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I. INTRODUCITON 

THE higher Bruhat orders B(n, k) were introduced by Martin and Schechtman [ 12,521 [ 131 
as combinatorial models for the path spaces of certain complex hyperplane arrangements. 
In this paper we clarify the geometric interpretation of the higher Bruhat orders (as 
suggested by Kapranov and Vocvodsky [9, Sect. 41 [IO]). We use the geometric picture to 
analyze the main structural properties of B(n, k). including new proofs for the results of 
Manin and Schechtman [12, 133. 

We start with a review of the weak ordering of the symmetric group, see also [IS] [I] 
[4, Sect. 2.31. For this denote the set of integers { 1, . . . , n} by [n], and the set of k-subsets 
of[n] by(t;l). We write UcU’if U. U’arcfinitesctswith U c U’and 111’1 = I[// + 1. For 
any collection % of finite sets, we dchnc the partial order by single step inclusion on 9 by the 
condition that U 2 U’ if and only if thcrc exist sets U,E”U with 

u= UoCU,G . . . G U, = U’, whcrc t = IU’I - IUI is implied. 

Dejnition 1.1. 

(i) Let A(n, 1) denote the set of permutations of the n-element set [n]. 
(ii) For every permutation p = (p,, . . . , p,), the inversion set inv( p):= 

{ ij:i <j, pr > pl} is a set of pairs, that is, a subset of ($I). 
(iii) Define B(n. I):= {inv(p):p E A(n, I)}. Every permutation is determined by its 

inversion set, thus A(n, 1) is in bijection to the collection B(n, 1) of inversion sets. 
(iv) The weak Bruhat order is the set B(n, I), partially ordered by single step inclusion. 

Some main structural properties of the weak ordering are the following: 

(1) B(n, 1) is a graded poset of length (2) whose rank function is r(B) = IBI, 
(2) U E (‘:I) is an inversion set, U E B(n, I), if and only for every triple i c j < I the 

intersection U n {ij, il. jI) is neither {il) nor {ij, jl), [18, Prop. 2.21 
(3) B(n, 1) is a lattice, [IS, Thm. 2.11 
(4) U s II’ holds if and only if U c U’, [IS, Prop. 2.11 
(5) the proper part of B(n, 1) has the homotopy type of the (r - 2)-sphere. [I] 

Furthermore, B(n, I) has various geometric interpretations. For example, it is the”poset 
of regions” of the Coxeter arrangement A,_, , which is the arrangement of all hyperplanes 
spanned by n vectors in general position in I?-‘. This also suggests far-reaching generaliz- 
ations of the weak order, to the posets of regions of arbitrary affine hyperplane arrange- 
ments. The analogues of (I), (4) and (5) are still true in this context [S] [6]. If the 
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arrangement is simplicial, then the poset of regions is a lattice, but not in general [3]. If the 

poset is a lattice, then an analogue of (2) holds, see [3]. 

We will now generalize the construction of the weak orders B(n, 1) to give a definition of 

the higher Bruhat orders of Manin and Schechtman [13]. The equivalence of our version of 

B(n. k) with the original definition is non-trivial; it will be demonstrated in Corollaries 2.3 

and 4.2. Define a k-packet as the set P(I) := {J E([$) : J c I} of all k-subsets of a (k + I)- 

setf={i,ci2< . . . < it + I} E (t$!Jl). In the lexicographic order the elements of P(I) are 

I\&+, < I\& < . . . c f\i,. 

Definition 1.2. 

(9 

(ii) 

(iii) 

(iv) 

A permutation p of (‘;I) is admissible if every k-packet f’(f) occurs in it either in 

lexicographic order or in reversed lexicographic order. Let A(n, k) denote the set of 

all admissible permutations of ($I). 

For each PE A(n, k) the inoersion set inv(p) c (Irl:ll) is the set of packets that appear 

in reversed lexicographic order in p. 

The set B(n, k) is defined as the collection of all inversion sets B(n, k):= 

(inv(p):pEA(n, k)}. 
The higher Bruhat order B(n, k) is the partial order on B(n. k) given by single step 

inclusion. 

In this paper. WC will treat the questions for higher Bruhat orders that correspond to the 

five structural features of the weak order listed above. In the course of our work, we will also 

show that our dctinition is equivalent to the original one given by Manin and Schechtman 

[12]. Specifically WC prove the following results, where r:= n - k. 

(I) B(n, k) is a graded poset of length (,:, ), whose rank function is r(B) = IB(, 

[ 12, $2 Thm. 3b]. (Theorem 4. I (G)) 

(2) U c (Irl&) is an inversion set, U E B(n, k), if and only if for cvcry K E(~$!$) and for 

{i ci < I} z K, the intersection U n {K\I, K\j, K\i} is neither {K\j} nor 

{K\I, K\i}. (Theorem 4.1(B)) 

(3) B(n, k) is a lattice for k = I and for r pi 3, but not in general. (Theorem 4.4) 

(4) U I; U’ holds if and only if U E Cl’, provided that k = 1 or r $ 4, but not in general. 

(Theorem 4.5) 

This last fact shows that the (simpler) partial order B, (n, k) on the set B(n, k) defined by 

inclusion does not in general coincide with the partial order by single step inclusion defined 

by Manin and Schechtman. However, the combinatorics of B(n, k) is intimately related to 

that of B= (n, k), so all main results on B(n, k) have counterparts for B= (n, k), see Theorem 

5.1. The partial order of EC (n, k) is easier to study, however. We prove the following result, 

which applies to B(n, k) whenever B.(n, k) = B(n, k): 

(5) the proper part of B,(n, k) has the homotopy type of S(‘-*). (Theorem 5.2) 

The key to our development is the interpretation of B(n, k) and of BG(n, k) as “posets of 

oriented matroid extensions’* of a cyclic configuration of n vectors in R’ by a new element. 

Choosing a particular vector representation, B(n, k) includes elements that correspond to 

the regions of the “adjoint” arrangement of hyperplanes spanned by the vectors, plus in 

general many more extensions that correspond to other extensions, realizable or not. We 

refer to [4, Sect. 5.33 for the fact that the regions of the adjoint arrangement correspond to 

only a part of the realizable single element extensions of the corresponding oriented 

matroid. In this paper. we will treat oriented matroids as arrangements of pseudo-hyper- 
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planes. So we get the interpretation of B(n, k) as the poset of extensions of the cyclic 

hyperplane arrangement X:.“-‘- ’ by a new pseudo-hyperplane. 

This paper is organized as follows. In Section 2 we collect elementary facts about 

admissible orderings and show that their inversion sets are “consistent”. in Section 3 we 

discuss afhne hyperplane arrangements and show that for “cyclic” arrangements the 

extensions by a new pseudo-hyperplane correspond to consistent sets. fn Theorem 4.1, this 

is used for a geometric characterization of the sets A(n, k) and the higher Bruhat orders 

B(n, k). From this, we get in Section 4 structural information about the posets B(n, k), 

whose homotopy types are examined in Section 5. The geometric interpretation of B(n, k) 

also suggests a generalization: one can consider the poset of all extensions of any affine 

arrangement in general position by a new pseudo-hyperplane. This poset, however, does not 

retain any of the above structural features, see Section 6. Enumerative results are collected 

in Section 7. 

2. ADMISSIBLE ORDERS AND CONSISTANT SETS 

We will now review the original construction of the set B(n, k) by Manin and Schecht- 

man. 

Dcjnition 2.1. [ 12, Del. 2.21 

(i) A permutation of (I;‘) is dmissihle if its restriction to each k-packet I E (trJ1,) is either 

the Icxicographic order or the rcvcrscd lexicographic order. A(n, k) is defined as the 

set of all admissible permutations of (‘;I). 

(ii) Two permutations /I, P’E A(n. k) arc clmu~nfarily c~quiuulcnf (p - p’) if they differ by 

an interchange of two neighbors not contained in a common packet. Let B(n, k) be 

the quotient by the induced equivalence relation and A(n, k) + B(n. k), p I-P [p] the 

quotient map. 

(iii) For each pi A(n, k) the inoersion set inv( p) is the set of packets that appear in 

reversed lexicographic order in p. Here p 51 p’ implies inv(p) = inv(p’), so the 

inversion set inv[ [>I:= inv( p) is well-defined for [p]o B(n, k). 

We will view permutations of (‘;I) as lineur orders on the set ($I). For [p] E B(n, k) let 

Q[ p] be the intersection of the linear orders in [p], that is, the partiul order on ($1) defined 

by 1’ < I if and only if I’ c 1 I for all r E [ p], Similarly, let Q’ [ p] be the intersection of all 

admissible orders T with inv(r) = inv( p). 

LE~IMA 2.2. TheJollorviny four sels coincide: 

Al : [ p]. fhe set o/linear orders of($‘) equivalent to p, 

A,: the linear extensions of Q[P], 

A,: the udnrissihle orders oj($‘) with inversion set inv( p), 

A,: the lineur extensions of Q’[ p]. 

ProoJ Every r that is equivalent to p is admissible with inversion set inv( p), and thus it 

is also a linear extension of Q’[p]. Now we use that any two linear extensions of a poset Q’ 

can be connected by a sequence of transpositions of adjacent elements that are incompar- 

able in Q’. Furthermore. if I, J E (I;‘) arc incomparable in Q’ [p]. then they are not contained 

in a common k-packet. Thus cvcry linear extension of Q’ [p] is in [p]. 

With this we have shown that A, = A, = Ad. But A, = A3 also implies Q[p] = Q’[p], 

that is, A2 = A4. 0 
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COROLLARY 2.3. [12, $2 Thm. 3d] Ecery [p]~B(n, k) is uniquely determined by its 
incersion set inv( p). 

In particular we get from this corollary that our Definition 1.2(iii) of the set B(n, k) is 
equivalent to that of Definition 2.l(ii) due to Manin and Schechtman. Our goal is now to 
characterize inversion sets. For this we consider any (k + I)-packet P(Z), with 
I = {il < iz < . . . < irc2}, in its lexicographic order. Thus a beginning segment is of the 
form {I\ ik+2, I\t+,, . . . , L\ij} for some j. An ending segment of P(I) is of the form 
{f\ij. I\ij_l.. . . , I\i,} for some j. The subsets 0 and P(I) are considered both as 
beginning and as ending segments of P(f). We get the following lemma, which identifies the 
characterizing property of inversion sets. Its converse will be proved in Theorem 4.1(B). 

LEMMA 2.4. Every incersion set V c ( t[$,) satisfies the following equioalent conditions: 

(1) V and its complement are both convex: g{ j, < jz < j3} E K for some KE(~&), then 

theintersectionofV with{K\j,,K\j,, K\j,}isneither{K\j,,K\j,}nor{K\j,j, 
(2) V is consistent, that is, the intersection of V with any (k + I)-packet is a beginning or 

an ending segment of it. 

Proof The condition (2) that V n P(I) is either a beginning or a final segment of P(I) 
means the following: if WC consider the (k + I)-packet in its lexicographic order 
l\i,+, < Iii,,, < . . . < I\i,, then there is at most one switch between elements of V and 
between non-elements of V. This yields (2) o (1). 

Now assume that PE n(n, k) is an admissible order on (‘;I). and let {j, < jz <j,) c K for 
some K E (ti$). Now if 

K\j, E inv( It), K\j, $ inv( PX K\j, Einv(p). 

then this implies 

which yields a contradiction. An analogous contradiction arises if we find {j, < j2 <j,} 
with K \ j, $ inv( p), K \ j2 E inv( p), K \ jr 4 inv( p). Thus inv( p) satisfies (1). 0 

Let V c (Ir$!ll) be a consistent set. Then the complement v := (J$r)\ V of V is consistent 
as well. Define the boundary of V by aV:= {I = {it < . . . < iL+z E(~$$): I\i, 4 V, 1 
L\i,+, EV]. Also, kt V*{n+ lj:={Ku{n+ l}:K~v), and define the extension 

ti E (1;: :’ )of V as V:= V*{n + l}uaV. 

The following two lemmas contain the key to an inductive treatment of consistent sets. 
Their geometric significance will become clear in Section 4. In fact, both the statements and 
the arguments in the proofs can be identified in Figure 2. 

LEMMA 2.5. Let V’ be a consistent subset of(t;‘), and let V” be a consistent subset o/(,~‘,), 

7hen V := V” u V’ l (n + I} E (t 7: :I) is consistent if and only if dV’ G V” and ar E u”. 

Proof Let K E( r;Z:)). If n + 1 4 K, then P( K)n V = P(K)n V” is a beginning or 

ending subset of P(K). because V” is consistent. 
IfK=(i,<... ci,+, cn+l}.weletf:=K\n+landget 

P(K) = {I < K\i,+, < . . . < K\i,}, p(I)= {f\i,+, < . . . < I\i,}. 

Now if V’ n P(l) is a beginning. but not an ending subset of P(I), so that I E dV’. then 
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U n P(K) cannot be an ending subset of P( K), so consistency if U implies I E U”. From this 

we get the requirement that SCJ’ E U”. 

Similarly, if U’n P(I) is an ending, but not a beginning subset of P(I), so that I E?F, 

then U n P(K) cannot be a beginning subset of P(K), so consistency of U implies 14 U “. 

From this we get the requirement that ZiT; E u”. 

If U’n P(I) is both a beginning and an ending segment of P( I), then either P(I) G U’, 

so that U n P(K) automatically is an ending segment of P(K), or P(f)n U’ = 8, so that 

U n P(K) automatically is a beginning segment of P(K). From this we get that the two 

conditions of the lemma are also sufficient for consistency of II. 0 

LEMMA 2.6. Let U E (‘7’) be a consistent set. Then 

(i) the boundary 3-U of U is a consistent subset ~f(~yl~), 

(ii) the extension U of U is a consistent subset of([;Z:‘), 
(iii) U is also a consistent subset oj(‘“: ‘I). 

Proofi (i) Choose K = {il < . . . c i1+2}E(I!$). We have to show that dU n P(K) is 

a beginning or ending segment of P(K). 
As, the first case assume that K\ { i I.i,+2]oU. This implies that K\i,+2$dU. If 

K\(i,. iz} E U, then this implies P( K\i,) c U and thus aU n P(K) = 0. Otherwise we get 

the existence of values s, I, with 3 5 s 2 I + 2, 1 s t 5 1 + I with 

P(K\i,)n U = {K\{i,, i,]:s <j 5 I + 2j, 

P(K\i,+z )nU={K\{i,+2,ii}:II;j<t}. 

From this we can compute 

dU n P(K) = {{ K\i,: I <j S min(s - I, t)}. 

which is an ending segment of P(K). 

As the second case now assume that K \ { i,, it+ 2 } 4 U. This implies that K \il $ dU. If 

- K\{i,+ r1 i,+2}#U, then this implies P(K\i ‘1+2) E U and thus dU n P(K) = 0. Otherwise 

we get the existence of values s, t. with 2 5 s 5 I + 2, 1 5 t I; 1 with 

P(K\i,)nU={K\{i,,i,}:2~jcs}, 

P(K\i,+z)nU={K\{il+2,ij}:t<j<l+ I}. 

From this we can compute 

dUnP(K)= {{K\i,:max(s,t+ l)<jsf +2}, 

which is a beginning segment of P(K). 

(ii) Here dU’ is consistent by part (i), hence we can apply Lemma 2.5 for U” = dU’: we 

also have av E u”, because c7U’ and av are disjoint by definition. 

(iii) This is a special case of Lemma 2.5: for U’ = 0 we have dU’ = a7 = 0, so U = U” 
is also a consistent subset of (I”: ‘I). 0 

3. CYCLIC ARRANGEMENTS 

Consider any arrangement X = (H,, . . . , H,} of n affine hyperplanes in general posi- 

tion in Rd. Then every vertex is determined as the intersection of d hyperplanes. Associating 
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the vertex with the set of n - d hyperplanes that do not pass through it, we get a bijection 
v= V(X)++(!!!l,,) between the vertices of X and the (n - &subsets of [n]. Similarly, every 

l-dimensional line in X is the intersection of d - I of the hyperplanes. Associating every line 

with the n - d + 1 hyperplanes that do nor contain it, we get a bijection between the lines of 

X and the (n - d + I)-sets in [n]. Furthermore, under these bijections the vertices on a line 

of X correspond to the (n - d)-sets in the corresponding (n - d + l)-set, i.e., the vertices on 

a line correspond to an (n - d)-packet. 

The key observation is now that if X is the cyclic arrangement of n hyperplanes in Wd, 

then the vertices on a line correspond to an (n - d)-packet in lexicographic order. In the 

following sections we will use this for a geometric interpretation of higher Bruhat orders 

and their inversion sets, for which I+:= n - k is d respectively d + 1. 

Definition 3.1. The cyclic arrangement XJad is the arrangement {HI, . . . , H,} in IR” 

given by 

Hi = {(TK~* . . , .xd)ER”:xl + [ix2 + . . . + tf-‘Xd+ ff=O} 

for 1 < i I d, with arbitrary real parameters ti < t2 < t3 < . . . < t,. 

For every choice of the parameters Ii this arrangement represents the alternating 

oriented matroid C”ed+ ‘. Here the hyperplane at infinity corresponds to the extension 

C”’ ied+ ’ of Cnad+ * by a new element 9 := n + 1. Thus the combinatorial type of this affine 

arrangement does not depend on the choice of the parameters li. 

LEMMA 3.2. The vertices ofXT*” correspond to (.!!?) in such u way (hat the cerrices on un 

ajine line correspond to the (11 - d)-ptrckc~s ill icxicoyrclphic order (or its reverse). 

f’rooj: There arc many ways to dcrivc this basic fact, cithcr by elementary linear algebra 

(the vertices V, corresponding to I E(,‘!!‘d) can bc explicitly dctcrmined in terms of Vander- 

mondc determinants), or using simple oricntcd matroid tools to compute the contractions 

(any contraction of C “Q~ is a rcoricntation of a cyclic oriontcd matroid, with the induced 

linear order of the ground set), or by exploiting orthogonality resp. oriented matroid 

duality. cl 

Now consider any extension of the cyclic arrangement X:ad by a new oriented hyper- 

plant H, in general position. For this, two extensions by hyperplanes H,, Hf are eyuivalenr 

if on their negative sides they have the same set I”, = Vf of affine vertices of the arrange- 

ment. From Lemma 3.2 WC see 

V, := {K E(,,!~): K corresponds to a vcrtcx on the negative side of H,; 

is a consistent set I’, c (,,!!I,,). The same is true for any extension of X:*“ by a new oriented 

pseudo-hyperplane (topologically deformed hyperplane) H, in general position. The proper 

framework to study such extensions of an arrangement X by a pseudo-hyperplane is the 

theory of oriented mutroids. 

We will only sketch the connection, and refer to [4] for the details. Let 

x = {H,, . . . , H,} bc an alIinc arrangcmcnt in R“. The affine space Rd can be identified 

with a hemisphere of Sd, where the hyperplanes Hi correspond to intersections of (d - I)- 

subspheres of Sd with the hcmisphcre. Assuming that a positive side has been chosen for 

every hyperplanc. the hyperplane arrangcmcnt (resp. the corresponding sphere arrangc- 

ment) represents an oriented matroid .RO of rank d + I on the ground set [n]. so the 

hyperplane Hi of the arrangement corresponds to the element i ~[n] of the oriented 

matroid. By representing _N,, by an affine arrangement we have distinguished the hyper- 



HIGHER BRUHAT ORDERS 265 

Fig. I. The cyclic arrangement X,? ’ with a pseudoline extension / and the corresponding vertex set. 

plane at infinity, which corresponds to the extension of MO by a new element g = n + 1. In 

this sense we say that X represents the afine oriented matroid (M, g), that is, the oriented 

matroid _/lo = ,/r\g together with a distinguished extension of MO by g. In particular, the 

cyclic arrangement X:*d rcprcscnts the afTme altcrnaring oriented matroid (C”+ l*d+‘, n + I), 

whose structure is well understood [4, Sect. 8.11. 

The fact that the extensions of an affinc arrangcmcnt by a new pseudo-hypcrplane 

correspond to oricntcd matroid extensions is due to the “topological representation 

thcorcm”, see [4, Chap. 51. Here two extensions arc considered cquivalcnt if and only if they 

have the same set of vcrticcs of X on their negative side, since this is equivalent to the 

condition that they determine the same oriented matroid extension. Denoting by V the 

vertices of X (which correspond to half of the vertices/cocircuits of the sphere rcprcscntation 

of Me). we know that every extension JO u/ of A0 is determined by its loculizution, 

a function c7 /: V+ { +, -} that indicates for every afine vertex whether it is on the positive 

or on the negative side of the extension pseudo-hyperplane. See [4, Sect. 7.11 for details and 

proofs. A key technical result is Las Vergnas’ characterization of single element extensions, 

which in our picture can be stated as follows. 

LEMMA 3.3. Let V b? the set of vertices of an afine hyperplune urrungement X. A subset 

V, c V is the vertex set of an extension ofX by a new pseudo-hyperplune in general position if 

and only if it conruins a beginning or an ending segment of the set of vertices on every 

(arbitrarily direcled) line. 

Definition 3.4. The uni/orm extension poser of X is the set of all extensions of X by a new 

pseudo-hyperplane H, in general position, partially ordered by single step inclusion of their 

vertex sets. 

The uniform extension poset of X only depends on the afine matroid (J?, g) rep- 

resented by X, and will thus be denoted by %(M, g). It is the set of all uniform single 

element extensions of iK,, = ,/f \g, whose partial order depends on the extension ,/f of JO. 
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COROLLARY 3.5. The uniform extension poset +Y(C”+‘*~+‘, n + 1) of XJsd is naturally 

isomorphic to the set of all consistent subsets of (,!!ld), ordered by single srep inclusion. 

Proofi This follows directly from the Lemmas 3.2 and 3.3. 0 

To understand the geometry of y(C”+ l.d+ ‘, n + 1) we use the partial orders of oriented 

matroid programs. following the lines of [ 17, Sect. 33. Let (,K, g) be the affine matroid of an 

arrangement and _/f = ,/f u f an extension of ,I/ ( ! ) corresponding to a new pseudo- 

hyperplane H,. The tripe1 (_i, g, f) is an oriented matroid program, where H, is interpreted 

as (a level plane of) a linear objective function on the affine arrangement (J?, g), see [4, 

Sect. IO. 11. The graph G, has the affine vertices of (_I(, g) as its nodes. and the edges between 

them are the bounded edges of (. //, g), directed according to increasing 1; that is, according 

to the direction in which their line cuts the level-plane H,. Assuming that ,f? is uniform, 

there are no horizontal (undirected) edges. In general, the program can be non-Euclidean 

[7], so that there are directed cycles in the graph G,. The following non-trivial result is the 

technical key to our development. 

PROPOSITION 3.6. ff (_I/, g) = (Cn+‘.d+‘, n + I). then the graph G, is acyclic for any 

uni/;,rm program (. // w 1; g, f ). 

Proof See [ 17, Prop. 4.7/Thm. 4.121. cl 

4. STRUCI-URE OF IIICIIER BRUIIAT ORDERS 

With the preparations of Sections 2 and 3, WC can now prove the following main 

theorem. 

THEOREM 4.1. Ler 1 5 k I; n and r:= n - k. 

(B) There is u natural isomorphism of posets between 

I. rhe higher Bruhal order B(n, k), 

2. rhe set of all consistent subsets of (k + , In1 ), ordered by single step inclusion, 

3. rhe set of extensions of rile cyclic arrangement X:*‘-’ by a new pseudo-hyperplane in 

general position, ordered by single step inclusion of their vertex sets, and 

4. the poset @(C”+‘*‘, n + I) of all uniform single element extensions of C”*’ 

(G) The poser B(n. k) is a graded posel of lenglh (t+I In1 ). Its rank function is r(U) = 1 LII. 

The unique minimal element is 6 = 0, rhe unique maximal element is i = (LI$l). 

(A’) There is a natural bijecrion between 

1. the set B(n, k), 

2. tire posers Q [p], for p E A (n, k), and 

3. the different ways to assign directions to the l-dimensional lines of X:*’ without creating 

directed cycles. 

(A) There is a natural bijeclion between 

I. rile set of admissible orderings A (n, k), 

2. the maximal chains of the poset B(n, k - I), and 

3. the different ways to sweep the arranyement X:.’ by a generic pseudo-hyperplane. 

We note that the geometric statements of (A3) and (83) have precise geometric meaning 
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in the axiomatic setting of pseudo-arrangements provided by oriented matroid theory, see 

[4, Chap. 51. 
Theorem 4.1 also contains the main results of Manin and Schechtman: the bijection 

(Al)+A2) is [12, $2 Thm. 3c]. while the part (G) is [12, $2 Thm. 3b]. Furthermore, after 
applying oriented matroid duality (Bl)++(B4) is a bijection between E(n, k) and the single 
element liftings of C’*‘: such a bijection is stated (without a proof) by Kapranov and 
Voevodsky [9, Thm. 4.93. 

Proofi We start with part (B). For this let U E ( kt:‘t) be COnSiStent. By COrOkq 2.6(ii), 
U is also consistent as a subset of ( t:T :I). and thus by Lemma 3.3 it defines an extension of 
x;+‘.r by a new pseudo-hypcrplane HI (cf. Fig. 2). We now treat H,, I as the hyperplane at 
infinity, with g:=n+ 1. With this we get an oriented matroid program 

(C “+l*‘+’ u/; n + 1.f). Its affine vertices are the vertices of X:+‘*’ that do not lie on If.+ r, 
so they correspond to the (k + l)-subsets of [n + l] that contain n + 1. The lines that are 
not contained in H,+ , correspond to the (k + I)-packets P(K) with n + 1 E K. Setting 
K = (i, < i2 < . . . < ik+2} and J := K\n + 1, we get from Lemma 3.2 that the vertices on 
such a line are given by 

J=K\n+l - K\ik+l - . . . - K\iz - K\i,. 

Thus the graph G, of the program has the vertex set 
V= ff~(t;zfr):~ + IEZ) = (‘;I)* (n + If, with directed edges (cf. Fig. 2) 

I 

K\i,+, -+ . . . -+K\i2-+K\i, if JEU, 

K\i,+, + . . . c K\i2+ K\i, if J&U. 

By Proposition 3.6, the graph is acyclic. Thus G, defines a partial order ‘* < l ’ on (‘:I) by 

I I; 1’ :O G, contains a directed path from 1’ u {II + 1) to I u {n + I}, 

Fig. 2. The cyclic arrangement X,“.‘. with g:= n + I = 6. The consistent YI U = (1234, 1235. 1245) induces the 

extension of H,, directions of the lines of X,?.* and thus a partial order on (‘:‘). 
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and by construction we have 

i 

J\i,,, > . . . > J\il > J\i, if JE U, 

J\i,.,, -z . . . -c J\iz < J\i, if J$ U. 

Hence every linear extension p of the partial order “ z% ” is an admissible on ([;I) with 
inv(p) = U. With Lemma 2.4, this proves part (B). 

For part (A’), this also shows that every U E B(n, k) directs the lines of Xc”*’ in an acyclic 
way, and this determines a partial order Q [ p] on ($I). Finally U can be reconstructed from 
Q [ p] as U = inv( p) for every linear extension p of Q [ p]. 

For part (G), we have to verify that indeed 0 5 U < (J:tr) for every consistent set 
U E (LtJ1l). The rest is then clear from the definition of “ 5 ‘* by single step inclusion. Given 
U, we note that U =?UuU*{n+ l}s(r”+r’ Ir + 2 ) is consistent by Lemma 2.6(ii), and thus by 
(B) defines an extension H, of X:+l*‘-‘. This defines a graph G, which is acyclic by 
Proposition 3.6 and thus defines a partial order 5 on (t:tr) as in part (A’). Any linear 
extension p of this partial order is admissible, p o A(n, k + 1). By construction, U is an order 
ideal of 5, hence the linear extension 

p = (S, < Sz < . . . < Sr,:,))~/t(n, k + I) 

can be chosen in such a way that U is a beginning segment of p, that is 
U={Sr.Sr,..., S,} for some i. However, every beginning segment {S,, Sz, . . . , S,} is 
consistent. Thus p induces a maximal chain d = 8 < {S,} c {S,, S2) < . . . c {S,, Sr. . . . , 
S,,‘.,,} = i of length (k: r) in B(k, n) that contains U. 

From the same argument we also see (A): every admissible ordering PE A(n, k) induces 
a maximal chain of length (1) in B(n, k - I). According to part (G) every maximal chain in 
B(n, k - I) has this form, and the linear orderings on (tit) induced by maximal chains in 
B(n, k - I) arc clearly admissible. By (B), every maximal chain in B(n, k - 1) corresponds to 
a scquencc of pseudo-hypcrplane extensions of X:*’ that describes a topological sweep, and 
convcrscly. cl 

The higher Bruhat order B(5,2) is drawn in Fig. 3. Here every element is denoted by the 
corresponding consistent vertex set of a cyclic arrangement Xj** . 

We now use Theorem 4.1 to verify that our definition of the partial order on B(n, k) 

coincides with the one used by Manin and Schechtman. 

COROLLARY 4.2. B c B’ holds for sets B, B’ E B(n, k) ij and only if there are admissible 

orders p, p’ E A(n, k) with inv( p) = I?, inv( p’) = B’ and p’ is obtained /;om p by reversing 

a single k-pucker P(I) whose elements appear in p in lexicographic order, with no other 

elements in between. ( That is, r < r’ is a cover relation if and only if r = p,(r’) in the notation of 

Cl2 131.) 

Prooj: The “if” part is clear. For the converse, let UC U’, U’\U = {I} with 
I = {i, c . . . < il, + , }. Consider the line orientations of X:*’ corresponding to U and to U’ 
according to Theorem 4.1(A’). They only dither by the reversal of one line, and both are 
acyclic. For the associated partial orders Q, Q’ on (tit) this means that Q contains the packet 
P(I), ordered lexicographically, as an interval [I \i, + r, I\i,], while Q’ contains the packet 
P(I), ordered lexicographically, as an interval [l\il, I\it+ ,I, and Q and Q’ differ only in 
the reversal of this interval. Thus linear extensions p of Q and p’ of Q’ can be constructed to 
satisfy the conditions of the lemma. 0 

Now we use Theorem 4.1(B) to derive structural properties of the posets B(n, k). 
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Fig. 3. The higher Bruhat order E(5.2). 

PROPOSITION 4.3. B(n, k) is isorwrphic to a lower interval oJB(n + I. k). 

Proo/: This is immcdiatc from Lemma 2.6(iii), which shows that there is an order 

prcscrving inclusion B(n. k)c;B(n + I, k). cl 

In contrast to this, it is not clear whether there is an embedding of B(n, k) into 
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B(n + 1, k + 1) as a subposet. The case r = 2 shows that B(n, k) is not an interval of 

B(n + 1, k + 1) in general. The map U -. i? suggested by Lemma 2.6(ii) is an injection, but 

not order-preserving in general. 

The proofs of the following two theorems are linked. We prove, in effect, that 

(1) B(n, k + 1) is a lattice and ordered by inclusion = B(n, k) is ordered by inclusion, 

(2) B(n, k) is ordered by inclusion, and n - k 5 3 = B(n, k) is a lattice. 

This can be avoided if one gives an independent proof that B(n, k) is a lattice for n - k = 3, 

which is possible for example by relying on geometric intuition from Fig. 1. 

THEOREM 4.4. The poser B(n, k) is a lattice for k = 1 andfor n - k 5 3. However, B(6,2) 

is not a lattice. 

Prooj: For k = 1 the poset B(n, 1) is the weak Bruhat order of Y’,,, which is known to be 

a lattice, see [18, Thm. 2.11 [3]. 

For r 5 2, the result is trivial. For r = 3, we use that B(n, k) is ordered by inclusion by 

Theorem 4.5. If it is not a lattice, then by [19, Crit. 23 there exist six consistent sets 

S~Su{K,}cT\{L~}~Tfori,j~{1,2}sothatneitherSu{K,,K,}norT\{L~,L~} 

are consistent. From this we get that K, u K2 =: K = [n]\h, where (without loss of 

generality) K, is the smallest and KL is the largest set in P(K). Similarly, we get 

Lr u Lz =: L = [n]\h’, where L, is the smallest and L2 is the largest set in P(L). 

By symmetry, we may assume h < h’. Now if h = 1, then we get Lz E P( K), but T\{ L,} 

is consistent, so we get that K, or K2 is not contained in T\{ L,}, a contradiction. Ifh’ = n, 

thenwegetK,EP(L).butSu{K,} is consistent, so we get that L, or L2 is contained in 

S u {K, }, a contradiction. Thus we have 1 < 11 < h’ < n. 

From K2 = [n]\(l,h}ET\{LzJ and Lz = [n]\{1,h’}#T\{L2} with K2 >ICx L2 we 

get Cnl\{l. n)4 T\(b). F rom K, = [n]\{n,h}ESu {K,} and L2 = [n]\{n,h’}# 

Su {K,} with K, >Irx L, WC get [n]\{l,nlESu {K,}. But this contradicts Su {K,} 

c r\{L,I. 
Now consider 8(6,2) and let (see Fig. 4): 

S = { 123, 124,356,456}, K, = 134, K6 = 346. 

ThenS,Su{K,jandSu{K,} are consistent, while S u {K,, K6} is not consistent on 

P( 1346). The minimal consistent sets that contain S u { Kt, K6} are 

S,:= { 123, 124, 356,456, 134, 346, 136, 146, 156, 126,25i} for i = 1,6. 

They satisfy S u { Ki} 5 S, for i,ic { 1,6}, so (S u {K, }) v (S u {K,}) does not exist. 0 

THEOREM 4.5. B(n, k) is ordered by inclusion for k = 1 and for n - k Ii 4. However, 

B(8, 3) is not ordered by inclusion. 

Proofi For k = 1 this is well known [ 18, Prop. 2.11. 

Let U, c U2 s (kI:ll) be consistent. Then, by Theorem 4.1 (B), U, < U2 holds if and only 

if there exists an admissible linear order p of ( ,tJrr) of which U, and U2 are both beginning 

segments, that is, so that U, E Uz are ideals of the poset Q[P]. The consistent set U C_ (,t$) 

that corresponds to Q [ p] by Theorem 4.1 (A’) has to satisfy that U u U, * {n + 1) and 

U u fJ1 l {n + 1) are both consistent. By Lemma 2.5, this means that 
- -- 

au,uau2Eu and auluau2~u. (*I 
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Fig. 4. The vertices and lines of fl(6. 2). The vertices marked by a black dot are in S. The vertices with a white circle 

are K, and Ke. 

The sets dU,, dll,, dc, dc EB(~, k + 1) are consistent, with JUi n ai& = 0 for - - 
i,jo { I, 2}, SO deli G dC/j. By induction on r:= n - k we can assume that B(n, k) is ordered - 
by inclusion, so dUi 5 av, for i,jc { I, 2). For r I; 4 we can assume that B(n, k + 1) is 
a lattice (Theorem 4.4), so a consistent set U that satisfies ( *) can be chosen arbitrarily from 

- 
the interval [dU, v dCJ*, dU, A z] of B(n, k + 1). Thus E(n, k) is ordered by inclusion 
for all r 5 4. 

The smallest cxamplc WC know for which U dots not exist occurs in 8(8,4). This leads to 
consider the consistent sets 

U, = { 1234, 5678) 

U2 = Ci’ 
( Y{ 

1235. 1245. 13452345, 1236, 1246, 13462346, 1256, 

4678,4578,4568,4567,3678,3578,3568,3567,3478 1 

in B(8,3) which satisfy U, E U1. We will now give a direct proof for U, 5 U2. which does 
avoid the discussion “on the boundary”. For this one first has to check that U, and 

u, := (tit)\ U2 are consistent. For U I this is obvious. For uz one can use that the two rows 
of our listing both correspond to consistent sets, which can be checked in a situation of rank 
3, since no set in the first line contains 7 or 8, while no set in the second line contains I or 2. 
(Also, one can note that i + 9 - i interchanges the two lines of U2, so only one of them has 
to be checked for consistency.) The union of both lines is consistent since no 4-packet 
contains sets from both lines. 

Now assume that U, s U2. With Theorem 4. I (B) this would imply that there is a linear 
order “<” on (‘:I) that orders every 4-packet either in lexicographic (“Iex”) or in reversed 

lexicographic (“r&x”) order, and so that if K E Ui, K’ E c for some i, then K < K ‘. Now we 

get the following sequence of implications: 

1234~ II,, 2347#U, =5 P(12347) lex 3 123712347 

2347~ U2, 34784 U, = P(23478) lex = 2347X2378 

(1) and (2) Z- 1237<2378 = P(l2378) lex = 1237x1278 

2567 4 U,, 5678 E U, =5 P(25678) r-lex a 2567>2678 

12564 U2, 2567~ U2 = P(12567) r-lex a 1267>2567 

(1) 

(2) 

(3) 

(4) 

(5) 
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(4) and (5) =. 1267>2678 o P(12678) r-lrx * 1267>1278 (6) 

12364 Liz, 2367 E U, j P(12367) r-/r.\: =. 1237>-1267 (7) 

where (3) and (6) and (7) yield 1237s 1267> 1278> 1237, a contradiction. 0 

The question whether B(n, 2) is ordered by inclusion for all n remains open. We close 

this section with a list of the geometric interpretations of A(n, k) and of B(n, k) that are 

available for small values of r and of k: 

r = 1: A(n, n - 1) = B(n, n - I) = (6, i}. 

r = 2: A(n, n - 2) is the set of “topological sweeps” on the cyclic line arrangement X:.‘. 

B(n, n - 2) is the poset of consistent subsets of the affine line I,,,, = P([n]). Thus 

@n, n - 2) consists of two chains of n - I elements [I?, $2 Lemma 73. B(n, 11 - 2) 

can also be identified with the weak Bruhat order of the dihedral group 1*(n). 

r = 3: B(n, n - 3) is the set of extensions of the cyclic line arrangement XJ.’ by a new 

pseudoline. All these extensions are in fact realizable [14, Thm. 8.31 

k = 1: A(n. 1) = B(n, I) is the weak order on .Y,. 

k = 2: A(n, 2) is the set of maximal chains in the weak order on .Y’,, i.e., simple allowable 

sequences, or arrangements of n pseudolines in “braid form” [S]. [4, Chapt. 63. 

B(n, 2) is the set of arrangements of n + I pseudolines that arc labeled 1 to tl cyclicly 

at the line g:= n -I- I at infinity. This includes non-realizable arrangements for n 2 8. 

(See also [9, Sect. 41.) The partial order is by single step inclusion of the triples of 

pseudolines which determine a triangle of counter-clockwise orientation. 

The higher Rruhat orders model the set of minimal paths through a discriminantal 

hyperplane arrangement [12, $I]. Thcorcm 4.1 shows that we have to choose a cyclic 

arrangement for this. However, in general the poset B(n, k) contains “non-realizable” 

clcmcnts which might not occur in the path space of an arrangement. 

5. SPIIERICITY 

There arc two very natural orderings of the set B(n. k). Up to now, we have taken the 

ordering by single srep inclusion as the primitive one, since it is equivalent to the ordering 

defined by Manin and Schcchtman, by Corollary 4.2. However, it is similarly natural (both 

from a combinatorial and a geometric viewpoint), to consider the ordering of B(n, k) by 

inclusion as the appropriate generalization of the weak Bruhat order on 9.. We will denote 

this posct by Bc (n, k). The following theorem collects its main properties. 

THEOREM 5.1. Let BE(n, k):= {inv(p): p~A(n, k)) be the ftrtttily of consistenr sets, 

ordered by inclusion. 

(1) d = 0 is the minimal and 7 = (ktJ’,) is the tnaxitnal element of Bc (n, k). The letqfh o/ 

BE (n, k) is (t f I). and every element of B= (n, k) is conrained in a ttutximal chain of this 

lengfh. 

(2) B, (n, k) is yraded/or k = I and for r:= n - k $ 4, h~tr not in grtwrd, 

(2’) BE(n, k) = B(n, k)fir k = I andjor r < 4, but not itr general, 

(3) B, (n, k) is a lotfice for k = 1 and for r s 3, hlct not in generul. 

ProoJ (I) is Theorem 4.1(G). Note that (2) and (2’) arc equivalent restatements of 

Thcorcm 4.5. With this, (3) is equivalent to Theorem 4.4. 0 

The combinatorics of B.(n, k) is easier to handle than that of B(n. k). Also, in some 
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respects its combinatorics behaves nicer. We will now demonstrate this by computing the 

homotopy type of BE (n. k). 

THEOREM 5.2. The proper part of the poser BE(n, k) is homotopy equivalent to an 

(r - 2)-sphere: 

BE (n, k) z S’-‘. 

In the case k = 1 this is a result of Bjiirner [1], which also follows from a theorem of 

Edelman and Walker [6]. The geometric idea of our proof is “adjoint” to that in the proof of 

[6]: it considers the convex hull conc( V) of the set of vertices of the affine arrangement 

X(C”*‘), which is a simplex, and shows that the poset %(C”+‘*‘, n + 1) is homotopy 

equivalent to the face lattice of the simplex conu( V). A map between these posets is obtained 

by mapping every extension to the set of vertices of conu( V) that lie on its negative side. To 

see that this in fact induces a homotopy equivalence, we have to establish several facts, 

which are collected in the following lemmas. 

Denote by [i,j] the interval {i, i + 1, . . . , j} in [n], which is empty if i > j, and let 

Ki := [i, i + k]. The following lemma also follows by induction from Lemma 2.6(iii). 

LEMMA 5.3. For all i, j E [n]. the ser U(i, j):= {I E(~[$,): I E [i, j]} is consistent. 

ProoJ Let KE(~~$& and note that U(i,j) n P(K) = {f E(~$!‘~): I G K n [i,j]}. 
If IK n [i,j] 1 5 k. then U(i, j) n P(K) = 0. If IK n [i,j]l = k + 2, then 

V(i,j) n P(K) = P(K). In both cases U(i, j) n P(K) is a beginning segment. 

Now assume I K n [i, j]l = k + 1. with K\[i, j] = {I}. In this case we have 

U(i.j) = {Ci. jl}, Rut [i-j] is an interval, thus I is either the smallest or the largest element of 

K. In the first cast [i, j] is the last set in the (k + I)-packet P(K), and U(i, j) = {[i, j]} is an 

ending segment. In the other cast [i.j] is the first set in P(K), and U(i,j) = ([i,j]} is 

a beginning scgmcnt. 0 

LEMMA 5.4. The minimal elements of BS(n, k)\0 are the sers {K,} = {[i. i + k]}, for 
I <is;. 

Proo/. Note that {K,} = U(i, i + k) is consistent by Lemma 5.3. By Theorem 5.1(l), the 

minimal non-empty consistent subsets have exactly one element. Let 

K={i,< . . . <iL+,}. If it+,-il=k, then K=K,,. Otherwise we find j$K with 

i, < j < it + , , and see that {K } is not a beginning or ending segment of P(K u j), so {K} is 

not consistent. El 

LEMMA 5.5. If U E (k[?,) is consistenf and K,E U for all 1~ [i, j], then U(i, j + k) E U. 

Proofi We proceed by induction on j, the claim being trivial for j < i, where 

U(i, j + k) = 0, and for j = k, where U(i, j + k) = {K,}. 

Let KEU(~,~+ 1 +k)\U(i,j+k)={I~(,~$,):j+ 1 +k~lr[i,j+ 1 +k]} be an 

element of U(i, j + 1 + k) that is not in CJ, and assume that it is selected such that the sum of 

its elements is maximal. 

Since K # [j + 1, j + 1 + k] = K,+l, we can find lE[j + 1. j + 1 + k]\K. Consider 

the (k + I)-packet P(K u I): its smallest element (K u I)\j + 1 + k is in [i,j + k] and 

hence in U by induction. Its largest element (K u I)\k, is in U, since kl := min K < 1 by 

construction, hence (K u I)\k, has a smaller sum of elements than K, and hence it is in 
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U by the choice of K. Thus we get a contradiction to consistency on the (k + l)-packet 
P(K u I). cl 

LEMMA 5.6. If it.jl, . . . , il, j, are such that I [i,, j,] A [i,, jJ ) < k for all s < t, then 
U(i,,j,) u . . . u U(i,, jr) is consistent. 

Proof. Suppose not, then this union is inconsistent on some (k + I)-packet P(K). 

However, since each of the sets U(i,, jr) is consistent by Lemma 5.5. this requires that there 
are IE U(i,,jS) n P(K) and J E U(i,,jO n P(K) with s < t. From this we get 
I n J E [il. jJ n [i,, j,], hence II n JI < k, and I, J cannot be contained in the same 
(k + l)-packet P(K). 0 

Finally we need the following “Crosscut Lemma” to establish the homotopy equivalence 
of posets. It is a very special case of the Crosscut Theorem [2, (10.8)]. It can easily be derived 
from Quillen’s Fiber Theorem [2, (lO.S)]. 

LEMMA 5.7. Let Q be a poser with 0 and 1, and let A := min(Q) be rhe set of a := 1 Al atoms 
in Q. Assume that every subset of A has a join in Q, with v A = ‘i and v B -C i for B c A. 

Then 0 is homotopy equivalent to the (a - 2)-sphere, @ 2: SaT2. 

Note that the joins v B exist in particular if Q is a lattice. However, we will have to use 
the greater generality of the above formulation. since by Theorem 5.1(3) the posets BE (n, k) 
are not in general lattices. 

Proof of Theorem 5.2. We apply Lemma 5.7 to the bounded poset Q = BE (n, k) whose 
atoms are {K,}, . . . , {K,}. by Lemma 5.4. We write u(i):= {K,}, so A = {u(l), . . . , u(r)}, 
anda=lAl=r. 

Every B E A can be written uniquely as 

B = {o(i):iE[i,,j,] u [i2,j2] u . . . u [i,,j,]} with i,+, -j, 2 2. 

Now if U E BE(n, k) = Q satisfies B E U, then U(i,,j, + k) u . . . u U(i,,j, + k) E U fol- 
lows from consistency of U (Lemma 5.5). We get that U(i,, jI + k) u . . . u U(il, j, + k) is 
consistent from Lemma 5.6: j, + k - i, = k - (i, - jl) 5 k - (i,, , -j,) s k - 2 for s < t 

implies I[i,, j, + k] n [i,,jl + k]l = I[i,.j, + k]l s k - 1. Thus U(i,, j, + k) u . . . u 

U(i,,j, + k) is the join of B, and this is i = U(l,n) = U(1.r + k) exactly if 
B = (c(l), . . . , u(r)} = A. By Lemma 5.7, B, (n, k) is homotopy equivalent to the (a - 2)- 
sphere. cl 

The same proof technique cannot be used to determine the homotopy type of B(n. k) in 
general: in B(8,3) we have atoms u(l) = { 1234) and u(5) = { 5678). The sets U, = { 1234, 
5678) and U2 are both upper bounds of u( 1) and u(5) in B(8.3): for U, this is obvious, while 

for U2 it is implied by the proof technique of Theorem 4.5, since d(5678) = a{ 1234) = 0. 
However, in Theorem 4.5 we have shown UI $ U2, so the atoms u(l) and u(5) do not have 
a join in B(n, k). However, Theorem 5.2 implies that B(n, k) is spherical in all cases where 
B(n. k) and BE (n, k) coincide. 

COROLLARY 5.8. For k = I and for n - k S 4, the proper part of the higher Bruhat order 

B(n, k) is homotopy equiualent to an (r - 2)-sphere: 

B(n, k) z Pm2 for k= 1 andforn-ks4. 

It would be interesting to study the combinatorics of intervals both in BE@, k) and in 
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&I, k). In particular, one should try to compute the Mobius function, and to determine 

whether the intervals are always spherical or contractible, as they are in the case k = 1 [I]. 

6. UNIF0R.V EXTENSION POSE-l-S 

By Theorem 4.1(B), we can interpret B(n, k) as @(C”+‘.‘, n + 1) for r = n - k, that is, 

B(n, k) is the set of all uniform extensions of the cyclic oriented matroid C”.‘, ordered away 

from the single element extension Cn+l.r = P’ u n + 1. 

In this section, we consider the mild generalization obtained by ordering the same set 

B(n, k) away from a different single element extension ./t = P’ u g. This poset is again 

isomorphic to B(n, k) in the case k = 1. but not in general. The poset we get is the uniform 

extension poset %(J?, g) of Definition 3.4, if we order by single step inclusion. Also we want 

to consider %s (,I(, g) in this case, the same set ordered by inclusion of inversion sets. We 

will see that the main structural properties (Sections 4 and 5) of B(n. k) and Bc (n, k) do not 

generalize to %(.I?, g) or to @c(.l/, g), even in the case of _li\g z C”*’ and in the case of 

rank r = 3, where B(n, k) = B,(n, k) is very well-behaved. 

For the following (Jf, g) will denote a uniform affine rank 3 oriented matroid on the 

ground set [n] u g. with .K\g = C”.‘. X denotes a realization of (J?, g) by an affine 

arrangement of n hyperplanes in R*. A set of vertices of X is consistent if it is the vertex set (in 

the sense of Lemma 3.3) of a uniform extension /E’@(.//. g). Again we set k:= n - r. 

Example 6.1. Let X be the attine arrangement in R* sketched in Fig. 5. We have d = 2, 

r=3,n= 5 and k = 2. The arrangement is gcncric: the corresponding affine matroid (_I?, g) 

is uniform, with J/\ y z C’s’. The poset diagram of ?@(_~/I, g) can be obtained from Fig. 3 

by directing its graph away from the vertex that corresponds to ,I/. This vertex corresponds 

to the extension of Fig. 1; it is marked by an arrow in Fig. 3. 

Fig. 5. An atIne arrangement in R* for which S(_M, 9) is not a lattice. 

mP 32:2-o 
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For this arrangement Q(,K, g) = 4E (JK, g) is not a lattice. In fact, denote the vertex set 
of X by V, and let v. v’. v”, w’, w” be the vertices marked in Fig. 5. Then the atoms {v’} and 
{v”} do not have a join: their minimal upper bounds are V\(v) and (v, v‘, v”, w’, w”}. 

Example 6.2. Let X be the affine arrangement in Hz sketched in Fig. 6. We have d = 2, 

r = 3, n = 6 and k = 3. The arrangement is generic: the corresponding affine matroid (&, g) 
is uniform, with ,K\g 2 C6*‘. 

For this arrangement %(JY, g) is not bounded and not ordered by inclusion, and 
“P/,(,U, g) is not graded. In fact, denote the vertex set of X by V, and let {vi, vZr v3} be the 
vertices marked in Fig. 6. The vertex set { vl, ~2, v3} is consistent. Now let S 1 {vi, v2, v3} 
be consistent. The directed arcs in Fig. 6 indicate that if the vertex at the tail end is in S, then 
the vertex at the head end has to be in S as well. From this it is easy to see that S = V: there 
is no consistent set S with { vlr v2, v3} c S c V. In this case {vr, v2, v3} and V are two 
different maximal elements of ‘B(&, g). Hence we have d(9E(J, g)) = I VI = 15, while 
every maximal chain of %‘((JK, g) that contains {vi, v2, ~3) is of the form 

6=Oc {Vi} t {VivVj} c {Vlr v2, v3} c V = ^i and has length 4. 
Lemma 4.6 can be applied to ‘311, (,K, g). The minimal non-empty vertex sets are given 

by A = {{ul), {or}, {u3}, v\{vl, 0~. ~3)) with a = I Al = 4. Any union of these sets is 
a vertex set in ac(Jf, g). Thus Lemma 4.6 yields +Yc,(Jf, g) 5 S2, in contrast to 
Theorem 5.2. 

In general, it is not clear how much can be said about the structure of Q(,K, g) or of 
qE (J/, 9). There is a close connection between the gradedness problem for 4(&, g) and 

“strong Euclidcanness” [17]. For example, we have the following result, which implies 
Theorem 4.1(G), and also has a similar proof (which we omit). 

PROPOSITION 6.3. If the extension of:K\g by g is lexicographic and if (2, g, f) is 

Euclidean for eveny uni/orm extension JK = J v J then every element of %(A, g) is 

contained in a muximal chuin of length I VI = (k J ,). 

The search for affine oriented matroids without long chains in 4(M, g) is related to Las 
Vergnas’ problem about the existence of mutations: if (4, g) is a uniform affine matroid for 
which g is not contained in a mutation of .&Y, then no vertex set in %(A, g) has size 1, hence 

Fig. 6. An atline arrangement in R’ for which 47/(-M, g) is not bounded. 
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-B(M, g) has no chain of length I VI = (kZ ,). (J. Richter-Gebert has recently shown that this 

situation is possible [15].) Also, there is clearly a relation between the extension space 

problem for _X\g and the structure of *(.I(, g). 

7. ESUMERATION 

The enumerative combinatorics of the k-analogues A(n, k) is largely unexplored. Denote 

the size of A(n, k) by a(n, k). and the size of B(n, k) by b(n, k). Tables 1 and 2 list these 

numbers for small n and k. 

We note that b(n, 2) appears in Knuth [ll, Sect. 93 as the number B, of “equivalence 

classes of reflection networks”. Knuth proves 2”“6-o’n’ I b(n, 2)” < 2”“” and computes the 

additional values b(8.2) = 1232944 and b(9, 2) = 112028290. 

PROPOSITION 7.1. The following /omrths hold jar rhe sizes a(n, k):= 1 A(n, k)l and 

b(n, k):= IB(n, k)l: 

a@, I) = b(n, I) = n! is the size o/Y”, 

b(n, n) = cr(n, n) = I, u(n, n - I) = b(n, n - 1) = 2, 

b(n, n - 2) = 2n. 

Proo/ The result for NOI, 2) is Stanley’s [ 161 formula for the number of maximal chains 

in the weak order of Y,. All the others arc trivial except for the size of B(n, n - 3), which 

Table I. Values for o(n. k) = [~(n, k)] 

k\n I 2 3 4 5 6 

I 1 2 6 24 I20 720 
2 I 2 16 768 292864 
3 I 2 II2 3 
4 I 2 ? 
5 I 2 
6 I 
7 

Table 2. Values for h(n. k) = IB(n. &)I 

k\n I 2 3 4 5 6 7 

I I 2 6 24 I20 720 5040 
2 I 2 8 62 908 24698 
3 I 2 IO I48 ? 
4 I 2 I2 338 
5 I 2 I4 
6 I 2 
7 I 
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counts antipodal paths through the poset of regions in the 2-dimensional affine cyclic 
arrangements. Cl 

There is no explicit formula known for either o(n. k) or for b(n, k). It would also be of 
interest if one could count both admissible orders and consistent sets with respect to their 
number of inversions, that is, to determine a(n, k; q):= xeAcnaL, qlinr(pJt and 

b(a, k; q):= &ea,n.k,q’“‘. where b(n, k; q) is also the rank generating function of B(n, k). 

The answers corresponding to the cases above are given by the following proposition, which 

uses the notation (n),:= 1 + q + , . . + q”-*, (n),!:= (l),(2),. . .@I),, 
n 

0 

(n),! 
. 
I 4 ‘= (i),! (n - i),! 

and (2’),:= (1 + q)’ . . . ‘(1 + q’) for the q-analog of n, n!, (1) and 2’. 

PROPOSITION 7.2. 

4n, 1; q) = b(n, 1; q) = (n),! 

b(n, n; q) = a(n, n; q) = 1, o(n, n - 1; q) = b(n, n - 1; q) = 1 + q = (2), 

b(n, n - 2; q) = (2),(n),. 

b(n, n - 3; q) = (2”- ‘)q + c;;; 

+ (4 “n-” + cl-’ )(pl)q.(2”-2-l)q _ (qfw-” + q’;‘-lw’) 

Proofi The first formula is well-known. All the others are trivial (using the descriptions 
of Section 4). except for the last one, which is the q-analogue of the formula for b(n, n - 3) in 
Proposition 7. I. Cl 

There is probably not much hope for a nice general answer. We note 

d5.2; q) = 12 + 14q + 38q* + 108q’ + 142q4 + 140qs + 142q6 + lQ8q’ 

+ 38q* + 14q9 + 12q’O, 

a(5.3; q) = 12 + 4q + 4oq2 + 4oqJ + 4q4 + 1295, 

b(5,2; q) = 1 + 3q + Sq2 + 9q’ + 9q4 + 8q’ + 9q6 + 9q’ + 5qe + 3q9 + q’“, 

which were computed by computer enumeration. They show that in general the generating 
polynomials are not unimodal and they do not factor. It would also be of interest to 
determine the asymptotic behavior of a(n, k) and of b(n. k) in view of their relation with the 
enumeration of oriented matroids. 
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