MAT 441C 1/18/13 (due Friday 1/25/13) 25 points Name ____

Justify all answers. Unsupported answers may not receive full credit.

1. Let $X \subseteq \mathbb{R}^n$. Show that the open ϵ -ball $B_X(x, \epsilon)$ is an open subset of X, for any $x \in X$ and any $\epsilon > 0$.

HW #1

2. A topological space is a set X endowed with a specified collection of subsets called "open sets," satisfying a few simple axioms. A subset K of X is then defined to be *closed* if and only if the complement X - K is an open set. If $A \subseteq X$, the *closure* of A is the set \overline{A} defined by

 $\bar{A} = \bigcap \left\{ K \subseteq X \mid A \subseteq K \text{ and } K \text{ is closed} \right\}.$

(a) Prove (i) $A \subseteq \overline{A}$, and (ii) if L is a closed subset of X and $A \subseteq L$, then $\overline{A} \subseteq L$.

(b) Prove: for all $x \in X$, $x \in \overline{A}$ if and only if, for any open subset U of X, if $x \in U$, then $U \cap A \neq \emptyset$. For one of the two implications, you will need to use the fact that \overline{A} is a closed set, which will be proven in class.

3. Let X be a finite set. A topology on X is a collection \mathcal{T} of subsets of X that includes \emptyset and X and is closed under pairwise intersections and unions. In this case the pair (X, \mathcal{T}) is called a *finite* topological space. A homeomorphism of finite topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) is a bijection $h: X \to Y$ with the property that, for every subset U of X, $U \in \mathcal{T}_X$ if and only if $h(U) \in \mathcal{T}_Y$. This relation is reflexive, symmetric, and transitive.

There are 29 distinct topologies on the set $X = \{1, 2, 3\}$. List them all, and sort them into homeomorphism classes. (It's okay to write, for instance, 12 instead of $\{1, 2\}$.)