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1.(15) Let {Cλ | λ ∈ Λ} be a family of topological spaces, and let X =
⋃
λ∈Λ Cλ. Let

T = {U ⊆ X | U ∩ Cλ is open in Cλ for every λ ∈ Λ}.

(a) Prove that T is a topology on X.1

(b) Prove that the inclusion map iλ : Cλ → X is continuous.2

(c) Suppose f : X → Y is a function and the restriction f |Cλ
is continuous for each λ ∈ Λ. Prove

that f is continuous.

1T is called the weak topology with respect to the family {Cλ | λ ∈ Λ}
2The inclusion Cλ → X need not be an embedding.



2.(20) Suppose f : S1 → R is a continuous function.

(a) Prove that f cannot be surjective.

(b) Prove that the image f(S1) of f is a closed, finite interval [a, b].

(c) Prove that f cannot be injective.

3.(10) Express the surface 5T2#3P2 as a connected sum of projective planes, and use the result to find
its Euler-Poincaré characteristic.



4.(10) Recall, a metric space (X, d) is bounded if there exists x0 ∈ X and R ∈ R such that BX(x0, R) =
X.

(a) Give an example of a metric space which is bounded but not compact. (Justify your claims.)

(b) Prove: if (X, d) is a compact metric space, then (X, d) is bounded.

5.(10) Let X be an arbitrary topological space and Y = {0, 1} with the discrete topology. Prove X is
connected if and only if every continuous function f : X → Y is constant.



6.(10) Consider the topological space given by identifying points on the boundary of the disk D2

according to the boundary word abca−1b−1c−1de.

(a) Find the number of vertices in the quotient space, in the cell structure inherited from the
planar diagram.

(b) Compute the Euler-Poincaré characteristic of the quotient.

(c) Sketch small neighborhoods of the images of each of the vertices in the quotient space.

(c) Is the quotient space a topological surface, a surface-with-boundary, or neither? If the quotient
space is a surface with or without boundary, identify the surface.



7.(10) A subset X of Rn is starlike with respect to p ∈ X if, for every q ∈ X, the straight line segment
pq is a subset of X.

(a) Give an example (by drawing a picture) of a starlike set which is not convex.

(b) Suppose X is starlike with respect to p. Show that the identity map f : X → X, f(x) = x is
homotopic to the constant map g : X → X, g(x) = p.

(c) What, if anything, does (b) imply about the Euler-Poincaré characteristic of a star-like set?
What about the betti numbers?



8.(20) Let K be the simplicial complex with vertex set {1, 2, 3, 4, 5, 6} having maximal simplices
124, 235, and 45.

(a) List all the simplices in K, and determine the Euler-Poincaré characteristic of K.

(b) Sketch a geometric realization |K| of K.

(c) Write the matrices of the boundary maps ∂2 : C2(K)→ C1(K) and ∂1 : C1(K)→ C0(K).

(d) Show that |K| has the same betti numbers as S1. You may use the computer to calculate
ranks. (You need not compute the betti numbers of S1.)
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9.(15) For each topological space below, indicate whether or not the space is (a) Hausdorff, (b) metriz-
able, (c) connected, and (d) compact.

(i) The Sierpinski space (the set {0, 1} with the topology {∅, {0}, {0, 1}}).

(ii) the set of integers Z with the discrete topology.

(iii) the open interval (0, 1).

(iv) the half-open interval [0,∞).

(v) the quotient of the real line R by the relation x ∼ y iff |x| = |y|.

(vi) the quotient of the real line R by the relation x ∼ y iff x = y or xy > 0.

(vii the set of integers with the cofinite topology.

(viii) the real line R with the half-open interval topology.


