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Abstract

A well-known result by P. Cameron provides us with a construction of the free
group of rank 2ℵ0 within the automorphism group of the rationals. We show that the
full versatility of doubly transitive automorphism groups is not necessary by extending
Cameron’s construction to a larger class of permutation groups and generalize his result
by constructing pathological (permutations of unbounded support) and ω-transitive

(highly transitive) representations of free groups. In particular, and working solely
within ZFC, we show that any large subgroup of Aut(Q) (resp. Aut(R)) contains an
ω-transitive and pathological representation of any free group of rank λ ∈ [ℵ0, 2

ℵ0 ]
(resp. of rank 2ℵ0). Assuming the continuum to be a regular cardinal, we show that
pathological and ω-transitive representations of uncountable free groups abound within
large permutation groups of linear orders. Lastly, we also find a bound on the rank of
free subgroups of certain restricted direct products.

Introduction

The study of automorphism groups of linear orders effectively began in 1957 with a pub-
lication by P. M. Cohn [5] where he solved a question posed by B. H. Neumann: Can the
automorphism group, Aut(Ω), of any linear order, Ω, be ordered? An ordering on Aut(Ω)
([3], [9]) is meant to convey a partial order (Aut(Ω), <) so that the order is invariant under
actions of Aut(Ω) onto itself. Cohn answered this question negatively and gave sufficient and
necessary conditions on Ω for rendering an order on Aut(Ω) and any large (a doubly tran-
sitive l-group closed under piecewise patching and disjoint patching, [7]) subgroups thereof.
Under the assumption of the Generalized Continuum Hypothesis (GCH), Glass ([8]) showed
that the free l-group Fℵα

of rank ℵα can be represented as an o-2 transitive l-subgroup
of the automorphism group of an α-set. Over a decade later McCleary ([11]) crystalized
further group theoretic properties of free l-groups by extending the above result to any free
l-group. McCleary’s remarkable result was achieved by exploiting, as he calls it, the best
of both worlds ; a right ordering (Gκ,≤) (i.e. a right ordering on the free group of rank κ)
for which the natural action of Fκ (in the sense of Conrad [6]) is faithful and o-2 transitive.
A comprehensive retrospective survey by Bludov, Droste and Glass can be found in [2].
Working in the other direction (i.e. when do permutation groups of linear orders accept free
subgroups), Cameron ([4]) constructs a copy of the free group of rank 2ℵ0 within Aut(Q).
Moreover, it is possible to show that any doubly transitive automorphism group of a linear
order (one which acts transitively on ordered pairs) of a linear order must contain a copy of
Aut(Q). In this paper we show that the full versatility of doubly transitive automorphism
groups is not necessary by constructing pathological (permutations of unbounded support)
and ω-transitive (transitive on all ordered n-tuples) representations of free groups within
several classes of doubly transitive permutation groups of linear orders. In particular, and as
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a consequence of our main result, we greatly generalize Cameron’s construction by proving
that any large subgroup of Aut(Q) (resp. Aut(R)) contains an ω-transitive and pathological
representation of any free group of rank λ ∈ [ℵ0, 2

ℵ0 ] (resp. of rank 2ℵ0).

Background

The symbols κ and λ will always denote infinite cardinals and c = 2ℵ0 . For any κ, λ = κ+n

denotes the nth successor of κ and [κ]<ω denotes the collection of all of its finite subsets. A
function f : κ → λ is cofinal in λ provided its range (ran(f)) knows no bounds in λ. The
cofinality of any λ (cof(λ)) is the smallest κ so that there exists a function that cofinally
maps κ into λ. A cardinal is regular if it is its own cofinality and singular otherwise. Since
it is consistent with ZFC that c = ℵ1 and that c = ℵω1

, regularity of c is then independent
of ZFC. If x, y ⊂ κ so that |x| = |y| = κ and |x ∩ y| < κ then x and y are said to be almost
disjoint (a. d.). An a. d. family is a collection of pairwise a. d. sets and any such family is
maximal (m. a. d. f.) whenever it is not contained in any other a. d. family.

Standard definitions and notation regarding permutation groups (i.e. l-group, faith-
ful representation, support, etc) can be found in [2]. In order to avoid confusion, we
remark that throughout this paper all k-tuples are assumed to be ordered and the sym-
bols P and Ω = (Ω,≤) will represent a permutation group and a linear order, respec-
tively. A k-transitive permutation group P on an arbitrary Ω is one for which given
any pair of k-tuples (a1, a2, . . . , ak), (b1, b2, . . . , bk) ∈ Ωk we can find an f ∈ P for which
(f(a1), f(a2), . . . , f(ak)) = (b1, b2, . . . , bk). Moreover, if P is k-transitive for all k ∈ N then
we refer to it as an ω-transitive permutation group. A 2-transitive permutation group will
be called doubly transitive. Notice that if P is doubly transitive and Ω contains more than
two points then Ω must be a dense linear order (DLO) and have no end points. A faithful
representation (in the sense of [11]) of a group G within a permutation group will be denoted
by Ĝ. We adopt the traditional use of Gκ to denote the free group of rank κ. For a g ∈ P ,
supp(g) will denote its support and P will be referred to as pathological provided it contains
no element (6= e) of bounded support.

Recall that any P ≤ Aut(Ω) is said to be closed under piecewise patching precisely when
given any convex subset S of Ω and coterminal (unbounded above and below) sequences
{ai | i ∈ Z} and {bi | i ∈ Z} in S with ai < ai+1 and bi < bi+1 so that ∀i ∈ Z there exists
gi ∈ P for which gi([ai, ai+1]) = [bi, bi+1] then P also contains an element g that acts as the
identity outside S and g(x) = gi(x) provided x ∈ [ai, ai+1]. Similarly, P is said to be closed
under disjoint patching if for all i ∈ I, gi ∈ P and supp(gi) ∩ supp(gj) = ∅ (for j 6= i) then
∃g ∈ P so that

g(x) =

{

gi(x) if x ∈ supp(gi) and

x if otherwise.

Any doubly transitive l-subgroup of Aut(Ω) closed under piecewise patching and disjoint
patching is said to be large in Aut(Ω) (or just large). The letter H will be used to refer
to large permutation groups exclusively. We adopt the traditional use of the restriction
symbol ‘↾’. That is, for Λ ⊆ Ω and any g ∈ Aut(Ω) then g ↾ Λ (if it exists) is the
unique element in Aut(Λ) that acts like g on Λ. Lastly, for any P and Λ ⊆ Ω we define
AutP (Λ) := {g ∈ Aut(Λ) | ∃ g ∈ P so that g ↾ Λ = g} Notice that AutP (Λ) makes no
reference to the ambient linear order Ω, hence this symbol will only be used when it is clear
what Ω is, leaving no room for confusion.

Our method for constructing representations of free groups is supported by two key-
stones: one is Cameron’s representation ofGc within Aut(R) while the other is a consequence
of the following lemma ([12]).
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1 THE COUNTABLE PATHOLOGICAL CASE

Lemma 0.1 (Ping-Pong Lemma). Let G be a group acting on a set X. Suppose that
{A1, A2, . . . , An, B1, B2, . . . , Bn} is a set of pairwise disjoint subsets of X so that for
f1, f2, . . . , fn ∈ G we have:

Bc
i ⊆ fi(Ai),

then the group generated by {f1, f2, . . . , fn} is free.

1 The Countable Pathological Case

We begin by illustrating a simple representation of G2 within Aut(R) for it can be easily
extended to any large permutation group of a linear order1.

Example 1.1. Let Nn = {[a, a+1) | a ≡ n (mod 4)} (n = 0, 1, 2, 3) and define f ∈ Aut(R)
so that f [a, a + 1) = [a, a + 13

4 ), [a + 9
4 , a + 10

4 ), [a + 6
4 , a + 7

4 ) and [a + 3
4 , a + 1) when

[a, a + 1) ∈ N0, N1, N2 and N3 respectively. Since f is periodic with a period of 4 we can
understand how f behaves on R by its action on the interval [0, 4].
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Figure 1: The interval [0, 4] under f .

As for g ∈ Aut(R) we let g(x) = f(x− 2)+ 2. It is then possible to apply the Ping-Pong
Lemma to this example by letting A1 = N0, B1 = N3, A2 = N2 and B2 = N1. In turn,
{f, g} generates a free subgroup of Aut(R).

Notice that the above example makes no use of the algebraic properties of R; this is
essential since our goal is to extend the above example to linear orders in general. In the
sequel we use Gω to denote Gℵ0

and use the symbol Ω exclusively to denote a linear order.

Lemma 1.2. For any doubly transitive P ≤ Aut(Ω) closed under piecewise patching and
any interval Λ ⊂ Ω there exists a representation Ĝη of Gη (1 < η ≤ ℵ0) in AutP (Λ) so that

any element in Ĝη can be trivially extended to an element in P . That is, given any g ∈ Ĝη

we can find a g ∈ P so that g ↾ Λ = g and the identity otherwise.

Proof. Notice that it suffices to prove the above for η = 2. Let P and Λ satisfy the hypothe-
sis, Γ = {ai ∈ Λ | i ∈ Z and ai < ai+1} (an order-isomorphic copy of Z in Λ) and CΓ denote
the convex hull of Γ. In the same spirit as with Example 1.1 we let In = {[ai, ai+1) | ai ∈ Γ
and i ≡ n (mod 4)}. Since P is doubly transitive we can find, for all i ≡ 0 (mod 4),
fi, f

′
i ∈ P for which [ai, ai+1] 7→ [ai, ai+3] and [ai−3, ai] 7→ [ai−1, ai] respectively. In turn, if

we consider the sets {ai ∈ Γ | i ≡ 0 or 1 (mod 4)} and {ai ∈ Γ | i ≡ 0 or 3 (mod 4)} and
since P is closed under piecewise patching and Γ is coterminal in CΓ then we can find an
f ∈ P so that:

1There are several constructions of free groups within Aut(R). Some are explicit constructions [1] while
others involve more difficult algebraic notions [13].
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1 THE COUNTABLE PATHOLOGICAL CASE

f(x) =











x if x 6∈ CΓ,

fi(x) if x ∈ [ai, ai+1], and

f ′
i(x) if x ∈ [ai−3, ai].

In much the same way as with f , let gi, g
′
i ∈ P for which [ai, ai+1] 7→ [ai, ai+3] and

[ai−3, ai] 7→ [ai−1, ai] respectively, provided i ≡ 2 (mod 4). Considering the sets {ai ∈ Γ |
i ≡ 2 or 3 (mod 4)} and {ai ∈ Γ | i ≡ 0 or 3 (mod 4)} and by double transitivity of P we
have a g ∈ P for which:

g(x) =











x if x 6∈ CΓ,

gi(x) if x ∈ [ai, ai+1], and

g′i(x) if x ∈ [ai−3, ai].

By design, the restrictions of g and f to CΓ exist; denote them by g and f , respectively.
By applying the Ping-Pong Lemma to f and g we see that they generate a representation
of G2 within Aut(CΓ); let A1 = I0, B1 = I3, A2 = I2 and B2 = I1. In turn, their trivial
extensions to Λ (i.e. g ↾ Λ and f ↾ Λ) also generate a representation of G2 within Aut(Λ).
To finish the proof we must only notice that g and f act as the identity outside Λ.

In other words, double transitivity in addition to being closed under piecewise patching
suffices to construct free groups of countable rank. Moreover, a doubly transitive permuta-
tion group implies a highly homogeneous linear order and in view of the previous lemma,
free subgroups within such automorphism groups abound.

Corollary 1.3. Any doubly transitive subgroup of any Aut(Ω) closed under piecewise patch-
ing contains a representation of Gω.

The permutation group constructed in Lemma 1.2 is not pathological unless the cofinality
and coinitiality of Ω are countable. Of course, it is pathological in the convex hull of Γ, but
we can do better than that. As the next result suggests, being closed under disjoint union
is certainly enough.

Lemma 1.4. Any doubly transitive P ≤ Aut(Ω) closed under disjoint patching and piecewise
patching contains a pathological representation of Gω.

Proof. Let P ≤ Aut(Ω) as above and C = {Λi ⊂ Ω | i ∈ I} be any unbounded (below and
above) collection of pairwise disjoint intervals. By Lemma 1.2 we know that for each i ∈ I

there exists a representation of Gω in AutP (Λi), say Gi, so that any element in Gi can be
trivially extended to all of Ω; for each i ∈ I let {gi,j}j∈ω and {gi,j}j∈ω denote the generating
set of Gi and their trivial extensions to Ω, respectively. Since P is closed under disjoint
patching then for each j ∈ ω we can construct an fj ∈ P for which fj(x) = gi,j(x) provided
that x ∈ Λi (for some i ∈ I) and the identity otherwise. This is indeed possible since the
supports of any pair gk,j , gl,j (with k 6= l) are disjoint. By assumption, C is unbounded and
consequently so is the support of each fj . To this end we must only notice that {fj}j∈ω

generates a pathological representation of Gω in P .

We also prove in the sequel that Lemma 1.4 can be further extended up to continuum-
size free groups. Moreover, and depending on the transitivity of the permutation group, the
representation can be made at least 2-transitive.
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2 THE UNCOUNTABLE CASE AND TRANSITIVITY

2 The Uncountable Case and Transitivity

As this section illustrates, Lemma 1.4 can be extended much further. That said, the count-
able case is as far as the Ping-Pong Lemma can take us. For the uncountable case we turn
to a construction by Cameron [4] of the free group of size continuum within Aut(Q). We
exploit such a construction by generalizing it to a certain collection of regular cardinals.
The following theorem can be found in [10] and is key to what follows.

Theorem 2.1. For κ ≥ ω a regular cardinal

• If A ⊂ P(κ) is an a. d. family and |A| = κ then A is not maximal.

• There is a m. a. d. f. within P(κ) with cardinality ≥ κ+.

In the case of ℵ0 it is possible to construct an a. d. family within P(ℵ0) of size 2ℵ0 . It is
this fact (along with some insightful ideas) that enables Cameron2 to construct Gc within
Aut(Q, <) . Upon careful inspection of such a construction it becomes clear that the same
can be done with any large subgroup of Aut(Ω), where Ω is any linear order. The reader
who is familiar with the aforementioned would benefit by skipping the proof of the following
theorem for it is almost a faithful copy of the original.

Lemma 2.2. Let Ω be a linear order and P ≤ Aut(Ω) be doubly transitive, closed under
piecewise patching and disjoint patching. For any interval Λ ⊂ Ω there exists a representa-
tion Ĝc of Gc in P for which any element in Ĝc is the identity outside Λ.

Proof. Begin by taking any interval Λ ⊆ Ω and a copy of N, Γ = {ai ∈ Λ | i ∈ N and ai <

ai+1}, in Λ. By virtue of Lemma 1.2 and for each i ∈ Z we are guaranteed a representation
of Gω within AutP (ai, ai+1) which can be trivially extended to a representation, Gi, of Gω

in P . For each i, let fi,0, fi,1, . . . be a set of generators of Gi. Next take any a. d. family
A = {Aγ ⊂ N | γ ∈ c} and for each γ ∈ c let hγ : N → Aγ be the function that enumerates
Aγ . The crucial step in this proof is to let gα, for any α ∈ c, be the permutation on Ω that
when restricted to (ai, ai+1) is exactly fi,hα(i) and the identity otherwise. This is possible
since P is closed under disjoint patching and for k 6= l, supp(fl,n) ∩ supp(fk,m) = ∅. To
check that indeed {gα | α ∈ c} generates Gc in P take any word w(gα0

, . . . , gαn
) on distinct

α0, . . . , αn ∈ c. Recall that by almost disjointness of A we have that |Aα0
∩ . . . ∩ Aαn

| ∈ N

and consequently any pair gαk
, gαl

can agree on at most finitely many intervals. In other
words, gαk

↾ (ai, ai+1) = gαl
↾ (ai, ai+1) for at most finitely many i ∈ N. Clearly, this

argument also holds for any finite collection of elements from {gα | α ∈ c} and the proof is
complete.

Just as was done with Lemma 1.4 it is possible to extend the previous lemma to a
pathological representation of Gc. Indeed, we must only take a coterminal collection of
disjoint intervals from Ω and notice that for each such interval, say Λ, and any such P ,
Lemma 2.2 can be easily applied to AutP (Λ). Consequently, we can build a choice function
in very much the same spirit as with Lemma 1.4.

Corollary 2.3. For Ω a linear order we have that any doubly transitive subgroup of Aut(Ω)
closed under piecewise patching and disjoint patching contains a pathological representation
of Gc.

What is not obvious is that if the permutation group P is n-transitive (for some n ∈
N) then above representation can be designed to be n-transitive provided, of course, that
|Ω| ≤ c. In view of Theorem 2.5, Theorem 2.4 might seem redundant. That said, we think
it greatly facilitates the understanding of Theorem 2.5. The technique employed in proving
the following is modeled on a result by McCleary ([11] pg. 2).

2In fact, Cameron credits such a construction to Jim Kister
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2 THE UNCOUNTABLE CASE AND TRANSITIVITY

Theorem 2.4. Let |Ω| ≤ c and P ≤ Aut(Ω) be n-transitive, closed under piecewise patching
and disjoint patching. Then Gλ can be represented as a pathological n-transitive permutation
group within P provided c ≥ λ ≥ |Ω|. In particular, any large subgroup of Aut(Q) (resp.
Aut(R)) contains a pathological ω-transitive representation of Gλ (resp. Gc).

Proof. We prove the theorem for 2-transitivity for it can be easily extended to any n-
transitivity. Let P and λ be given, C be a coterminal collection of pairwise disjoint bounded
intervals from Ω and denote Ω2 = {(a, b) ∈ Ω × Ω | a < b}. Let F : Ω2 × Ω2 → λ be any
injection. For any pair (a1, a2), (b1, b2) ∈ Ω2 take any bounded interval Λ containing the
points a1, a2, b1 and b2 for which there exists an f ∈ P so that f(ai) = bi and f(x) = x

whenever x ∈ ΩrΛ; this is indeed possible since P is closed under piecewise patching. For
each interval Ij ∈ C, let {fi,j}i∈λ ⊂ P be the generating set of a representation of Gλ for
which any generator is the identity outside Ij . This is indeed possible by virtue of Lemma 2.2.
Next, let α = F [((a1, a2), (b1, b2))] and gα ∈ P be the one for which gα ↾ Λ = f ↾ Λ,
gα ↾ Ij = fα,j ↾ Ij and the identity otherwise. For all other β ∈ Λ not in the range of F
we simply let gβ ↾ Ij = fβ,j ↾ Ij and the identity otherwise. Finally, the set {gα | α ∈ λ}
generates a pathological 2-transitive representation of Gλ within P . The extension to n-

transitivity (resp. ω-transitivity) is done by extending F to an injection from
⋃

j≤n

Ωj
j into

λ (resp. by extending F to an injection from
⋃

n∈N

Ωn
n into λ), where Ωj

j represents the jth

cartesian product of Ωj = {(a1, . . . , aj) ∈ Ωj | ai < ai+1}.
Recall that any 2-transitive l-group is ω-transitive. Consequently, any large permutation

group (on a linear order) is then ω-transitive.

We are now ready to state and prove the main theorem.

Theorem 2.5. For Ω a linear order and 2 ≤ n ≤ ω we have

1. Any n-transitive P ≤ Aut(Ω) closed under piecewise patching and disjoint patching
contains a pathological representation of Gλ for 2 ≤ λ ≤ c. Moreover, if |Ω| ≤ λ then
Gλ can be represented as pathological and n-transitive within P .

2. (c regular) If there exists a collection of κ disjoint intervals from Ω then for any
n-transitive P ≤ Aut(Ω) closed under piecewise patching and disjoint patching and
any n < ω for which λ = cn ≤ κ (resp. λ = cω ≤ κ) there exists a pathological
representation of Gλ+ (resp. Gλ) in P . Moreover, if λ = |Ω| then Gλ and Gλ+ (resp.
Gλ) can be represented as pathological and n-transitive within H.

3. (GCH) If for some n ≤ ω, |Ω| = cof(Ω)= ℵn then any n-transitive P ≤ Aut(Ω)
closed under piecewise patching and disjoint patching contains pathological n-transitive
representations of Gℵn

. Moreover, if n ∈ N then the same is true of G2ℵn .

Proof. Theorem 2.4 proves (1). For (2), we first prove the above for all n ∈ N by induction
on n. Let c = λ ≤ κ and notice that since λ is regular then by Theorem 2.1 there exists an
a. d. family A = {Aγ | γ ∈ λ+} ⊂ P(λ). Further, let H ≤ Aut(Ω) be large, hα : λ → Aα be
the function that enumerates Aα ∈ A and C = {Iα ⊂ Ω | α ∈ κ} be a collection of pairwise
disjoint intervals. By virtue of Lemma 2.2, given any interval I ∈ C there exists Ĝc ≤ H

so that any element in Ĝc is the identity outside I. Take any Iα ∈ Cλ = {Iγ ∈ C | γ ≤ λ}
and let fα0, fα1, . . . fαω . . . be the generators of a representation of Gc in H , G(α), for
which any element in G(α) is the identity outside Iα. Given any β ∈ λ+ define gβ to be
the permutation on Ω that when restricted to Iα is exactly fαhβ(α) and the identity for
any Iγ ∈ C r Cλ. Again, this is possible since intervals in C are disjoint and H is closed
under disjoint patching. To this end we need only check that no word w(gα1

, . . . , gαn
) on

distinct α1, . . . , αn ∈ λ+ is trivial. By almost disjointness and regularity of λ we know that

6



2 THE UNCOUNTABLE CASE AND TRANSITIVITY

|Aα1
∩ . . .∩Aαn

| < λ. Now, for each β ∈ λ+ and Iα ∈ Cλ the choice of generator for gβ from
Fα when restricted to Iα is done by hβ (i.e. gβ ↾ Iα = fαhβ(α)). In other words, gβ ↾ Iα

is the hβ(α)
th generator of Fα. The aforementioned tells us that for a pair gαi

, gαj
their

restrictions to intervals in Cλ can be the same on at most fewer than λ-many intervals. In
fact, they can agree on at most as many elements as Aαi

and Aαj
have in common. Clearly

the argument also holds for any finite collection of elements from λ+. In turn, we have a
γ ∈ λ so that w(gα1

, . . . , gαn
) ↾ Iγ is not the identity.

The inductive step is handled in much the same manner. Let c < λ = cn ≤ κ and notice
that since successor cardinals are regular then so must be λ. Consequently, the logic behind
the base case applies to the inductive step.

For the case where λ = cω ≤ κ we will construct a nested sequence of free groups within
H of increasing rank. Take C = {Iα | α ∈ cω} to be a collection of cω pairwise disjoint
bounded intervals in Ω. For the sake of simplicity, partition C into ω many parts of size cω

so that each part is unbounded in Ω. That is, calling each part Cn (n ∈ ω), for any a ∈ Ω
there exist intervals Ia, I

a ∈ Cn so that Ia > a and Ia < a. Notice that by virtue of the
previous paragraph, for any n ∈ ω we can construct a representation Ĝcn

≤ H of Gcn
so that

each g ∈ Ĝcn
has unbounded support and acts as the identity outside

⋃

Cn. For each n ∈ ω

let {fn,j}j∈cn
denote a generating set of Ĝcn

. Of course, each fn,j has unbounded support.
Next, for all j ∈ c let g0,j ∈ H be the one for which g0,j(x) = fn,j(x) when x ∈

⋃

Cn and
the identity otherwise. In general, we want for all k ∈ ω

gk,j(x) =

{

fn,j(x) if x ∈
⋃

Cn and j ∈ cn

x otherwise.

Consequently, for each k ∈ ω, {gk,j}j∈ck
generates a pathological copy of Gck

in H and
for m < n we have that {gm,j}j∈cm

⊂ {gn,j}j∈cn
. To this end it should be clear that

⋃

n∈ω

{gn,j}j∈cn
generates a pathological copy of Gcω

in H .

Next, if |Ω| = λ it is a simple matter to set up a choice function between generators of
Gλ and ordered pairs within Ω in much the same fashion as with Theorem 2.4.

Lastly, for (3) since GCH implies that c is regular then (2) ⇒ (3).

For some n ∈ N, let L(ℵn) = ℵn ×ℵn ordered lexicographically. Assuming GCH and by
Theorem 2.5 there exists a representation of the free group of rank ℵ+

n = 2ℵn = |Aut(L(ℵn))|
within any large subgroup of Aut(L(ℵn)). Thus, under GCH, |H | = |Aut(L(ℵn))| for any
large H .

Nested sequences of free groups are essential for the construction of Gℵω
in Theorem 2.5.

Take for instance the following theorem where
⊕

denotes a restricted direct product.

Theorem 2.6. Let G =
⊕

β∈κHβ for which |Hα| < sup(|Hβ|)β∈κ = λ, for any α ∈ κ.
Then for any freely generated H ≤ G we have that rank(H) < λ.

Proof. Assume that there exists H ≤ G freely generated by FH with |FH | = λ. In order to
avoid trivialities we assume λ > ℵ0. Let us begin by defining i : FH → [κ]<ω where a ∈ i(g)
iff πa(g) 6= e (i.e. the ath coordinate of g is not the identity). Take any A ∈ ran(i) and notice
that for any B ∈ ran(i), A∩B 6= ∅. Otherwise all elements from i−1(A) commute with any
element from i−1(B). Define, for all a ∈ κ and h ∈ Ha, a(h) = {g ∈ FH | πa(g) = h} and
given B ∈ ran(i) let Ba(h) = i−1(B) ∩ a(h). Back to A, we have that since A ∈ [κ]<ω then
by the Pigeonhole Principle there exists a1 ∈ A and h1 ∈ Ha1

for which

∣

∣

∣

∣

∣

∣

⋃

B∈ran(i)

Ba1
(h1)

∣

∣

∣

∣

∣

∣

= λ
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where we let a1 be the smallest element of A for which the above is true. Next, denote
B1 =

⋃

B∈ran(i)

Ba1
(h1) and notice that there must exist λ elements f ∈ B1 so that i(f) 6⊂ A

(since the largest element in {|Ha|}a∈A is smaller that λ). Take any pair g1, g2 ∈ B1 and
observe that if i(g1) ∩ A = i(g2) ∩ A = {a1} then [g1, g2] := g1g2g

−1
1 g−1

2 commutes with all
elements from i−1(A). Thus, for all (but at most one) g ∈ B1, i(g) ∩ A − {a1} 6= ∅. Let
A1 = A− {a1}. Since A1 ∈ [κ]<ω then we can find an a2 ∈ A1 and h2 ∈ Ha2

so that

∣

∣

∣

∣

∣

∣

⋃

B∈ran(i)

(Ba1
(h1) ∩Ba2

(h2))

∣

∣

∣

∣

∣

∣

= λ.

Again, we let a2 be the smallest element in A1 that satisfies the above equation. We are
now in a very similar situation to that encountered at the beginning of the proof. In turn,
we can run the above argument until we exhaust all of A, at which point we have a collection
of elements from H whose commutator commute with any element from A. Indeed, let us
assume that A = {a1, . . . , ak} and that

∣

∣

∣

∣

∣

∣

⋃

B∈ran(i)





⋂

j≤k−1

Baj
(hj)





∣

∣

∣

∣

∣

∣

= λ for hj ∈ Haj
.

Let Bk =
⋃

B∈ran(i)

(

⋂

j≤k

Baj
(hj)

)

and again take any pair g1, g2 ∈ Bk for which i(g1)

and i(g2) are not contained in A. If ak 6∈ i(g1), i(g2) then [g1, g2] commutes with everything
in A. In turn, we must have that for all (but at most one) g ∈ Bk, ak ∈ i(g). Hence, for the
last element in A we have

∣

∣

∣

∣

∣

∣

⋃

B∈ran(i)





⋂

j≤k

Baj
(hj)





∣

∣

∣

∣

∣

∣

= λ for hj ∈ Haj
.

Lastly, take any pair g1, g2 ∈
⋃

B∈ran(i)

(

⋂

j≤k Baj
(hj)

)

for which i(g1), i(g2) 6⊆ A and

notice that [f, [g1, g2]] = e for any f ∈ i−1(A).

Corollary 2.7. Let G =
⊕

i∈ω Fi so that each Fi is the free group of rank ℵi. If H ≤ G is
a free group then rank(H) < ℵω.

3 Conclusion

The set-theoretic restriction on Theorem 2.5 (i.e. singular cardinals) highlights a natural
bound in the method employed within this paper and it is unknown to the present author
whether or not it can be extended any further. As far as transitivity goes, the minimum
requirement we must impose on a permutation group is double transitivity on at least one
interval of the linear order. Also, piecewise patching and disjoint patching are very strong
properties. An interesting result would involve free group constructions involving weaker
versions of the above properties. As for free group representations, a similar question can
be asked in terms of l-groups. That is, when do permutation groups of linear orders admit
representations of free l-groups? It is worth noting that the Ping-Pong Lemma does not
guarantee a lattice order on the free group.
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