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Frovide some justification for all noutrivial claims, to recetve full credit, You may use any thoovems stated in tecture withont proof,

1.(12) (a) Suppose X is an infinite set, endowed with the discrete topology. Prove that X is not
compact.
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(b) Let Y be the set of integers, with the cofinite topology® Prove that Y is compact.
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2.(8) Suppose X is & topological <%pace and there is a non-constant continuous functien f: X — 1 to
a discrete space Y. Show that X is not connected.
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3.(8) Recall, a continuous function f: X — ¥ is a closed mapping if, for every closed subset A of X,
the image f(A4) is closed in Y. Prove: if f: X — V is a continuous function, X is compact, and Y is
Hausdorf, then f is a closed mapping.
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HB30) Let X = {(zy) e R® |0 <y

generated by (2,0} ~ (&¥ and (z,0)
called the dunce cap.) (O, %}

< 1~z and & > G}. Let ~ be the equivalence relation on X
~{x, 1 —2). Let p: X — X/ ~ be the quotient map. (X/ ~ is

{a}) Sketch an “identification diagram” for ~, that is, a picture of X with arrows on the edges to
indicate how they are to be identified in X/ ~ .

(b) Sketch a picture of X and an open subset U of X (with U # X} such that p(U) is an open
neighborhood of {(0.5,0)] in X/ ~ . Then sketch or describe p(T7).

(%, 0)
(¢) Sketch a picture of X and an open subset V of X (with V # X)) such that p{V) is an open
neighborhood of {(0,0)! X/ ~ . Then sketch ar describe p{V'). (Choose V" so that vou can easily
sketch p(V) as a subspace of B2




{d) Sketch a picture of X and a clesed subspace A of X such that p(A} is homeomorphic to the
Mébius band.

(e) Is X/ ~ a topological surface?
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5.(#0) Suppose X is connected and compact, and ~ is an equivalence relasion on X. Is X/ ~ necessarily
connected? Is X/ ~ necessarily compact? {(Justify your answers.)
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6.(10) Suppose f: X —- Y is a closed surjection. (See Problem 3 for definition.) Prove that [ is an
identi}ii:atisn map.
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