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1. INTRODUCTION

THE higher Bruhat orders B(n, k) were introduced by Manin and Schechtman [12, §2] [13]
as combinatorial models for the path spaces of certain complex hyperplane arrangements.
In this paper we clarify the geometric interpretation of the higher Bruhat orders (as
suggested by Kapranov and Voevodsky [9, Sect. 4] [10]). We use the geometric picture to
anaiyze the main structural properties of B{n, k), inciuding new proofs for the resuits of
Manin and Schechtman [12, 13].

We start with a review of the weak ordering of the symmetric group, see also [18] [1]
[4, Sect. 2.3]. For this denote the set of integers {1, ..., n} by [n]. and the set of k-subsets
of [n] by (§!). We write UC U’ if U, U’ are finite sets with U < U'and |U’| = |U| + 1. For
any collection # of finite sets, we define the partial order by single step inclusion on % by the
condition that U< U’ if and only if there exist sets U,e# with
U=UsclU,c ... cU,=U’, wheret =[U’| —|U| is implicd.

Definition 1.1.

(i) Let A(n, 1) denote the sct of permutations of the n-clement set [n].

(i) For every permutation p=(py,...,p,). the inversion set inv(p):=
{ij:i <j, pi> p,} is a set of pairs, that is, a subset of ('3).

(iii) Define B(n, 1):= {inv(p):p € A(n, 1)}. Every permutation is determined by its
inversion set, thus A(n, 1) is in bijection to the collection B(n, 1) of inversion sets.

(iv) The weak Bruhat order is the set B(n, 1), partially ordered by single step inclusion.

Some main structural properties of the weak ordering are the following:

(1) B(n, 1) is a graded poset of length (3), whose rank function is r(B) = | B},

(2) U = () is an inversion set, Ue B(n, 1), if and only for every triple i <j <[ the
intersection U r {ij, il, jl} is neither {il} nor {ij, jl}, [18, Prop. 2.2]

(3) B(n, 1) is a lattice, [18, Thm. 2.1]

(4 U < U’ holds if and only if U < U, [18, Prop. 2.1]

(5) the proper part of B(n, 1) has the homotopy type of the (r — 2)-sphere. [1]

Furthermore, B(n, 1) has various geometric interpretations. For example, it is the “poset
of regions™ of the Coxeter arrangement A4,_,, which is the arrangement of all hyperplanes
spanned by n vectors in general position in R" ™!, This also suggests far-reaching generaliz-
ations of the weak order, to the posets of regions of arbitrary affine hyperplane arrange-
ments. The analogues of (1), (4) and (5) are still true in this context [5] [6]. If the
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arrangement is simplicial, then the poset of regions is a lattice, but not in general [3]. lf the
poset is a lattice, then an analogue of (2) holds, see [3].

We will now generalize the construction of the weak orders B(n, 1) to give a definition of
the higher Bruhat orders of Manin and Schechtman [13]. The equivalence of our version of
B(n, k) with the original definition is non-trivial; it will be demonstrated in Corollaries 2.3
and 4.2. Define a k-packet as the set P(I):= {J e(§)): J ¢ I} of all k-subsets of a (k + 1)-
set I ={i; <i;<...<igsr}€GY)). In the lexicographic order the elements of P(I) are
Nigey <Nig< ... <I\i,.

Definition 1.2.

(i) A permutation p of (') is admissible if every k-packet P(I) occurs in it either in
lexicographic order or in reversed lexicographic order. Let A(n, k) denote the set of
all admissible permutations of (If}).

(ii) For each pe A(n, k) the inversion set inv(p) < (lt;) is the set of packets that appear
in reversed lexicographic order in p.

(1)) The set B(n, k) is defined as the collection of all inversion sets B(n, k):=
{inv(p):p e A(n, k)}.

(iv) The higher Bruhat order B(n, k) is the partial order on B(n, k) given by single step
inclusion.

In this paper, we will treat the questions for higher Bruhat orders that correspond to the
five structural fcatures of the weak order listed above. In the course of our work, we will also
show that our dcfinition is equivalent to the original one given by Manin and Schechtman
[12]. Specifically we prove the following results, where r:=n — k.

(1) B(n, k) is a graded poset of length (,7,), whose rank function is r(B) = |B|,
[12, §2 Thm. 3b]. (Theorem 4.1 (G))

(2) U < (7)) is an inversion set, U € B(n, k), if and only if for cvery Ke(,'7};) and for
{i<j<l} €K, the intersection U n{K\l, K\j, K\i} is necither {K\j} nor
{ K\l, K\i}. (Theorem 4.1(B))

(3) B(n, k) is a lattice for k = 1 and for r < 3, but not in general. (Theorem 4.4)

(4) U < U’ holdsifand only if U € U’, provided that k = 1 or r < 4, but not in general.
(Theorem 4.5)

This last fact shows that the (simpler) partial order B¢ (n, k) on the set B(n, k) defined by
inclusion does not in general coincide with the partial order by single step inclusion defined
by Manin and Schechtman. However, the combinatorics of B(n, k) is intimately related to
that of B<(n, k), so all main results on B(n, k) have counterparts for B¢ (n, k), see Theorem
5.1. The partial order of B (n, k) is easier to study, however. We prove the following result,
which applics to B(n, k) whenever B¢ (n, k) = B(n, k):

(5) the proper part of B¢ (n, k) has the homotopy type of S =2, (Theorem 5.2)

The key to our development is the interpretation of B(n, k) and of B¢ (n, k) as “posets of
oriented matroid extensions™ of a cyclic configuration of n vectors in R” by a new element.
Choosing a particular vector representation, B(n, k) includes elements that correspond to
the regions of the “adjoint™ arrangement of hyperplanes spanned by the vectors, plus in
general many more extensions that correspond to other extensions, realizable or not. We
refer to [4, Sect. 5.3] for the fact that the regions of the adjoint arrangement correspond to
only a part of the rcalizable single element extensions of the corresponding oriented
matroid. In this paper, we will treat oriented matroids as arrangements of pseudo-hyper-
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planes. So we get the interpretation of B(n, k) as the poset of extensions of the cyclic
hyperplane arrangement X" *~! by a new pseudo-hyperplane.

This paper is organized as follows. In Section 2 we collect elementary facts about
admissible orderings and show that their inversion sets are “consistent”, in Section 3 we
discuss affine hyperplane arrangements and show that for “cyclic” arrangements the
extensions by a new pseudo-hyperplane correspond to consistent sets. In Theorem 4.1, this
is used for a geometric characterization of the sets A(n, k) and the higher Bruhat orders
B(n, k). From this, we get in Section 4 structural information about the posets B(n, k),
whose homotopy types are examined in Section 5. The geometric interpretation of B(n, k)
also suggests a generalization: one can consider the poset of all extensions of any affine
arrangement in general position by a new pseudo-hyperplane. This poset, however, does not
retain any of the above structural features, see Section 6. Enumerative results are collected
in Section 7.

2. ADMISSIBLE ORDERS AND CONSISTANT SETS

We will now review the original construction of the set B(n, k) by Manin and Schecht-
man.

Definition 2.1. [12, Def. 2.2]

() A permutation of (') is admissible if its restriction to each k-packet [ € (/7)) is either
the lexicographic order or the reversed lexicographic order. A(n, k) is defined as the
set of all admissible permutations of ().

(i) Two permutations p, p' € A(n, k) are elementarily equivalent (p ~ p') if they differ by
an interchange of two neighbors not contained in a common packet. Let B(n, k) be
the quotient by the induced equivalence relation and A(n, k) —» B(n, k), p —[p] the
quoticnt map.

(i) For cach pe A(n, k) the inversion set inv(p) is the set of packets that appear in
reversed lexicographic order in p. Here p ~ p’ implics inv(p) = inv(p’), so the
inversion sct inv[ p]:= inv(p) is well-defined for [p]e B(n, k).

We will view permutations of (}!) as linear orders on the set (‘). For [p] e B(n, k) let
Q[ p] be the intersection of the linear orders in [ p], that is, the partial order on () defined
by I’ < Iifand only if I' <, I for all e[ p], Similarly, let @' [ p] be the intersection of all
admissible orders T with inv(t) = inv(p).

LemMma 2.2. The following four sets coincide:

Ay: [ p]. the set of linear orders of (1f)) equivalent to p,
A,: the lincar extensions of Q[ p],

Aj: the admissible orders of ('§)) with inversion set inv( p),
Ay the linear extensions of Q'[ p].

Proof. Every 1 that is equivalent to p is admissible with inversion set inv( p), and thus it
is also a linear extension of Q'[ p]. Now we use that any two linear extensions of a poset @
can be connected by a sequence of transpositions of adjacent elements that are incompar-
able in Q'. Furthermore, if 1, J € (') are incomparable in Q' [ p], then they are not contained
in a common k-packet. Thus every lincar extension of Q'[p]) isin [p].

With this we have shown that A} = A; = A,. But 4; = A; alsoimplies Q[ p] = Q'[p],
that is, 4, = A,. O
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Cororrary 2.3. [12, §2 Thm. 3d] Every [p]e B(n, k) is uniquely determined by its
inversion set inv(p).

In particular we get from this corollary that our Definition 1.2(iii) of the set B(n, k) is
equivalent to that of Definition 2.1(ii) due to Manin and Schechtman. Our goal is now to
characterize inversion sets. For this we consider any (k + l)-packet P(I), with
I ={i, <iy<...<ig+3},in its lexicographic order. Thus a beginning segment is of the
form {I\ix, 2, I\ixsy, ..., I\i;} for some j. An ending segment of P(I) is of the form
{I\ij, I\i;—y. ..., I\i;} for some j. The subsets § and P(I) are considered both as
beginning and as ending segments of P(I). We get the following lemma, which identifies the
characterizing property of inversion sets. Its converse will be proved in Theorem 4.1(B).

Lemma 2.4. Every inversion set U < (7)) satisfies the following equivalent conditions:

(1) U and its complement are both convex: if {j; <j, <j3} € K for some K e ((1};), then
the intersection of U with {K\ j;, K\ j,, K\ j, } is neither { K\ j;, K\ j, } nor {K\j,},

(2) U is consistent, that is, the intersection of U with any (k + 1)-packet is a beginning or
an ending segment of it.

Proof. The condition (2) that U n P(I) is either a beginning or a final segment of P([I)
means the following: if we consider the (k + 1)-packet in its lexicographic order
IN\ivsy < IN\igy < ... <I\iy, then there is at most onc switch between elements of U and
between non-clements of U. This yields (2) <= (1).

Now assume that pe A(n, k) is an admissible order on (\§Y), and let {j, < j, <j;) € K for
some K (/7). Now if

K\jseinv(p),  K\j:¢inv(p),  K\j einv(p).
then this implies
K\{j.\sjl}<ﬂ K\{jl‘jZ}' K\{jlvjl}>p K\{jZ'jJ}' K\{jl'j2}<p K\{jlvj3}v
which yiclds a contradiction. An analogous contradiction arises if we find {j, <j, <j;}

with K\ jy¢inv(p), K\j,einv(p), K\j, ¢inv(p). Thus inv(p) satisfies (1). O

Let U < (,,) be a consistent set. Then the complement U := (4),)\ U of U is consistent
as well. Define the boundary of U by dU:={I={i; < ... <i+2}e(lh): I\i, ¢U,
Nige, €U} Also, let Us{n+ 1}:={Ku{n+1}:KeU}, and define the extension
UcmiWofUasU:=Us{n+1}udU.

The following two lemmas contain the key to an inductive treatment of consistent sets.
Their geometric significance will become clear in Section 4. In fact, both the statements and
the arguments in the proofs can be identified in Figure 2.

LeMMa 2.5. Let U’ be a consistent subset of (1)), and let U” be a consistent subset of (,'t}).
Then U:=U" O U's{n+ 1} < (41D is consistent if and only if 9U’ < U” and 8U" < U”.

Proof. Let Ke(:3). If n+ 1¢K, then P(K)nU = P(K)n U" is a beginning or
ending subset of P(K), because U” is consistent.
MK={ii<...<isy<n+ 1}, welet [:=K\n+ | and get

P(KY={I <K\ij+1 < ... <K\i1}, P(I)={I\ij,y < ... <I\iy}.
Now if U’ ~ P(I} is a beginning, but not an ending subset of P([), so that I € dU’, then
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U n P(K)cannot be an ending subset of P(K), so consistency if U implies [ € U”. From this
we get the requirement that U’ < U”.

Similarly, if U’ ~ P(I) is an ending, but not a beginning subset of P(), so that [eU",
then U n P(K) cannot be a beginning subset of P(K), so consistency of U implies ¢ U".

From this we get the requirement that U’ < U”.

If U’ A P(I) is both a beginning and an ending segment of P([/), then either P(I) = U’,
so that U n P(K) automatically is an ending segment of P(K), or P(I)n U’ =, so that
U n P(K) automatically is a beginning segment of P(K). From this we get that the two
conditions of the lemma are also sufficient for consistency of U. O

LemMa 2.6. Let U < (7)) be a consistent set. Then

(i) the boundary dU of U is a consistent subset of (;71),

(i) the extension U of U is a consistent subset of (1 1),

(iii) U is also a consistent subset of ("} ').

Proof. (i) Choose K = {i; < ... <i4,}€(,7%). We have to show that dU n P(K) is
a beginning or ending segment of P(K).

As, the first case assume that K\{i,,ij,,}€U. This implies that K\i,,¢oU. If
K\{i,,i,} €U, then this implics P(K\i;) & U and thus 0U n P(K) = 0. Otherwise we get
the existence of values s, ¢, with3 <s<{+2, 1 <t <!+ | with

P(K\i))n U = {K\{i,,ij}:s<j<1+2},
P(K\ijs2) U = {K\{ij+2. 05} 1 Sj <t}
From this we can compute

dUNP(K)={{K\ij:1 Sj<min(s — 1,1)},
which is an ending scgment of P(K).

As the second case now assume that K\{i,, i;+,}¢ U. This implics that K\i; ¢oU. If
K\{ij+1,i1+2} ¢ U, then this implies P(K\ij4,) & U and thus dU A P(K) = 0. Otherwise
we get the existence of values s, £, with2 < s <!+ 2,1 <t <! with

P(K\ijs2)nU = {K\{ij+2. i}t <j< 1+ 1},
From this we can compute

dUNP(K)={{K\ijxmax(s,t + 1) <j <1+ 2},

which is a beginning segment of P(K).

(iiy Here 8U' is consistent by part (i), hence we can apply Lemma 2.5 for U” = oU’: we
also have U’ < U”, because dU’ and dU’ are disjoint by definition.

(iii) This is a special case of Lemma 2.5: for U’ = @ we have U’ = U =0,soU=U"
is also a consistent subset of ("% ). a

3. CYCLIC ARRANGEMENTS

Consider any arrangement X = {H,, ..., H,} of n affine hyperplanes in general posi-
tion in R, Then every vertex is determined as the intersection of d hyperplanes. Associating
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the vertex with the set of n — d hyperplanes that do not pass through it, we get a bijection
V = V(X)—(!",) between the vertices of X and the (n — d)-subsets of [n]. Similarly, every
1-dimensional line in X is the intersection of d — 1 of the hyperplanes. Associating every line
with the n — d + | hyperplanes that do not contain it, we get a bijection between the lines of
X and the (n — d + 1)-sets in [n]. Furthermore, under these bijections the vertices on a line
of X correspond to the (n — d)-sets in the corresponding (n — d + 1)-set, i.e., the vertices on
a line correspond to an (n — d)-packet.

The key observation is now that if X is the cyclic arrangement of n hyperplanes in RY,
then the vertices on a line correspond to an (n — d)-packet in lexicographic order. In the
following sections we will use this for a geometric interpretation of higher Bruhat orders
and their inversion sets, for which r:=n — k is d respectively d + 1.

Definition 3.1. The cyclic arrangement X% is the arrangement {H,,..., H,} in R
given by
H; = {(X[, [N x,,)eR“:xl +Lx,+ ...+ t}“lxd + t'," = 0}
for 1 <i < d, with arbitrary real parameters t; <t; <t3 < ... <1,.

For every choice of the parameters ¢; this arrangement represents the alternating
oriented matroid C™?*', Here the hyperplane at infinity corresponds to the extension
Cr* 141 of C™4* 1 by a new element g:= n + 1. Thus the combinatorial type of this affine
arrangement docs not depend on the choice of the parameters ¢;.

Lemma 3.2. The vertices of X*4 correspond to (1) in such a way that the vertices on an
affine line correspond to the (n — d)-packets in lexicographic order (or its reverse).

Proof. There are many ways to derive this basic fact, either by elementary linear algebra
(the vertices V; corresponding to I €(,1”L) can be explicitly determined in terms of Vander-
monde determinants), or using simple oriented matroid tools to compute the contractions
(any contraction of C™4 is a reorientation of a cyclic oriented matroid, with the induced
lincar order of the ground set), or by cxploiting orthogonality resp. oriented matroid
duality. a

Now consider any extension of the cyclic arrangement X™¢ by a new oriented hyper-
plane H, in general position. For this, two extensions by hyperplanes H,, H are equivalent
if on their negative sides they have the same set ¥, = V. of affine vertices of the arrange-
ment. From Lemma 3.2 we see

V,:={K e()",): K corresponds to a vertex on the negative side of H }

is a consistent set ¥, < (,1!,). The same is true for any extension of X! by a new oriented
pseudo-hyperplane (topologically deformed hyperplane) H  in general position. The proper
framework to study such extensions of an arrangement X by a pseudo-hyperplane is the
theory of oriented matroids.

We will only sketch the connection, and refer to [4] for the details. Let
X ={H,,..., H,} bc an affinc arrangement in R“. The affine space R? can be identified
with a hemisphere of §¢, where the hyperplanes H; correspond to intersections of (d — 1)-
subspheres of §¢ with the hemisphere. Assuming that a positive side has been chosen for
every hyperplane, the hyperplane arrangement (resp. the corresponding sphere arrange-
ment) represents an oriented matroid .#, of rank d 4+ 1 on the ground set [r], so the
hyperplane H; of the arrangement corresponds to the element ie[n] of the oriented
matroid. By representing .#, by an affine arrangement we have distinguished the hyper-
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123 345

125 145

Fig. 1. The cyclic arrangement X2'? with a pseudoline extension f and the corresponding vertex set.

plane at infinity, which corresponds to the extension of .#, by a new element g =n + 1. In
this sense we say that X represents the affine oriented matroid (.#, g), that is, the oriented
matroid .# o = .# \ g together with a distinguished extension of .4, by g. In particular, the
cyclic arrangement X represents the affine alternating oriented matroid (C**14* 1 n 4 1),
whose structure is well understood [4, Scct. 8.1].

The fact that the extensions of an affinc arrangement by a new pscudo-hyperplane
correspond to oriented matroid extensions is duc to the “topological representation
theorem™, sce [4, Chap. 5]. Here two extensions are considered equivalent il and only if they
have the same set of vertices of X on their negative side, since this is equivalent to the
condition that they determine the same oriented matroid extension. Denoting by V the
vertices of X (which correspond to hall of the vertices/cocircuits of the sphere representation
of .#,), we know that every extension #y U f of #, is determined by its localization,
afunctiong,: ¥ — {+, —} that indicates for every affine vertex whether it is on the positive
or on the negative side of the extension pseudo-hyperplane. See [4, Sect. 7.1] for details and
proofs. A key technical result is Las Vergnas’ characterization of single element extensions,
which in our picture can be stated as follows.

LeEMMA 3.3. Let V be the set of vertices of an affine hyperplane arrangement X. A subset
V, S Visthe vertex set of an extension of X by a new pseudo-hyperplane in general position if
and only if it contains a beginning or an ending segment of the set of vertices on every
(arbitrarily directed) line.

Definition 3.4. The uniform extension poset of X is the set of all extensions of X by a new
pseudo-hyperplane H, in general position, partially ordered by single step inclusion of their
vertex sets.

The uniform extension poset of X only depends on the affine matroid (.#, g) rep-
resented by X, and will thus be denoted by # (.4, g). It is the set of all uniform single
element extensions of .#, = .# \ g, whose partial order depends on the extension .# of 4.
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COROLLARY 3.5. The uniform extension poset %(C"*'¢*!' n+ 1) of X2* is naturally
isomorphic to the set of all consistent subsets of (")), ordered by single step inclusion.

Proof. This follows directly from the Lemmas 3.2 and 3.3. O

To understand the geometry of Z(C"*!-4*!, n + 1) we use the partial orders of oriented
matroid programs, following the lines of [17, Sect. 3]. Let (.#, g) be the affine matroid of an
arrangement and .# = .# u f an extension of .# (!) corresponding to a new pseudo-
hyperplane H,. The tripel (4, g, f)is an oriented matroid program, where H  is interpreted
as (a level plane of) a linear objective function on the affine arrangement (.#, g), see [4,
Sect. 10.1]. The graph G, has the affine vertices of (.#, g) as its nodes, and the edges between
them are the bounded edges of (.#, g), directed according to increasing f, that is, according
to the direction in which their line cuts the level-plane H,. Assuming that .4 is uniform,
there are no horizontal (undirected) edges. In general, the program can be non-Euclidean
[7], so that there are directed cycles in the graph G,. The following non-trivial result is the
technical key to our development.

PROPOSITION 3.6. If (.#,g) = (C"*"4*! n+ 1), then the graph G, is acyclic for any
uniform program (.# v f, g.f).

Proof. See [17, Prop. 4.7/Thm. 4.12]. 0

4. STRUCTURE OF HIGHER BRUHAT ORDERS

With the preparations of Sections 2 and 3, we can now prove the following main
thcorem.

Tueorem 4.1, Let 1l <k <nandr:=n — k.

(B) There is a natural isomorphism of posets between

1. the higher Bruhat order B(n, k),

2. the set of all consistent subsets of (), ordered by single step inclusion,

3. the set of extensions of the cyclic arrangement X2*~' by a new pseudo-hyperplane in
general position, ordered by single step inclusion of their vertex sets, and

4. the poset U(C"*'", n + 1) of all uniform single element extensions of C™"

(G) The poset B(n, k) is a graded poset of length (\7\). Its rank function is r(U) = |U|.
The unique minimal element is 0 = 0, the unique maximal element is 1 = ('7),).

(A’) There is a natural bijection between

1. the set B(n, k),

2. the posets Q[ p). for pe A(n, k), and

3. the different ways to assign directions to the 1-dimensional lines of X{*" without creating
directed cycles.

(A) There is a natural bijection between

1. the set of admissible orderings A(n, k),

2. the maximal chains of the poset B(n, k — 1), and

3. the different ways to sweep the arrangement X" by a generic pseudo-hyperplane.

We note that the geometric statements of (A3) and (B3) have precise geometric meaning
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in the axiomatic setting of pseudo-arrangements provided by oriented matroid theory, see
[4, Chap. 5].

Theorem 4.1 also contains the main results of Manin and Schechtman: the bijection
(A1)}—(A2) is [12, §2 Thm. 3c]. while the part (G) is [12, §2 Thm. 3b]. Furthermore, after
applying oriented matroid duality (B1)«+(B4) is a bijection between B(n, k) and the single
element liftings of C™*: such a bijection is stated (without a proof) by Kapranov and
Voevodsky [9, Thm. 4.9].

Proof. We start with part (B). For this let U < (,%¥;) be consistent. By Corollary 2.6(ii),
U is also consistent as a subset of ({*1!), and thus by Lemma 3.3 it defines an extension of
X**1 by a new pseudo-hyperplane H, (cf. Fig. 2). We now treat H,,, as the hyperplane at
infinity, with g:=n+ 1. With this we get an oriented matroid program
(C** VP U fin + 1, f). Its affine vertices are the vertices of X! *!*" that do not lie on H,+,,
so they correspond to the (k + 1)-subsets of {n + 1] that contain n + 1. The lines that are
not contained in H,,; correspond to the (k + t)-packets P(K) with n + 1 € K. Setting

K={ij<i;<... <igsz}and J:= K\n + 1, we get from Lemma 3.2 that the vertices on
such a line are given by
J=K\R+l - K\"k*l — ee. = K\fz - K\fl‘

Thus the graph G, of the program has the vertex set
V={le@Gih:n+ 1el} =Y {n+ 1}, with directed edges (cf. Fig. 2)

k+1
K\ij;, = ... K\i—=K\i;, ifJeU,
K\ikfl‘—...“K\iz‘—K\i, ifJ¢U.

By Proposition 3.6, the graph is acyclic. Thus G, defines a partial order “ <™ on (1}) by

I < I’ :e> G, contains a directed path from I' U{n + 1} to T U {n + 1},

Fig. 2. The cyclic arrangement X532, with g:=n + | = 6. The consistent set U = {1234, 1235, 1245} inducces the
extension of H , directions of the lines of X2 and thus a partial order on ('3)).
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and by construction we have

INigay > ... >JIN\ig>J\i; if JeU,
INigayg < ... <J\ig<J\ij ifJ¢U.

Hence every linear extension p of the partial order “ <™ is an admissible on (i!) with
inv(p) = U. With Lemma 2.4, this proves part (B).

For part (A'), this also shows that every U € B(n, k) directs the lines of X" in an acyclic
way, and this determines a partial order Q[ p] on ('§!). Finally U can be reconstructed from
Q[ p] as U = inv(p) for every linear extension p of Q[ p].

For part (G), we have to verify that indeed § < U < () for every consistent set
U < (%,). The rest is then clear from the definition of * < ” by single step inclusion. Given
U, wenote that U = ¢U u U {n + 1} = (11) is consistent by Lemma 2.6(ii), and thus by
(B) defines an extension H, of X?*!*~!. This defines a graph G, which is acyclic by
Proposition 3.6 and thus defines a partial order < on (,[7)}) as in part (A’). Any linear
extension p of this partial order is admissible, pe A(n, k + 1). By construction, U is an order
ideal of <, hence the linear extension

p=(51 <8 <... <8 ed(nk+1)

can be chosen in such a way that U is a beginning segment of p, that is
U={S8,.5:...,8} for some i. However, every beginning segment {S,,S,, ..., S,} is
consistent. Thus p induces a maximal chain0 = 9 < {S,} < {S$,,8;} < ... <{S1,52.....
Ss,} = 1 of length (,7,) in B(k, n) that contains U.

From the same argument we also see (A): every admissible ordering p € A(n, k) induces
a maximal chain of length (§) in B(n, k — 1). According to part (G) every maximal chain in
B(n, k — 1) has this form, and the linear orderings on (§)) induced by maximal chains in
B(n, k — 1) are clearly admissible. By (B), every maximal chain in B(n, k — 1) corresponds to
a sequence of pscudo-hyperplanc extensions of X7 that describes a topological sweep, and
conversely. O

The higher Bruhat order B(S, 2) is drawn in Fig. 3. Here every element is denoted by the
corresponding consistent vertex set of a cyclic arrangement X2-2.

We now use Theorem 4.1 to verify that our definition of the partial order on B(n, k)
coincides with the one used by Manin and Schechtman.

CoroLLary 4.2. BC B’ holds for sets B, B’ € B(n, k) if and only if there are admissible
orders p, p’ € A(n, k) with inv(p) = B, inv(p') = B’ and p' is obtained from p by reversing
a single k-packet P(l) whose elements appear in p in lexicographic order, with no other
elements in between.(That is, v < t' is a cover relation if and only if v = p,(v') in the notation of

(12, 13].)

Proof. The “if” part is clear. For the converse, let UcU’, U'\U = {I} with
I ={i, < ... <ix+}. Consider the line orientations of X{*" corresponding to U and to U’
according to Theorem 4.1(A’). They only differ by the reversal of one line, and both are
acyclic. For the associated partial orders Q, Q' on (If!) this means that Q contains the packet
P(I), ordered lexicographically, as an interval [I\ix+,, I\i, ], while Q' contains the packet
P(I), ordered lexicographically, as an interval [I\{,, I\ix+,], and @ and Q' differ only in
the reversal of this interval. Thus linear extensions p of Q@ and p’ of Q' can be constructed to
satisfy the conditions of the lemma. a

Now we use Theorem 4.1(B) to derive structural properties of the posets B(n, k).
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Fig. 3. The higher Bruhat order B(S, 2).

ProposiTioN 4.3. B(n, k) is isomorphic to a lower interval of B(n + 1, k).

Proof. This is immediate from Lemma 2.6(iii), which shows that there is an order
preserving inclusion B(n, k) B(n + 1, k). ]

In contrast to this, it is not clear whether there is an embedding of B(n, k) into
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B(n+ 1,k + 1) as a subposet. The case r = 2 shows that B(n, k) is not an interval of
B(n + 1,k + 1)in general. The map U — U suggested by Lemma 2.6(ii) is an injection, but
not order-preserving in general.

The proofs of the following two theorems are linked. We prove, in effect, that

(1) B(n, k + 1) is a lattice and ordered by inclusion = B(n, k) is ordered by inclusion,
(2) B(n, k) is ordered by inclusion, and n — k < 3 = B(n, k) is a lattice.

This can be avoided if one gives an independent proof that B(n, k) is a lattice forn — k = 3,
which is possible for example by relying on geometric intuition from Fig. L.

THEOREM 4.4. The poset B(n, k) is a lattice for k = 1 and for n — k < 3. However, B(6, 2)
is not a lattice.

Proof. For k = 1 the poset B(n, 1) is the weak Bruhat order of &,, which is known to be
a lattice, see [18, Thm. 2.1] [3].

For r < 2, the result is trivial. For r = 3, we use that B(n, k) is ordered by inclusion by
Theorem 4.5. If it is not a lattice, then by [19, Crit. 2] there exist six consistent sets
ScSu{K;} e T\{L;}c T forije {1,2} so that neither S U {K,, K,} nor T\{L,, L,}
are consistent. From this we get that K, u K, =: K = [n]\h, where (without loss of
generality) K, is the smallest and K, is the largest set in P(K). Similarly, we get
L, v Ly =:L=_[n]\k, where L, is the smallest and L, is the largest set in P(L).

By symmetry, we may assume h < h’. Now if h = |, then we get L, € P(K), but T\{L,}
is consistent, so we get that K, or K, is not contained in 7\ {L,}, a contradiction. If b’ = n,
then we get K, € P(L), but § U {K,} is consistent, so we get that L, or L, is contained in
S u {K,}, a contradiction. Thus we have | <h < h’ <n.

From K, = [n]\{{,h}e T\{L,} and L, = [n]\{I, '} ¢ T\{L,} with K; >, L, we
get [n\{l,n}¢ T\{L,}. From K,=[n\{n h}eSU{K,} and L, =[n]\{n h'}¢
Su{K,} with K, >, L, we get [n]\{l,n}eS U {K,}. But this contradicts S U {K,}
< M\{L,}.

Now consider B(6, 2) and let (see Fig. 4):

S = {123, 124, 356, 456}, K, = 134, Ko = 346.

Then S, Su {K,} and S U {K,} are consistent, while S U {K,, K¢} is not consistent on
P(1346). The minimal consistent sets that contain S U {K, K¢} are

S;:= {123, 124, 356, 456, 134, 346, 136, 146, 156, 126, 25i} for i=1,6.
They satisfy S U {K;} < S, for i, je{1,6}, so (Su {K;}) v (S u {K¢}) does not exist. O

THEOREM 4.5. B(n, k) is ordered by inclusion for k =1 and for n — k < 4. However,
B(8, 3) is not ordered by inclusion.

Proof. For k = | this is well known [18, Prop. 2.1].

Let U, € U, < (!),) be consistent. Then, by Theorem 4.1(B), U, < U, holds if and only
if there exists an admissible linear order p of (1) of which U, and U, are both beginning
segments, that is, so that U, < U, are ideals of the poset Q[ p]. The consistent set U < L)
that corresponds to Q[ p] by Theorem 4.1(A’) has to satisfy that U v U, «{n + 1} and
U U U, s {n + 1} are both consistent. By Lemma 2.5, this means that

U, udU,c U and oU,udU,<U. (%)
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Fig. 4. The vertices and lines of B(6, 2). The vertices marked by a black dot are in S. The vertices with a white circle
are K, and K.

The sets dU,, dU,, 66:, 05—2 € B(n, k + 1) are consistent, with dU; n 6E =0 for
i,je{l,2},s0U; = 65}. By induction on r:= n — k we can assume that B(n, k) is ordered

by inclusion, so oU; < 8?, for i,je{l,2}. For r <4 we can assume that B(n, k + 1) is
a lattice (Theorem 4.4), so a consistent set U that satisfies ( ») can be chosen arbitrarily from

the interval [dU, v dU,, 6—(7: A 6_(-1_2] of B(n, k + 1). Thus B(n, k) is ordered by inclusion
foralir < 4.

The smallest example we know for which U does not exist occurs in B(8, 4). This leads to
consider the consistent scts

U, = {1234, 5678}

U. = [8] 1235, 1245, 1345, 2345, 1236, 1246, 1346, 2346, 1256,
2T\ 4 4678, 4578, 4568, 4567, 3678, 3578, 3568, 3567, 3478

in B(8, 3) which satisfy U, < U,. We will now give a direct proof for U, < U,, which does
avoid the discussion “on the boundary”. For this one first has to check that U, and
U,:= (8h\ U, are consistent. For U, this is obvious. For U, one can use that the two rows
of our listing both correspond to consistent sets, which can be checked in a situation of rank
3, since no set in the first line contains 7 or 8, while no set in the second line contains 1 or 2.
(Also, one can note that i - 9 — i interchanges the two lines of U, so only one of them has
to be checked for consistency.) The union of both lines is consistent since no 4-packet
contains sets from both lines.

Now assume that U, < U,. With Theorem 4.1(B) this would imply that there is a linear
order “<" on ('§)) that orders every 4-packet either in lexicographic (“lex”) or in reversed
lexicographic (“r-lex”) order, and so thatif K e U;, K' e U, for some i, then K < K’. Now we
get the following sequence of implications:

1234€ U, 2347¢ U, = P(12347) lex = 1237<2347 (1)
2347eU,, 3478¢ U, = P(23478) lex = 2347<2378 2)
(1) and (2) = 1237<2378 = P(12378) lex = 1237<1278 (3
25674 U, 5678e U, = P(25678) r-lex = 2567>2678 4)

1256¢ U,, 2567e U, = P(12567) r-lex = 1267>2567 (5)
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(4) and (5) = 12672678 = P(12678) r-lex = 1267>1278 (6)
1236¢ U,, 2367e U, = P(12367) r-lex = 1237>1267 (7)
where (3) and (6) and (7) yield 1237>1267>1278> 1237, a contradiction. O

The question whether B(n, 2) is ordered by inclusion for all n remains open. We close
this section with a list of the geometric interpretations of A(n, k) and of B(n, k) that are
available for small values of r and of k:

r=1: A(n,n—1)=Bn.n—1)= {0, 1}.
r=2: A(n,n — 2)is the set of “topological sweeps™ on the cyclic line arrangement X2.
B(n,n — 2) is the poset of consistent subsets of the affine line Ly, = P([n]). Thus

B(n, n — 2) consists of two chains of n — 1 elements {12, §2 Lemma 7]. B(n.n — 2)
can also be identified with the weak Bruhat order of the dihedral group 1,(n).

r=23: B(n,n — 3) is the set of extensions of the cyclic line arrangement X™? by a new
pseudoline. All these extensions are in fact realizable [14, Thm. 8.3]

k = 1: A(n, 1) = B(n, 1) is the weak order on .%,,.

k = 2: A(n, 2) is the set of maximal chains in the weak order on %, i.c., simple allowable
sequences, or arrangements of n pscudolines in “braid form™ [8], [4, Chapt. 6].
B(n, 2) is the set of arrangements of n + 1 pseudolines that arc labeled 1 to n cyclicly
at the line g:= n + | at infinity. This includes non-realizable arrangements for n > 8.
(See also [9, Sect. 4].) The partial order is by single step inclusion of the triples of
pseudolines which determine a triangle of counter-clockwise orientation.

The higher Bruhat orders model the sct of minimal paths through a discriminantal
hyperplane arrangement [12, §1]. Theorem 4.1 shows that we have to choose a cyclic
arrangement for this. However, in general the poset B(n, k) contains “non-realizable™
clements which might not occur in the path space of an arrangement,

5. SPHERICITY

There are two very natural orderings of the sct B(n, k). Up to now, we have taken the
ordering by single step inclusion as the primitive one, since it is equivalent to the ordering
defined by Manin and Schechtman, by Corollary 4.2. However, it is similarly natural (both
from a combinatorial and a gecometric viewpoint), to consider the ordering of B(n, k) by
inclusion as the appropriate generalization of the weak Bruhat order on .¢,,. We will denote
this posct by Bc(n, k). The following theorem collects its main properties.

TueoreM 5.1, Let Bc(n, k):= {inv(p): pe A(n, k)} be the family of consistent sets,
ordered by inclusion.

(1) 0 = 0 is the minimal and 1 = (0',) is the maximal element of B (n, k). The length of
Be(n, k) is (7 ,), and every element of B< (n, k) is contained in a maximal chain of this
length.

(2) Bg(n, k) is graded for k = | and for r:=n — k < 4, but not in general,

(2) Bc(n, k) = B(n, k) for k =1 and for r < 4, but not in general,

(3) Bc(n, k) is a lattice for k = 1 and for r < 3, but not in general.

Proof. (1) is Theorem 4.1(G). Note that (2) and (2) are equivalent restatements of
Theorem 4.5. With this, (3) is equivalent to Theorem 4.4 O

The combinatorics of Bc(n, k) is easier to handle than that of B(n, k). Also, in some



HIGHER BRUHAT ORDERS 273

respects its combinatorics behaves nicer. We will now demonstrate this by computing the
homotopy type of B<(n, k).

THEOREM S5.2. The proper part of the poset B-(n, k) is homotopy equivalent to an
(r — 2)-sphere:

Be(n k)~ S§72.

In the case k = 1 this is a result of Bjérner [1], which also follows from a theorem of
Edelman and Walker [6]. The geometric idea of our proof is “adjoint” to that in the proof of
[6]: it considers the convex hull conv(V) of the set of vertices of the affine arrangement
X(C™"), which is a simplex, and shows that the poset #(C"*!’, n + 1) is homotopy
equivalent to the face lattice of the simplex conv(V'). A map between these posets is obtained
by mapping every extension to the set of vertices of conv( V) that lie on its negative side. To
see that this in fact induces a homotopy equivalence, we have to establish several facts,
which are collected in the following lemmas.

Denote by [i,j] the interval {i,i + 1,...,j} in [n], which is empty if i > j, and let
K;:=[i,i + k]. The following lemma also follows by induction from Lemma 2.6(iii).

LemMa 5.3. For all i,je[n], the set Ui, j):= {I e({h): I = [i,j]} is consistent.

Proof. Let Ke(%,), and note that U(i,j) n P(K) = {le(Y): I = K n [i,j]}

If |Kn(ij]i<k then U(,j)nP(K)=90. If |Kn[ij]l=k+2, then
U(i,j) n P(K) = P(K). In both cases U(i,j) » P(K) is a beginning scgment.

Now assume |Kn[ij]l=k+ 1, with K\[i,j]={l}. In this case we have
U(i,j) = {[i,j]}, But [i,j] is an interval, thus [ is either the smallest or the largest element of
K. In the first case [i, j] is the last set in the (k + 1)-packet P(K), and U(i,j) = {[i,j]} isan
ending scgment. In the other case [i,j] is the first set in P(K), and U(i,j) = {[i,j]} is
a beginning scgment, a

LemMA 5.4. The minimal elements of B (n, k)\O are the sets {K;} = {[i,i + k]}, for
I<igr.

Proof. Note that {K;} = U(i, i + k) is consistent by Lemma 5.3. By Theorem 5.1(1), the
minimal non-empty consistent subscts have exactly one element. Let
K={iy<... <ir}. If iyy, —i, =k, then K =K, . Otherwise we find j¢ K with
iy <j <ixsy,and sce that {K} is not a beginning or ending segment of P(K U j), so {K} is
not consistent. O

Lemma 5.5. If U < (%)) is consistent and K e U for all le(i, j], then U(i,j + k) € U.

Proof. We proceed by induction on j, the claim being trivial for j < i, where
U(i,j + k) =9, and for j = k, where U(i,j + k) = {K,}.

Let KeU(,j+ 1+ k\UGj+k)={le(h):j+1+kelc[i,j+1+k]} be an
elementof U(i,j + | + k) thatis notin U, and assume that it is selected such that the sum of
its elements is maximal.

Since K#[j+ 1,j+ 1+ k] =K;,,, wecan find le[j + 1, j + 1 + k]\ K. Consider
the (k + 1)-packet P(K w !): its smallest element (K U )\j+ 1 + k is in [i,j + k] and
hence in U by induction. Its largest element (K U )\ k, is in U, since k,:= min K < ! by
construction, hence (K v I)\ k, has a smaller sum of elements than K, and hence it is in
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U by the choice of K. Thus we get a contradiction to consistency on the (k + 1}packet
P(K v ). O

LemMma 5.6. If iy, j;, ..., I j, are such that |[i,j,] N [ij. ]l <k for all s <1, then
Uiy, j) v ... v Uli i) is consistent.

Proof. Suppose not, then this union is inconsistent on some (k + 1)}-packet P(K).
However, since each of the sets U (i, j;) is consistent by Lemma 5.5, this requires that there
are leU(,,j,)n P(K) and JeU(,j,)n P(K}) with s<t From this we get
InJ e i,j] o li,j]) hence [InJ| <k, and I, J cannot be contained in the same
(k + 1)-packet P(K). O

Finally we need the following “Crosscut Lemma” to establish the homotopy equivalence
of posets. It is a very special case of the Crosscut Theorem [2,{10.8)]. It can easily be derived
from Quillen’s Fiber Theorem (2, (10.5)].

LEMMA 5.7. Let Q be a poset with 0 and 1, and let A:= min(Q) be the set of a:= | A| atoms
in Q. Assume that every subset of A has a join in Q, with vA=1and vB <1 for B c A.
Then Q is homotopy equivalent to the (a — 2)-sphere, § =~ S°~ 2.

Note that the joins v B exist in particular if Q is a lattice. However, we will have to use
the greater generality of the above formulation, since by Theorem 5.1(3) the posets B< (n, k)
are not in general lattices.

Proof of Theorem 5.2. We apply Lemma 5.7 to the bounded poset @ = B (n, k) whose
atoms are {K,}, ..., {K,}, by Lemma 5.4. We write v(i):= {K;},s0 4 = {v(1), ..., v(r)},
anda=|A|=r.

Every B < A can be written uniquely as

B={v(i)iieli,,jiJuliz.ja]v...vulinjl} with iy, —j, 2 2.

Now if U € Bg(n, k) = Q satisfies B < U, then U(iy,j, + k)u ... v Ui, j, + k) < U fol-
lows from consistency of U (Lemma 5.5). We get that U(iy,j, + k) u ... v U(i, ji + k) is
consistent from Lemma 56: j,+ k—i,=k — (i, ~j) <k —(ijs+, —j) <k -2 for s<t
implies  |[is,js + kK1 N Ui ji + k]l = [ js + k]| <k — 1. Thus Ui, j, +k)u ... v
Ui, ji + k) is the join of B, and this is 1=U(l,n)=U(l,r+k) exactly if
B={v(l),...,v(r)} = A. By Lemma 5.7, B¢ (n, k) is homotopy equivalent to the (a — 2)-
sphere. a

The same proof technique cannot be used to determine the homotopy type of B(n, k) in
general: in B(8, 3) we have atoms v(1) = {1234} and v(5) = {5678}. The sets U, = {1234,
5678} and U, are both upper bounds of v(1) and v(5) in B(8, 3): for U, this is obvious, while
for U, it is implied by the proof technique of Theorem 4.5, since §{5678} = 8{1234} = Q.
However, in Theorem 4.5 we have shown U, £ U, so the atoms v(1) and v(5) do not have
a join in B(n, k). However, Theorem 5.2 implies that B(n, k) is spherical in all cases where
B(n, k) and Bg(n, k) coincide.

CoroLLARY 5.8. For k = | and for n — k < 4, the proper part of the higher Bruhat order
B(n, k) is homotopy equivalent to an (r — 2)-sphere:
B(n,k)~S8""2  for k=1and forn -k <4.

It would be interesting to study the combinatorics of intervals both in B¢ (n, k) and in
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B(n, k). In particular, one should try to compute the M6bius function, and to determine
whether the intervals are always spherical or contractible, as they are in the case k = 1 [1].

6. UNIFORM EXTENSION POSETS

By Theorem 4.1(B), we can interpret B(n, k) as Z(C"*!",n + 1) for r = n — k, that is,
B(n, k) is the set of all uniform extensions of the cyclic oriented matroid C™*, ordered away
from the single element extension C**!' =C"" un + 1.

In this section, we consider the mild generalization obtained by ordering the same set
B(n, k) away from a different single element extension .# = C™" U g. This poset is again
isomorphic to B(n, k) in the case k = 1, but not in general. The poset we get is the uniform
extension poset #(.#, g) of Definition 3.4, if we order by single step inclusion. Also we want
to consider % c(.#, g) in this case, the same set ordered by inclusion of inversion sets. We
will see that the main structural properties (Sections 4 and 5) of B(n, k) and B¢ (n, k) do not
generalize to %(.#, g) or to %< (.#, g). even in the case of .#\g = C™" and in the case of
rank r = 3, where B(n, k) = B (n, k) is very well-behaved.

For the following (.#, g) will denote a uniform affine rank 3 oriented matroid on the
ground set [n]ug, with .#\g = C™> X denotes a realization of (.#,g) by an affine
arrangement of n hyperplanes in R%. A set of vertices of X is consistent if it is the vertex set (in
the sense of Lemma 3.3) of a uniform extension fe%(.#, g). Again we set k:=n —r.

Example 6.1. Let X be the aftine arrangement in R? sketched in Fig. 5. We have d = 2,
r=3,n=5and k = 2. The arrangement is generic: the corresponding affine matroid (.#, g)
is uniform, with .#\ g = C* 3. The poset diagram of #(.#, g) can be obtained from Fig. 3
by directing its graph away from the vertex that corresponds to .#. This vertex corresponds
to the extension of Fig. 1; it is marked by an arrow in Fig. 3.

v=134

T\ V=235 234=w’ w'=345  245=v"
!

Fig. 5. An affine arrangement in R? for which #(.#, g) is not a lattice.

TOP 32:2-0
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For this arrangement (.4, g) = % < (.#, g) is not a lattice. In fact, denote the vertex set
of X by ¥, and let v, v', v", w', w” be the vertices marked in Fig. 5. Then the atoms {v'} and
{v"} do not have a join: their minimal upper bounds are ¥\{v} and {v, v, v", w', w"}.

Example 6.2. Let X be the affine arrangement in R? sketched in Fig. 6. We have d = 2,
r =3,n=6and k = 3. The arrangement is generic: the corresponding affine matroid (.#, g)
is uniform, with .#\g = C%3.

For this arrangement #(.#, g) is not bounded and not ordered by inclusion, and
U< (.#,g)is not graded. In fact, denote the vertex set of X by V, and let {v,, v;, v3} be the
vertices marked in Fig. 6. The vertex set {v,, vs, v3} is consistent. Now let § o {v,, v;, 3}
be consistent. The directed arcs in Fig. 6 indicate that if the vertex at the tail end is in S, then
the vertex at the head end has to be in § as well. From this it is easy to see that § = V: there
is no consistent set § with {v,,v;,v3} = S < V. In this case {v,v;,v3} and V are two
different maximal elements of #(.#, g). Hence we have /(¥ (A, 9)) = |V| = 15, while
every maximal chain of #c(.#,g) that contains {v,,v,,v3} is of the form
0=0c{v}<{v.v}c{v,v;,v3} = ¥=1and has length 4.

Lemma 4.6 can be applied to % ¢ (.#, g). The minimal non-empty vertex sets are given
by A = {{v:}, {v2}, {vs}, V\{v1,v2,v3}} with a=|A| =4. Any union of these sets is
a vertex set in #c(.#,g). Thus Lemma 4.6 yields % (.#,g) ~ S?, in contrast to
Theorem 5.2.

In general, it is not clear how much can be said about the structure of #(.#, g) or of
U < (H, g). There is a close connection between the gradedness problem for #(.#, g) and
“strong Euclidcanness™ [17]. For example, we have the following result, which implies
Theorem 4.1(G), and also has a similar proof (which we omit).

ProposiTion 6.3. If the extension of .#\g by g is lexicographic and if (./7{, g.f) is
Euclidean for every uniform extension .M = M# U f, then every element of U(M,g) is
contained in a maximal chain of length | V| = (3 ,).

The search for affine oriented matroids without long chains in (M, g) is related to Las
Vergnas' problem about the existence of mutations: if (.#, g) is a uniform affine matroid for
which g is not contained in a mutation of .#, then no vertex set in % (.#, g) has size 1, hence

V3 VZ

Fig. 6. An affine arrangement in R? for which #(.#, g) is not bounded.
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#(#, g) has no chain of length | V| = (; I,). (J. Richter-Gebert has recently shown that this
situation is possible [15].) Also, there is clearly a relation between the extension space
problem for .#\g and the structure of #(.#4, g).

7. ENUMERATION

The enumerative combinatorics of the k-analogues A(n, k) is largely unexplored. Denote
the size of A(n, k) by a(n, k), and the size of B(n, k) by b(n, k). Tables 1 and 2 list these
numbers for small n and k.

We note that b(n, 2) appears in Knuth [11, Sect. 9] as the number B, of “equivalence
classes of reflection networks”. Knuth proves 276 =™ < p(n, 2), < 2" *" and computes the
additional values b(8, 2) = 1232944 and b(9, 2) = 112028290.

ProprosiTioN 7.1. The following formulas hold for the sizes a(n, k):=|A(n, k)| and
b(n, k):= |B(n, k)|:
a(n, 1) = b{n, 1) = n! is the size of &,

(3)!
[Tt @i— "

b(n,n) = a(n,n) =1, ain,n—=1)=b(nn-1)=2,

a(n,2) =

b(n, n —2) = 2n.

bln,n —3)=2"+n2""% - 2n

Proof. The result for a(n, 2) is Stanley's [16] formula for the number of maximal chains
in the weak order of #,. All the others arc trivial except for the size of B(n, n — 3), which

Table 1. Values for a(n, k) = |A(n, k)|

k\n 1 2 3 4 5 6
1 1 2 6 24 120 720
2 ! 2 16 768 292864
3 1 2 12 ?
4 1 2 ?
S i 2
6 1
7
Table 2. Values for b(n, k) = |B(n, k)|
k\n 1 2 3 4 5 6 7
{ 1 2 6 24 120 720 5040
2 1 2 8 62 908 24698
3 1 2 10 148 ?
4 1 2 12 338
5 ! 2 14
6 i 2
7 1
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counts antipodal paths through the poset of regions in the 2-dimensional affine cyclic
arrangements. O

There is no explicit formula known for either a(n, k) or for b(n, k). It would also be of
interest if one could count both admissible orders and consistent sets with respect to their
number of inversions, that is, to determine a(n, k;q):=) pcapry ¢'"™*" and
bin, k:q):= yesm.x)q'’!, where b(n, k; q) is also the rank generating function of B(n, k).
The answers corresponding to the cases above are given by the following proposition, which

1
uses the notation (n);:=14+ g+ ... +¢" 7%, (n) ! := (1)g(2)q. . - (M), (?)q:: W-((ﬁn)'—_-—‘)?

and (2),:=(1 + q)- ... (1 + ¢') for the g-analog of n, n!, (7) and 2'.

ProrosiTiON 7.2.
a(n, 1;q) = b(n, 1; q) = (n),!
b(n,mq)=a(nn;q)=1, ann—1q)=>bn,n—-1,9)=1+q=(2),
b(n,n — 2; q) = (2),(n),.
b — %)= (21 + T2 (gt + g (")

] a
L N q

+ (q((n—l) + qn—l-i)(zl-l)q_(zn—z—i)q - (ql(u—n + q(;)—l(u—l))}.

Proof. The first formula is well-known. All the others are trivial (using the descriptions
of Section 4), except for the last one, which is the g-analogue of the formula for b(n, n — 3)in
Proposition 7.1. 0

There is probably not much hope for a nice general answer. We note

a(5,2;q) = 12 + 14q + 38q* + 108¢> + 142g* + 140q° + 14295 + 1084’
+ 384% + 14¢° + 124'°,
a(5, 3; q) = 12 + 4q + 40q% + 40q° + 44* + 1245,
b(5,2,q) =1+ 3q+ 5¢° +9¢°> + 99* + 8¢* + 99° + 9¢” + 5¢® + 3¢° + q'°,

which were computed by computer enumeration. They show that in general the generating
polynomials are not unimodal and they do not factor. It would also be of interest to
determine the asymptotic behavior of a(n, k) and of b(n, k) in view of their relation with the
enumeration of oriented matroids.
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