1.(12) (a) Suppose X is an infinite set, endowed with the discrete topology. Prove that X is not compact.

(b) Let Y be the set of integers, with the cofinite topology¹ Prove that Y is compact.

2.(8) Suppose X is a topological space and there is a non-constant continuous function $f: X \to Y$ to a discrete space Y. Show that X is not connected.

 $^{^1\}mathrm{A}$ subset is open iff it is empty or its complement is finite.

3.(8) Recall, a continuous function $f: X \to Y$ is a *closed mapping* if, for every closed subset A of X, the image f(A) is closed in Y. Prove: if $f: X \to Y$ is a continuous function, X is compact, and Y is Hausdorff, then f is a closed mapping.

4.(30) Let $X = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1 - x \text{ and } x \ge 0\}$. Let \sim be the equivalence relation on X generated by $(x, 0) \sim (0, x)$ and $(x, 0) \sim (x, 1 - x)$. Let $p: X \to X/ \sim$ be the quotient map. $(X/ \sim \text{is called the dunce cap.})$

(a) Sketch an "identification diagram" for \sim , that is, a picture of X with arrows on the edges to indicate how they are to be identified in X/\sim .

(b) Sketch a picture of X and an open subset U of X (with $U \neq X$) such that p(U) is an open neighborhood of [(0.5, 0)] in X/\sim . Then sketch or describe p(U).

(c) Sketch a picture of X and an open subset V of X (with $V \neq X$) such that p(V) is an open neighborhood of [(0,0)] in X/\sim . Then sketch or describe p(V). (Choose V so that you can easily sketch p(V) as a subspace of \mathbb{R}^2 .)

(d) Sketch a picture of X and a closed subspace A of X such that p(A) is homeomorphic to the Möbius band.

(e) Is X/\sim a topological surface?

5.(10) Suppose X is connected and compact, and ~ is an equivalence relation on X. Is X/\sim necessarily connected? Is X/\sim necessarily compact? (Justify your answers.)

6.(10) Suppose $f: X \to Y$ is a closed surjection. (See Problem 3 for definition.) Prove that f is an identification map.