MAT 441 2/27/09 (due Friday 3/6/09) 15 points

Justify all answers. Unsupported answers may not receive full credit

1. Let $X = \{-1,1\} \times [-1,1]$. (So X is a union of two disjoint line segments.) Let \sim the the equivalence relation on X defined by $(-1,x) \sim (1,x)$ for $-1 \le x < 0$ (and $(x,y) \sim (x,y)$ for all $(x,y) \in X$). Show that the quotient space X/\sim is not Hausdorff.

Let x = [(-1,0)] and y = [(1,0)] in X/w. Then $x \neq y$. Let $y \neq 0$ be an open $x \neq y$. Let $y \neq 0$ be an open $x \neq y$. Then $x \neq 0$ is a saturated open $x \neq 0$ back of (-1,0) in $x \neq 0$ where $y = x \rightarrow x/w$ is the canonical map. Then $x \neq 0$ such that $x \neq 0$ is $x \neq 0$ such that $x \neq 0$ is $x \neq 0$. Similarly, if $x \neq 0$ is an open $x \neq 0$ such that $x \neq 0$ in $x \neq 0$. Let $x \neq 0$ with that $x \neq 0$ and $x \neq 0$. Then $x \neq 0$ is $x \neq 0$ and $x \neq 0$. Then $x \neq 0$ is $x \neq 0$. Then $x \neq 0$ in $x \neq 0$ and $x \neq 0$. Then $x \neq 0$ is $x \neq 0$.

(1,y) = p'(w). Then p(Hy)) = V and p(Uy)) = W- Since y = ?

2. Suppose A is a connected subspace of X. Prove that \overline{A} is connected. P((-1y)) = P((-1y)). Thus Suppose \overline{A} is not connected. Then \overline{A} open \overline{A} is \overline{A} is not connected. Then \overline{A} open \overline{A} is \overline{A} is \overline{A} is \overline{A} is not \overline{A} which \overline{A} is \overline{A} is \overline{A} is \overline{A} is not that \overline{A} is not \overline{A} . Let \overline{A} is not \overline{A} is not \overline{A} . Let \overline{A} is not \overline{A} is not \overline{A} is not \overline{A} . Then \overline{A} is an open which of \overline{A} and \overline{A} is \overline{A} . Then \overline{A} is not \overline{A} . Then \overline{A} is and \overline{A} is an open which \overline{A} is \overline{A} is not \overline{A} . Then \overline{A} is not \overline{A} is \overline{A} is \overline{A} . This contradicts the hypothese (since \overline{A} is \overline{A} is \overline{A} is \overline{A} . This contradicts the hypothese \overline{A} is not \overline{A} .

3. Recall: a path in X from x to y is a continuous function $\gamma \colon [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. A space X is path-connected iff, for every $x, y \in X$, there is a path in X from x to y.

(a) Prove: if X is path-connected then X is connected.

Hint: Show that X has only one connected component

Let x, y \in X. Then 3 parts Y: [0,1] -> X

with \$10) = x and \$1(1) = y. Since [0,1] is connected

and \$1 is continuous, \$1([0,1]) is connected. Thus

x and y lie in a connected subspace of X. Since x and y

were arbitrary, this shows that X. has a single connected

component. Since components are connected, it follows that

X is connected.

(b) Prove that the topologist's sine wave

$$X = \{(x, y) \in \mathbb{R}^2 \mid y = \sin(\frac{1}{x}), \ 0 < x \le 1\} \cup (\{0\} \times [-1, 1])$$

is connected.

Hint: Use Problem 2.

Note: X is not path-connected, but that is harder to show.

Let $A = X \cap (0, 0 \times R)$.

Then A is the graph of the continuous function $f: (0, 0 \to R; f(x) = \sin(x))$.

Then A is homeomorphic to (0, 1]. Hence A is connected. Since X = A if follows that X is connected, by Problem 2.

4. Suppose X is compact. Show that every infinite subset A of X has a limit point in X. Hint: Argue by contradiction; note that, if A has no limit points, then A is closed (so X - A is open).

postpored to HW + 4.