can be embedded in a Qp-group which has just
two conjugacy classes. This group is not finitely generated and any finite
p-group embeds in it.
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