MAT 441 3/13/09

65 points

Name SOLUTIONS

Provide some justification for all nontrivial claims, to receive full credit. You may use any theorems stated in lecture without proof.

Exam 2

1.(12) (a) Suppose X is an infinite set, endowed with the discrete topology. Prove that X is not compact.

For each $x \in X$, $\{x\}$ is an open set in X.

Then $\mathcal{U} = \{\{x\}\} \mid x \in X\}$ is an open cover of X. Since X is infinite, \mathcal{U} has no finite subcover.

(b) Let Y be the set of integers, with the cofinite topology¹ Prove that Y is compact.

Let U be an open cover of Y. Let U. & U., with $U_0 \neq \emptyset$. Then Y-U0 is finite, say Y-U0 = $\{y_1, \dots, y_n\}$. For each i, Isi\u00e9n, there is an element $U_i \in U$ with $y_i \in U_i$. Then $\{U_0, U_1, \dots, U_n\}$ is a finite subcover of U_i . Thus Y is compact.

2.(8) Suppose X is a topological space and there is a non-constant continuous function $f: X \to Y$ to a discrete space Y. Show that X is not connected.

Let $x \in X$. Let $U = \{f(x)\}$ and $V = Y - \{f(x)\}$. Then $f'(U) \neq \phi$, and, since f is not constant, $f'(V) \neq \phi$. Since Y is discrete, U and Y are open in Y. Then f'(U) and f'(V) are open in X. Since $U \cap V = \phi$, $f'(U) \cap f'(V) = \phi$, and since $U \cup V = Y$,

 $f^{-1}(u) \cup f^{-1}(v) = X$. Thus X is not connected.

¹A subset is open iff it is empty or its complement is finite.

3.(8) Recall, a continuous function $f: X \to Y$ is a closed mapping if, for every closed subset A of X, the image f(A) is closed in Y. Prove: if $f: X \to Y$ is a continuous function, X is compact, and Y is Hausdorff, then f is a closed mapping.

Let A be closed in X. Since X is compact, A is compact. Since f is continuous and A is compact, f(A) is compact. Then, since Y is Hausdorff, f(A) is closed.

- 4.30) Let $X = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 1-x \text{ and } x \ge 0\}$. Let \sim be the equivalence relation on X generated by $(x,0) \sim (x,1)$ and $(x,0) \sim (x,1-x)$. Let $p: X \to X/\sim$ be the quotient map. $(X/\sim 1)$ is called the $x \in (x,y) \in \mathbb{R}^2$
 - (a) Sketch an "identification diagram" for \sim , that is, a picture of X with arrows on the edges to indicate how they are to be identified in X/\sim .

(b) Sketch a picture of X and an open subset U of X (with $U \neq X$) such that p(U) is an open neighborhood of [(0.5,0)] in X/\sim . Then sketch or describe p(U).

(c) Sketch a picture of X and an open subset V of X (with $V \neq X$) such that p(V) is an open neighborhood of [(0,0)] is X/\sim . Then sketch or describe p(V). (Choose V so that you can easily sketch p(V) as a subspace of \mathbb{R}^2 .)

(d) Sketch a picture of X and a closed subspace A of X such that p(A) is homeomorphic to the Möbius band.

(e) Is X/\sim a topological surface?

No, neither [(2,0)] nor [(0,0)] has an open nobhd. homeomorphic to IR?

5.(40) Suppose X is connected and compact, and \sim is an equivalence relation on X. Is X/\sim necessarily connected? Is X/\sim necessarily compact? (Justify your answers.)

 $p: X \rightarrow X/N$ is a continuous surjection, so, if X is connected, p(X) = X/N is connected, and, if X is compact then p(X) = X/N is compact.

 $\hat{\mathcal{E}}$ 6.(40) Suppose $f: X \to Y$ is a closed surjection. (See Problem 3 for definition.) Prove that f is an identification map.

f is continuous by hypothesis. Suppose $U \subseteq Y$ and $f^{-1}(U)$ is open in X. Then $X - f^{-1}(U)$ is closed in X. Then $f(X - f^{-1}(U))$ is closed in Y. Since f is surjective, $f(X - f^{-1}(U)) = Y - U$. Thus Y - U is closed, and U is open. Thus f is an identification map.

		·
·		