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7.1. Introduction

With a finite matroid M are associated several simplicial complexes which are interrelated
in an appealing way. They carry some of the significant invariants of M as face numbers
and Betti numbers, and give rise to useful algebraic structures. In this chapter we will
study three such complexes: (1) The matroid complex IN(M) of independent subsets,
(2) the broken circuit complex BC, (M) relative to an ordering w of the ground set, and
(3) the order complex A(L) of chains in the associated geometric lattice L.

To systematize our approach to the combinatorial and homological properties of these
complexes we utilize the notion of shellability. A complex is said to be shellable if its
maximal faces are equicardinal and can be arranged in a certain order which is favorable for
induction arguments. Shellability was established for matroid and broken circuit complexes
by Provan (1977) and for order complexes of geometric lattices by Bjorner (1980a).One key
property of a shellable complex A which we bring into play is the existence of a polynomial
ha(z) with nonnegative integer coefficients that encodes the basic combinatorial invariants
of A. The coefficients of ha (1 + A) are the face numbers of A and ha(0) is the top Betti
number of A, all other Betti numbers being zero. Since each coefficient in 2 (z) has
an interpretation as counting certain of the maximal faces of A, the determination of
the homology of a shellable complex becomes a purely combinatorial task once the basic
theory of such complexes has been established.

The simplicial complex which most naturally comes to mind in connection with a
matroid M is the collection IN(M) of independent sets in M. While exploring the
shellability of such complexes we are naturally led to the concepts of internal and external
activity in a basis of M, and from there to the consideration of a two-variable generating
function Tp(z,y), the Tutte polynomial, such that Tas(z,1) and Tar(1,y) are the shelling
polynomials of IN(M) and IN(M*) respectively (M* is the orthogonal matroid). As an
application, several matroid inequalities are derived.

The broken circuit complex BC,,(M) of M = M(S) relative to an ordering w of S is the
collection of those subsets of § which do not contain any broken circuit, that is, circuit with
deleted first element. This notion was developed by Whitney (1932), Rota (1964), Wilf
(1976) and Brylawski (1977a), originally for enumerative purposes. The broken circuit
complex carries the “chromatic” properties of M: the shelling polynomial of BC.,(M)
equals Tas(z,0), the face numbers are the Whitney numbers of the first kind and BC,, (M)

is a cone over a related complex whose top Betti number is 3(M), the beta invariant of
M.

The homology of geometric lattice complexes A(L) was determined in pioneering work
of Folkman (1966), and has had a significant role since then. On the one hand, Folkman’s
vanishing theorem made geometric lattices one of the motivating examples for the theory
of Cohen-Macaulay posets (Baclawski, 1980; Bjérner, Garsia and Stanley, 1982). On the
other hand, Orlik and Solomon (1980) showed that the singular cohomology ring of the
complement of a complex arrangement of hyperplanes can be described entirely in terms
of the order homology of the geometric lattice of intersections. Hence, in these connections
(and others, such as in Gel’fand and Zelevinskii, 1986) geometric lattice homology is related
to interesting applications of matroids within mathematics.

In connection with the homology of matroid complexes IN(M) and geometric lattice
complexes A(L), an interesting role is played by broken circuit complexes. Namely,
BC,(M*) induces cycles that form a characteristic-free basis for the homology of IN (M),
and BC,,(M) similarly determines a basis for the homology of A(L). These are together
with the Orlik-Solomon algebra examples of a certain universality of the broken circuit
idea for constructing bases for algebraic objects associated to matroids and geometric



lattices.

This chapter aims to give a unified and concise, yet gentle, introduction to the topics
that have been outlined. A minimum of prerequisites will be assumed. Sections 7.2 — 7.6
are entirely combinatorial; all algebraic aspects have been deferred to the last four sections.
A simple presentation of the relevant parts of simplicial homology in Section 7.7 makes
the chapter essentially self-contained. Only the most basic ideas are developed in the text,
additional results and ramifications appear among the exercises. Section 7.11 contains all
references to original sources and related comments.

7.2. Shellable complexes

We begin by recalling the fundamental definitions. A simplicial complex (or just complex)
A is a collection of subsets of a finite set V such that ({)if ¥ € A and G C F then Ge€ A
and (i) if v € V then {v} € A. Throughout this chapter we will assume that complexes
are nonvoid. Note that A # @ implies § € A. The elements of V are called vertices and
the members of A are called simplices or faces. A face which is not properly contained
in any other face is called a facet. The dimension of a face F € A is one less than its
cardinality, and the dimension of the complex is the maximal dimension of a face. That
is, dim F = |F| -1 and dim A = max{dim F|F € A}. A complex is said to be pure if all
its facets are equicardinal.

For a simplicial complex A let f, denote the number of faces of cardinality k. Thus
fo=1,fi=|V]|and fy=0fork >r=dimA + 1.

The convention in the literature is to let f; denote the number of faces of dimension k,
but from a combinatorial point of view, and particularly for the purposes of this chapter,
our definition has definite advantages.

It is convenient to express the face numbers f; by their generating function, the face
enumerator

(7.1) fa)=AT+ X4+ f = Z fiN—,

The Euler characteristic of A is x(A) = =14+ fi— fa+ ... = (=1)""fa(-1). (A
topologist would call this the “reduced” Euler characteristic, it is one less than the usual
topological Euler characteristic.) A complex A for which every facet contains a certain
vertex v is called a cone with apex v. Since the number of even faces must equal the
number of odd faces (there is a pairing with respect to containment of v), it follows that

(7.2) x(A) =0, if A is a cone .

7.2.1. Example. Let A be the 2-dimensional simplicial complex of Figure 1, having
facets A = {a,b,c}, B = {a,b,d}, C = {a,c,d}, D = {b,d,e}, E = {c,d,e} and
F = {b,c,d}. The face numbers are fo =1, f; =5, f, = 9 and f3 = 6, hence
Xx(A)=-145-9+6=1.



Figure 1

Let A be a pure simplicial complex. A shelling of A is a linear order of the facets of A
such that each facet meets the complex generated by its predecessors in a nonvoid union
of maximal proper faces. In other words, the linear order Fi, F3, ..., F; of the facets of A
is a shelling if and only if

(7.3)  foreach pair F;, F; of facets such that 1 <i < j <t thereis a facet F}, satisfying
1< k < j and an element z € F; such that ENF; CFyNF; = F; —z.

A complex is said to be shellable if it is pure and admits a shelling. It is easy to see
that every O-dimensional complex is shellable, while a 1-dimensional complex (a simple
graph) is shellable if and only if it is connected. The intuitive idea with a shelling is that of
building the pure d-dimensional complex A stepwise by introducing one facet at a time and
attaching it onto the complex already constructed in such a nice way that the intersection
is topologically a (d — 1)-ball or a (d — 1)-sphere.

As an example, consider the complex A in Figure 1. It is easy to verify that an arbitrary
permutation of 4,B and C followed by an arbitrary permutation of D, E and F gives a
shelling of A, whereas linear orders of the facets which begin with A, B, E,..., or with
D,E,C,A,... are not shellings.

For the remainder of this section let us keep the following notation fixed. A is an
(r = 1)-dimensional shellable complex, and Fy, F;,...,F; are the facets of A listed in
a shelling order. For i = 1,2,...,t let &; = {G € A|G C F; for some k < i}, that
is, A; is the subcomplex of A generated by the i first facets. Also, for i = 1,2,...,t
let R(F;) = {z € F; : F; -z € A}, called the restriction of F. induced by the
shelling. Thus R(F;) = @ if and only if i = 1 and R(F;) = F; if and only if all proper
subsets of F; are contained in A;_;. In the following proposition we consider A to be
partially ordered by set inclusion of the faces, so that we may speak of Boolean intervals
[G1,G3) = {G € A:G1 C G C G} as subsets of A.

7.2.2.  Proposition. The intervals [R(F}),Fi],i = 1,2,...,t, partition the shellable
complex A.

Proof. The sequence F;, F5, ..., F; of facets of A; is a shelling of A;, so inductively it
will suffice to show that (i) Ay U[R(F),F:] = A and (i) A1 N [R(F), Fi] = 0. Let
GEA-Aw;. Then GC F;.If 2 ¢ G for some z € R(F:)then G C Fi -z € Ay,
which contradicts G ¢ A;_;. Hence, R(F;) C G, and (i) is done. (#) is equivalent to
R(Fi) ¢ Ai-1. If R(F,) € Ai—y, then R(F;) C F; N F, for some t,1 < i< t, and so by
definition (7.3) R(F;) C F;nF; C FxN F;, = F, — z for some k,1<k<tandzceF,.



But F, — z C F € As_; entails that z € R(F;), which contradicts R(F;) C F; — z. So,
R(Ft) ¢ At—l- ]

The preceding result shows that when the facet F; (and all its subfaces) is added to
the complex A;_; during the shelling process, then R(F;) is the unique minimal face of
F; which is “new” in A, that is, which lies in A; — A;; .

With the shellable complex A we shall associate the shelling polynomial ha(z), defined
by

(7.4) ha(z) = zt:le-'-R(ﬂ')l.

=1

7.2.3. Proposition. Let A be a shellable complex with shelling polynomial ha(z) and
face enumerator fa()) . Then

ha(1+ X) = fa(N).
Hence, the polynomial ha(z) is independent of shelling order.
Proof.

ha(142) = S FERE] 2 33 (IE- = Zz(ﬂ-n) Moy (i (|F.~ - Ze(m-)l))»,
=1

=1 k=0 k=o \i=1

t
iy |Fi = R(E)|
and by Proposition 7.2.2 fr_i = ;( : & .
We see from the above that ha(1) equals the number of facets and ha(2) equals the
number of faces of A. More important is that ka(0) = fa(=1) = (=1)"~1x(A). Directly
from the definition we get, however, that ha(0) equals the number of facets F' such that
R(F) = F.

7.2.4. Corollary. (—1)""'x(A) equals the number of facets F such that R(F) =
I, o

To illustrate these ideas, let us for the complex A of Example 7.2.1 choose the shelling
A,B,C,D,E,F. Then R(A) = 8, R(B) = {d}, R(C) = {c,d}, R(D) = {e}, R(E) =
{c,e}, R(F) = F. Hence, the shelling polynomial is

ha(z)=23+ 22 +z+22+a+1=c+222+ 22+ 1.

We can now check that ha(2) = 21 is the total number of faces, ha(1) = 6 is the
number of facets and ha(0) = 1 equals the Euler characteristic x(A). In fact, of course,
ha(l1+2) =2 +522 49X+ 6 = fa(A).

Let fa(A) = fod™ + fid™ Y +...+ f, and ha(z) = hoz™ + hyz"~' + ...+ h, be the face
enumerator and the shelling polynomial of A. The two number sequences (fo, f1,..., fr)
and (hg,hq,...,h:), called the f-vector and h-vector of A, respectively, are intimately
related.

By comparing coefficients in the relation fa(A) = ha(1+ A) (Proposition 7.2.3) we get

z r—1
7.5 = : =
(7.5) fi =Yk (k_i) k=0,1,...,r

=0



Similarly, the relation ha(z) = fa(z — 1) implies the inverse formula

(7.6) hk=i(—1)‘+"f;(;::),k=0,1,...,r.

=0

We deduce that by = f3y = 1 and h; = f; — r. This also follows directly from the
definition (7.4) of ha(2), which can be restated:

(7.7) hix = card { facets F such that |R(F)|=k},0< k< r.

From this we have that Ay > 0for0 < k< r.

We shall now use the correlation between f-vectors and h-vectors to uncover some
enumerative facts about shellable complexes. These will be used only in Section 7.5.

7.2.5. Proposition. Let A be an (r — 1)-dimensional shellable complex on the vertex
set V,|V| =v > r. Then

() fe< fi,forall0<k<j<r—k,

(%) fx £ frek41,if 1 <k < (r+1)/2 and he—k41 2 1, with equality if and only
if in addition hy = 1,

(#ii) in case all e-element subsets of V belong to A, for e < r, then

fv—r+i-1\[r-i
(P (b [

for k =0,1,...,7, and the following conditions are equivalent
(a) equality holds for some &k > e
) equality holds for all k

(M =070

Proof. Part (1) follows directly from (7.5) and the nonnegativity (7.7) of hy, together
with elementary properties of binomial coefficients. For part (#) a little more of the
structure of h-vectors must be used, see Exercise 7.2.2.

Now, suppose as in (iii) that all e-element subsets of V' are in A, that is, fx = ()
for k = 0,1,...,e. Using standard combinatorial identities such as (—1)”(‘:) = (""‘:‘1)

and the Vandermonde convolution formula (*}¥) = 25;0 () (:¥,) , (7.6) can then be
developed as follows for k < e '

(7.8) hk=§(-1)‘*" (k:) () ==fo (klizl) () B (v—r:k_l)‘

Inserting these values into (7.5) and using that Ay > 0 for k¥ > e we see that the inequality
in (iif) arises from (7.5) by singling out the first e + 1 terms. It is also evident by this
argument that if

(6) he+1=he+2=...=hr=0,

then equality in (iif) holds for all k. Thus, (§) = (8) = (7) = (a), since () means that
equality holds for k¥ = r. If equality holds in (iii) for some k > e then (7.5) shows that



het1 = het2 = ... = hy = 0. It is a consequence of the following lemma, in view of (7.7),
that then also hgy = hr42 = ... = hy =0, 50 (@) implies (§). ®©

726 Lemma. Let F = {R(F;):1< i <t} , where F1, Fy, ..., F; is a shelling of A.
Then given A € F — {0} there exists z € A such that A —z € F.

Proof. Suppose that 1 < g <t and let X1, Xa,...,X, be the maximal proper subsets
of R(Fy). They all belong to the subcomplex A;_; since R(F,) is the unique minimal
face in A, — Ay . Hence by Proposition 7.2.2 there are unique facets F , Fy,,..., F;
satisfying R(F;;) € X; C Fi; and ¢; < g forj = 1,2,...,s. We have that Fj; # F;, when
j # k, since if X; € F;; and X} C Fj; then R(F,) = X; U X} € F;; which contradicts
7.2.2. Assume that indices have been chosen so that #; < i3 < ... < i,. Then every proper
subset of X, belongs to A,_; , so R(F;,) cannot be strictly contained in X,. Hence,
R(F;,) = X, C R(Fy) and [R(Fy)| = |R(F,)|+1. o

7.3. Matroid complexes

If M = M(S) is a matroid of rank r on the finite set S, the family of all independent
sets in M forms an (r — 1)-dimensional simplicial complex, which we denote by IN (M).
Complexes of this kind are called matroid complexes. It is one of the first facts of matroid
theory that a matroid complex is pure, and we will soon see that it is also shellable. In
fact, matroid complexes can be characterized both in terms of purity and in terms of
shellability (cf. Exercise 7.3.1 and Theorem 7.3.4).

A number of remarkable properties of matroids are revealed by, but not dependent on,
assigning a linear order to the underlying point-set. Our approach to these results will
be aided by the following definitions and conventions. By an ordered matroid M (S,w)
we will mean a matroid M(S) together with a linear ordering w of the underlying point
set S. Let us agree to write a k-subset A = {1,22,...,2x} C § as an ordered k-tuple

[z1,72,... 2k} if and only if 71 < Z2 < ... < T under the order w. The k—subsets of S
are linearly ordered by the lexicographic order defined as follows: [x1,22,...,Zk) Precedes
[¥1,¥2,.- .,y if and only if z; = y; for i < e and z. < y. for some position e. When in the

sequel we compare bases of an ordered matroid it is always with respect to this induced
linear order.

Recall that if B is a basis of M(S) and p € S — B, then there is a unique circuit ci(B,p)
contained in BUp. Dually, if b € B there is a unique bond bo(B,b) contained in (S — B)Ub.
The basic circuit and basic bond are characterized as follows.

7.3.1. Lemma. b € ¢i(B,p) <= (B - b)Up is a basis <= p € bo(B,b).

Let C be a circuit of an ordered matroid M = M(S,w) and c the least élement in C.
Then the set C — ¢ is called a broken circuit. A basis of M which contains no broken
circuit will be referred to as an nbc—basis. This concept will figure prominently in later
sections. For now it will be used for future reference in the following technical lemma,
which provides the key to the results of this and the following section.

7.3.2. Lemma. Let M(S,w) be an ordered matroid. Assume that the basis B precedes
the basis C in the induced lexicographic order. Then BNC C AN C for some
basis A which also precedes C, and such that |[A N C| = |C| - 1. Further, if C is
an nbc-basis then A can be chosen to be an nbc-basis.

Proof. Let B = [b,bs,...,b,],C = [e1,¢2,...,¢,;] and assume that b; = ¢; for
i=1,2,...,e—1, and b, # c.. Then b, < ¢; for i = e,e + 1,...,7. By the basis exchange
property there is an element y € C — B such that A; = (C — y) U b, is a basis. For the
first claim we can let A = A; be this basis..



For the second claim, assume that C is an nbc-basis. If A; is not an nbc-basis then there
is an element a; € S — A; such that a; is the least element of the basic circuit ci(Ay,21).
Furthermore, b, must belong to ¢i(A4;,a;), since otherwise C would contain the broken
circuit ci(A;,e;)~a;. Hence, A; = (A; —b.)Ua; is a basis, A; precedes Ay, BNC C 4,NC
and [A2 N C| = r — 1. If A, is not an nbc-basis the argument can be repeated until after
a finite number of steps we reach a basis A = A4; with the required properties. o

Disregarding the last sentence (about nbc-bases), Lemma 7.3.2 is equivalent to the
following (cf. (7.3)):

7.3.3. Theorem. Let M(S,w) be an ordered matroid. Then the w-lexicographic order
of bases of M is a shelling of IN(M). In particular, all matroid complexes are
shellable.

Thus every linear ordering of the ground set induces a shelling, and this rich supply of
shellings in fact characterizes matroids.

7.3.4. Theorem. A simplicial complex A is a matroid complex if and only if A is pure
and every ordering of the vertices induces a shelling.

Proof. In one direction this is Theorem 7.3.3.

For the converse, suppose that a pure complex A is not a matroid complex. If V is the
vertex set of A, then for some subset U C V the induced subcomplex Ay = {F € A :
F C U} is not pure (cf. Exercise 7.3.1). Let F be a facet of Ay of minimal dimension, and
among the facets of Ay of dimension greater than dim F choose G such that |FN G| is as
large as possible. Now, order the vertex set V in such a way that the elements of F — G
come first, then the elements of G and the remaining elements last. Let G be the first facet
of A which contains G, and let F° be an arbitrarily chosen facet of A which contains F.
Clearly, FNU = Fand GnU = G ,since F and G are maximal in Ay. The chosen ordering
of the vertices ensures that a facet H of A precedes G if and only if H N (F - G)#0.In
particular, F’ precedes G. F and G are facets of Ay and |F| < |G, e0 |[FNG| < |G| -2.
Hence, |F N G| < |G| - 2. Assume that FNG CHNG =G - g for some facet H of A
which precedes G and ¢ € G. Thenge G- F,and H-G=he F_-G.IfgeG-aG,
then GUA C HNU, hence G Uh € Ay which contradicts the maximality of G in Ay. If
g € G—F, then G' = (G- g)Uh is a face of Ay satisfying dim G’ = dim G > dim F and
|F'nG’| > |F NG|, which contradicts the choice of G. Hence, such a facet H cannot exist,
and the induced order is not a shelling. o

Having established the shellability of matroid complexes we will now find their shelling
polynomials. Let B be a basis of an ordered matroid M = M(S yw). An element p€ S— B
is said to be externally active in B if p is the least element in the basic circuit ci(B,p).
Otherwise p is externally passive in B. Dually, an element p € B is said to be internally
active in B if p is the least element in the basic bond bo(B,p). Otherwise p is internally
passive in B. Denote by EA(B), EP(B),IA(B) and IP(B) the sets of externally active,
externally passive, internally active and internally passive elements in B , Fespectively. We
will call the number #(B) = |IA(B)) the internal activity of B, and e(B) = |[EA(B)| the
external activity of B. It is obvious that p is internally active in B if and only if p is
externally active in the basis S — B of the orthogonal ordered matroid M* = M *(S,w).

7.3.5. Example. Let M be the matroid defined either by points and lines in affine space
as in Figure 2a, or by the graph in Figure 2b.
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Figure 2

We will list the 8 bases of M in lexicographic order, and indicate for each basis which
elements are active in it.

Basis Internally active Externally active
Bl = 1,2,41 1,2,4 —
B; =[1,2,5] 1,2 -
B3 =[1,3,4] 1,4 -
B, =(1,3,5 1 -
Bs =[1,4,5 1 3
Bs =12,3,4 4 1
B; =1(2,3,5 - 1
Bs =[2,4,5 - 1,3

A picture of the complex IN(M) appears in Figure 3. It takes the form of the surface of
a triangular bipyramid together with the two interior triangles 145 and 245. It is instructive
to observe how the sequence of bases B,,..., Bs gives a shelling of IN(M).

5

Figure 3.



Let M = M(S,w) be an ordered matroid and consider again the lexicographic order
of bases. It is in view of Lemma 7.3.1 clear that if B is a basis and b € B then B — b is
contained in a basis which precedes B if and only if b is internally passive in B. Thus,

(7.9) R(B) = IP(B).

The shelling polynomial ha(z) of a matroid complex A = IN(M),M = M(S,w), is
therefore equal to

(7.10) ha(z) = 3 2lB-R®) = T AG) - 3 40),
B B B

Dually, the shelling polynomial has(y) of the orthogonal matroid complex A* =
IN(M*),M* = M*(S,w), is equal to

has(y) =Y y(B).
B

In both cases the summation is over all bases B of M. It thus seems tempting to combine
these two shelling polynomials associated with M into one polynomial of two variables

(7.11) Ty(z,y) = ) _ 2" (B)ys(B),
B

However, there is a complication. Whereas we know that the evaluations
(7.12) TM(:I:,I) = hIN(M)(x) and TM(]., y) = hIN(M.)(y)

are independent of the order w (Proposition 7.2.3), it is not immediately clear that Tai{z, %)
itself is independent of the ordering of S. We will soon see that this is the case, 50 that
Tm(z,y), called the Tutte polynomial of M, depends only on the matroid structure of M.

Before proving independence of the ordering, let us again look at the matroid M of
Example 7.3.5. From the table of internally and externally active elements we conclude
that its Tutte polynomial is

TM(Iay)=$3+$2+-’52+3+2y+$y+y+y2=z3+2x2+yz+2zy+x+y.

This implies that the shelling polynomial ha(z) of the matroid complex A = IN (M)
equals
ha(z) = Tm(z,1) = 2° + 22% + 32 + 2,

and for the orthogonal matroid A* = IN(M*)

has(y) = TM(1,y) = ¥* + 3y + 4.

7.3.6.  Proposition. Let M = M(S,w) be an ordered matroid. Then the family of
intervals [/ P(B), S — EP(B)), one for each basis B of M, partitions the Boolean
algebra 25 of subsets of S.

Proof. We must prove for every subset A C § that there is a basis By4 such that
C 5— EP(B,4), and that such a basis B4 is unique.
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Let A C S. Then let X4 be the lexicographically greatest basis in the submatroid M4
which is induced on the subset A by M. The set X4 is independent in M and therefore
there is a unique basis B such that IP(B4) € X4 C Ba, by Proposition 7.2.2 and (7.9).
Let a € A— B4y = A— X4, and assume that a is externally passive in B4. This means
that there is an element b € B4 such that b < a and (B4 —b)Ua is a basis. In case b ¢ A
this implies that X 4 Ua is independent, which is impossible since X 4 is a basis in M4 and
a¢ X4.1fb€ A, thenb€e B4NA = X4 and (X4 —b)Ua would be a basis in M4 strictly
preceded by X4, which contradicts the choice of X4. Hence, all elements of A — B4 are
externally active in B4. We have shown that JP(B4) C X4 CAC S - EP(Ba).

Next, suppose that IP(B) C A C S — EP(B) for some basis B of M. Observe that
(7.13) EA(B) is contained in the closure of IP(B).

To see this, suppose that p € S — B is externally active in B and let C be the basic circuit

ci (B,p) and C’ the corresponding broken circuit ci (B,p) — p.If g € C' then p < g and
(B — ¢) U p is a basis, so g is internally passive in B. Since p lies in the closure of C’ and
C' C IP(B), statement (7.13) follows. This fact (7.13) implies that X = BN A is abasis of
M. Suppose that X # X4 , where X 4 is defined as above. Let X = {z1,%2,...,2a}, 71 <
T2 < ... < Zq ,and X4 = {¥1,¥2:---2%ahr %1 < ¥2 < ... < Y- Since X4 is the greatest
basis of M4 there is an index e such that z; = y; for i = 1,2,...,e -1 and z. < y; for
i=ee+1,...,a. By the basis exchange axiom (X — z.) U y; is a basis for some j > e.
But then y; is externally passive in X, and hence also in B, contradicting the assumption
A C S — EP(B). Hence, X = X4 and, since IP(B)C X C B, also B = Ba. o

7.3.7. Theorem. Let M = M(S,w) be an ordered matroid with Tutte polynomial
Trr(z,y). Then

Tn(1+614m) = 3 £EOTW T E-r-4),
ACS

where r and r* denote the rank functions of M and the orthogonal matroid M,
respectively.

In particular, the Tutte polynomial does not depend on the ordering w of S.

Proof. Let B be a basis of M and assume that IP(B) C A € § — EP(B). The
observation (7.13) that EA(B) is contained in the closure of IP(B) implies that r(A) =
[ANB], s0 7(S)—r(A) = | B~ A|. Dually, r*(5)-r*(§-4) = |(S- B)-(5-4)| = |A- B|.
Thus, using Proposition 7.3.6 we get

) £rS)—r(A) e (S)=r*(5-4) _

ACS

= ¢1B-All4-Bl
Bbasis IP(B)CACS-EP(B)

=2 f: (i(B)) (e(f))fjn"=

Bbasis jk=0 \ 7

= S @+ +n)® =Ty(1+£147).
Bhbasis
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The Tutte polynomial is treated in great detail in Chapter 6 of this volume, to which
the reader is referred for mere information.

Before ending this section, let us mention that (7.12) and Corollary 7.2.4 imply for the
Euler characteristic of IN(M) that x(IN(M)) = (—=1)"~1T)s(0,1). Another expression
will be given in Proposition 7.4.7.

7.4. Broken circuit complexes

Let M = M(S,w) be an ordered matroid. Recall that when the least element of a circuit
is deleted we call the remaining set a broken circuit. The family of all subsets of S that
contain no broken circuit forms a simplicial complex which we denote BC,(M ) and call
the broken circuit complex of M. Note that BC,, (M) is defined if and only if M is loopless,
since if M has a loop then every subset of S contains the broken circuit 0.

When discussing broken circuit complexes we may whenever convenient exclude the
existence not only of loops but also of parallel elements in a matroid. Two elements z,y€S
in a loopless matroid M(S) are said to be parallel if rank ps({z,y}) = 1. Parallelism is
an equivalence relation. Define a rank function on the set § of equivalence classes by
rank y({X1,X2,...,Xn}) = rank y(X1U X, U...U X,). This determines a matroid
M(8) without loops or parallel elements, the simplification of M. If M (S,w) is ordered
let M(S,&) be ordered by the first elements in the respective parallelism classes. The
following observation is straightforward.

74.1.  Proposition. The two broken circuit complexes BC,(M) and BCy(M) are
isomorphic. o

The role which is played by the ordering w in the construction of broken circuit
complexes should perhaps be elucidated. Different orderings of the point set of a given
matroid may yield nonisomorphic broken circuit complexes, as illustrated in Example
7.4.4 below. However, we will find that the important invariants of such complexes are
independent of order.

Let M(S,w) be an ordered loopless matroid with first element e. The family of all
subsets of § — e which contain no broken circuit will be called the reduced broken circu;t
complex and denoted BC,(M). Let us gather some initial observations.

7.4.2.  Proposition. Let M = M(S,w) be an ordered loopless matroid of rank 7. Then:
(1) BCu(M) C BC,(M) C IN(M),
(1) BC.(M) is a pure (r—1)-dimensional complex whose facets are the nbc—bases
of M,
(1ii) BC, (M) is a cone over BC,(M) with apex e,
(iv) BC.,(M) is a pure (r — 2)- dimensional complex.

Proof. Suppose that X C S contains no broken circuit. Then, a fortiori, X contains
no circuit and hence X € IN(M). Being independent, X is included in some basis of
M. Let B be the lexicographically first such basis. Suppose that B contains a broken
circuit C. In this situation it would be possible to find elements y and z in § such that
y¢ B,CUy= ci(B,y),z€C~X and y < 2. Then (B - z)U y would be a basis which
contains X and precedes B , which contradicts the choice of B. Thus B cannot contain
any broken circuit, that is, B is an nbc-basis. We have shown parts () and (&).

If a basis B of M does not contain the first element e of S then B includes the broken
circuit ci (B,e) - e. Thus all nbe-bases contain e so that BC,,(M ) is a cone with apex e.
Parts (#i) and (iv) now follow. o

If B is an nbc-basis, let us call B — e a reduced nbc-basis. The following result is basic
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to this section.

74.3. Theorem. Let M(S,w) be an ordered loopless matroid. Then BC,(M) and
BT . (M) are shellable. In both cases the w-lexicographic ordering of facets (nbc-
bases, resp., reduced nbc-bases) is a shelling.

Proof. For BC,(M) the result was proved in Lemma 7.3.2. By Proposition 7.4.2 (iii)
and Exercise 7.2.1 the result follows also for BC.(M). @

7.4.4. Example. Let M = M(S) be the matroid on the set § = {1,2,3,4, 5} of Example
7.3.5. Under the natural ordering w of S the broken circuits are {2,3}, {4,5} and
{2,4,5} and the nbe-bases are By = {1,2,4}, B2 = {1,2,5},Bs = {1,3,4} and
B, = {1,3,5} . Under the ordering &' : 1 < 2 < 4 < 3 < 5 of § the broken
circuits are {2,3},{3,5} and {2,4,5} and the nbc-bases are By = {1,2,4}, B2 =
{1,2,5}, B3 = {1,3,4} and Bs = {1,4,5}. Thus, BC,(M) and BC,+(M) are
nonisomorphic; the corresponding reduced complexes are illustrated in Figure 4.
Observe here also how in both cases the respective lexicographic ordering of edges
gives a shelling.

(a) BC (M) (v) Eu.(u)

Figure 4.

We will now turn to the shelling polynomials of (reduced) broken circuit complexes and
the related enumerative aspects. Suppose that B is an nbc-basis in an ordered loopless
matroid M(S,w) and b € B. If B — b is contained in a lexicographically smaller nbc-basis
then, as in (7.9), b € IP(B). If on the other hand b is internally passive in B, then B—bis
contained in some basis A which precedes B and, as was shown in the proof of Proposition
7.4.2, the earliest basis which contains B — b is an nbc-basis. Thus we have shown that in
the w-lexicographic shelling of BC, (M)

(7.14) R(B) = IP(B).

Consequently, the shelling polynomial ka(z) of A = BC,(M) equals 3 p zB) with
summation over all nbe— bases B. But B contains no broken circuit if and only if e(B) = 0.
Hence,

(7.15) hpc,m)(z) = Tm(z,0).

By similar reasoning it is straightforward to show directly, or it can be deduced from (7.15)
via Proposition 7.4.2 (#ii) and Exercise 7.2.1, that the shelling polynomial of the reduced
broken circuit complex equals :

1
(7.16) h'B_CU(M)(z) = ; TM(.’E,O).
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Formula (7.15) implies that the face numbers of broken circuit complexes are independent
of the ordering w. See Example 7.4.4 for an illustration of this fact. For both orderings
considered there the (non-isomorphic) broken circuit complexes have f-vector (1,5, 8,4).

The face numbers of broken circuit complexes and their face enumerator Tm(14 A,0)
are among the most interesting numerical invariants in matroid theory. In the following we
shall assume familiarity with the M&bius function u(z, y) and the characteristic polynomial
p(LiA) = Foep w(0,2)A=7() = 77 wpd™* of a rank r geometric lattice L. For this,
see e.g. Chapters 7 and 8 in White (1987) or Stanley (1986). The nonnegative integers
D = (=1)kwy are called the (unsigned) Whitney numbers of the first kind.

74.5. Proposition. Let M(S,w) be an ordered loopless matroid and L the correspond-
ing geometric lattice. For z € L, put nbe(z) = {A € BC(M): A= z}. Then

Inbe(z)] = (-1)"@u(d, ).

Proof. We will show that (—1)"®)|nbc(y)| satisfies the same recursion as (0, y). Since
only the empty set spans the empty flat we have that |nbe(0)] = 1, as required.

Assume that z # 0, let S’ be the set points on the flat z and let M'(5',u') be the
restriction of the ordered matroid M(S,w) to §' . It is straightforward to check that a
subset of §7 is a broken circuit in M’ if and only if it is a broken circuit in M. Hence,
BC(M') = Uy<onbe(y), and the union is disjoint. Since all members of nbc(y) have
cardinality r(y), being independent and spanning y, and since BC/(M') is a cone, it
follows from (7.2) that

> (-1 @nbe(y)| = —x(BC(M") = 0.
0<y<z
The proof is complete. o

Summing the left-hand side in Proposition 7.4.5 over all flats z of rank & gives the total
number of broken-circuit-free subsets of size k. The same summation for the right-hand
side gives the Whitney number ;. Consequently we have proved:

74.6. Theorem. For a loopless matroid, the Whitney numbers of the first kind coincide
with the face numbers of the broken circuit complex (induced by any order).

In view of (7.15) and Proposition 7.2.3 this result can be expressed:
(7.17) P(M;2) = (=1)"hpo, (ay(1 ~ A) = (=1) The(1 - A,0).

To illustrate this result, consider once again the matroid M of Example 7.3.5. Its Tutte
polynomial Tps(z,y) = 23 + 222 + y® + 22y + ¢ + y was computed following (7.12), and
we get Tpr(1— A,0) = 4 — 84 + 54% — A3 = —p(M; A). This should be compared to the
f-vector (1, 5, 8, 4) of M’s broken circuit complexes, see Example 7.4.4.

We end this section with the determination of the Euler characteristics of matroid and
(reduced) broken circuit complexes. For this we will need the beta invariant

(7.18) B(M) = (-1y®) 3~ (~1)Mir(a),

ACS
of a matroid M = M(S), discussed in Chapter 7 of White (1987). Also, we define the
Mébius invariant j(M) by

7.19 avy = { (8, 1), if M is loopless,
(19 T | 1 if M has loops,
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where in the first case L is the lattice of flats of M. Clearly, i(M) = @,(L).

7.4.7. Proposition. Let M be a rank r matroid, which in parts (i%) and (4i5) is supposed
to be loopless and ordered by w. Then,

() xUN (M) = (-1)" 7 &(M"),
(if) X(BC.(M)) = 0
(i#)) x(BCu(M)) = (-1) B(M).
Proof. Part (i) is immediately clear, since BCw,(M) is a cone. For the other parts we
use the relation x(A) = (—1)"~1ha(0) from Corollary 7.2.4.

For part (), relations (7.12) and (7.17) give

hanay(0) = Tar(0,1) = Tage(1,0) = (=1)""p(M";0) = A(M"),

if M* is loopless. If M* has a loop then IN(M) is a cone and both sides equal zero.
For part (iii), relation (7.16) and Theorem 7.3.7 give

hgzs,(m)(0) = 81 (0,0)
=2 acs (r(S) - 'I‘(A))(—l)"(s)—r(A)—1+,-t(5)_,_.(s_A)

= (-1 Tyes (r(4) - r(SH(-1A = B(M). =

It is a consequence of the preceding that (M) > 0 for all matroids M. For future
reference we state the following properties of the beta invariant, see Chapter 7 of White
(1987) for proofs.

7.4.8. Proposition. For any matroid M = M(S) with |§| > 2:
(i) B(M) = B(M*), and
(#1) B(M) > 0 if and only if M is connected.

7.5. Application to matroid inequalities

The material developed in the preceding sections provide a good framework for dealing
with certain inequalities for independence numbers and Whitney numbers of the first
kind. This section, which can be skipped without loss of continuity, is devoted to this
application. Below the inequalities considered lies the deeper and largely unsolved problem
of understanding the h—vectors of matroid and broken circuit complexes.

Throughout this section r and n will always denote the rank and cardinality of the
matroid M under consideration, and cps (the girth of M) will be the smallest size of a
circuit, that is, ¢ps = min {|C| : C is a circuit in M}.

We begin with the face numbers of matroid complexes, often called independence
numbers. For a given matroid M = M(S) let I; denote the number of k—element
independent subsets of $,k = 0,1,...,7. The number b(M) = I, of bases of M is of
particular interest.

7.5.1. Proposition. Let M be a loopless matroid with n > r. Then
() Ix<Ijforal 0<k<j<r—k,
(i) Iy < I _g41,if 1 £ k < (r +1)/2 and M has fewer than k isthmuses.
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7.5.2.  Proposition. Let M be a loopless matroid and ¢ = ¢rr - Then

Lfa-r+i-1\[r—i
I"Z.E( i ki

for k=0,1,...,r, and equality holds for some k > ¢, or equivalently for all k,
if and only if M is isomorphic to the direct product of the free matroid By .1
and the (¢ — 1)-uniform matroid Ueciperde-t -

Proof. The inequalities result from letting A = IN(M) in Proposition 7.2.5. For 7.5.1
see Exercise 7.5.2.

Suppose that M is such that equality holds for all k in 7.5.2. Then b(M) = ("IteY),

and in Proposition 7.2.5 we proved that the h-vector of IN (M) must equal (1,n —
7.0y ("TI179),0,0,...,0). The form of the Tutte polynomial Tx(z,1) = z” + (n —

c—1

r)a" 4.4 ("TIH 72 -t reveals that M has exactly r — ¢ + 1 isthmuses (cf. Exercise
7.5.1) which together form a free submatroid Br_ct1 . Thus, M = A® B,_.4; , where 4
is a matroid of rank ¢~ 1 on n — r + ¢ — 1 points. Since b(4) = (M) = ("IN we are

forced to conclude that 4 = Uecin—rtec—i- o

The preceding result shows in the particular case & = r that for any loopless matroid
M
(7.20) b(M) > (" - C’:’l"‘ 1).

Let M be a loopless matroid and let (ho, h1,...,h,) be the h—vector of IN (M). We
know from (7.12) that Tp(z,1) = Y0y k™' , and from (7.6) and Proposition 7.4.7
that hg =1,hi=n-rand b, = A(M*) . In case M is connected more can be said about
the h-vector.

7.5.3.  Proposition. If M has no isthmus then h; > n — r for i = 2,3,...,7/=1,and
if in addition M is connecied or eise no connected component of M is a circuit
then also h, > n — r.

Proof. Let us first assume that M = M(S) is connected. The only connected matroid
on 2 elements is the 2-point circuit for which h = (1,1), so the boundary value is in order
for an induction argument on n. Let e € S. Since M is connected we know that either
the contraction M/e or the restriction M — e is connected (cf. White, 1986, p. 181). Let
(hgshise-oyh ) and (hgsh1s-.. k) be the h-vectors of IN(Mfe) and IN(M —¢) ,
respectively. The Tutte polynomial identity TMm(z,y) = Trye(z,y) + Trr—e(z,y) evaluated
at y = 1 shows that h; = h ¢, +h} fori=1,2,...,r.

Suppose first that M /e is connecied. Since M /e is of rank (r—1) on (n — 1) elements
the induction assumption at once gives hi{>2n—rfori=1,2,...,r-1. Next, suppose
that M — e is connected. Then hl>n—r—1fori= 1,2,...,r ,since M — e is of rank
7 on (n — 1) elements. The orthogonal (M /e)* of the contraction, being the restriction
M* — e of the connected matroid M*, cannot contain a loop. Hence, a((M/e)*) > 0, that
is, h %, > 1. But that forces hi21lalsofori=1,2,...,r~2,asa consequence of (7.7)
and Lemma 7.2.6.

Thus, in either case it follows that h; > n—r for i = 2,3,...,r,and the connected case
is settled.
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Assume now that it has been shown for loopless matroids without isthmuses having
p — 1 connected components that h; 2 n—7 fori=1,2,...,7—1and h, > 1. Suppose
that our matroid M har p components, one qf which le M;. Then M = M; & M, where
M, has p— 1 components. If rj,n; and (h{,h,... ,h,’j) denote the rank, cardinality and
h-vector of M;,j = 1,2 , then we know that ri +ro =1, ny + n2 =10, h} >np—-rn 21
for i = 1,2,...,71 and h? >npg—rpfori=12,...,r2— 1,hr22 > 1. A comparison of
coefficients in the Tutte polynomial formula Tas(z,1) = T, (z,1) - Tas,(2,1) shows that
hi =3 izitk h;. hi. Thus we arrive at the desired conclusion: h; > ny—ri+ns—r2 =n-"7
fori=1,2,...,r— 1.

In case no connected component of M is a circuit then n; — 73 2 2, and we can assume
that hfz > ny — rz > 2 in the induction assumption of the preceding paragraph. Thus,
h,- =hr11 hr22 Z(nl—rl)-(nz—rg)an—r1+n2—r2=n—r. o

7.5.4. Proposition. Let M be a matroid without loops or isthmuses and ¢ = cps. Then
c—~1 . .
n—-r+:-1 r—1 r—c+1
g () () e (D)
fork=0,1,...,7— 1.

If M is connected or else no connected component of M is a circuit then the formula
holds also for k = r, that is,

b(M) > ("‘Z*‘;' 1) +(n=r)r-c+1).
Proof. We know that h; = (""'?'"1) fori=0,1,...,c—1by (7.8),and h; > n —r for
i=cc+1,...,7—1,(r) by 7.5.3, so the result follows from formula (7.5). o

Taking ¢ = 2 in the above formulas we get

(7.21) Ik_>_(;)-&-(n—r)(kr1),k=0,1,...,r—1, and

(7.22) M)214r(n-r),

which hold for all matroids M without loops and isthmuses except that (7.22) fails by
a trifle for a few products involving circuits (cf. Exercise 7.5.7). For conrected matroids
it can be shown that equality holds for all k. < r in (7.21), or equivalently in (7.22), if
and only if M is isomorphic to the parallel connection of an (r + 1)-point circuit and an
(n — r)-point atom.

Taking ¢ = 3 in Proposition 7.5.4 we get formulas which are valid for all connected
simple matroids.

We will now turn our attention to the face numbers of broken circuit complexes. Recall
from Theorem 7.4.6 that these are the Whitney numbers of the first kind @y, wy,...,®;. In
particular, @, = (M), the Mdbius invariant (7.19). It will be assumed that all matroids
are simple, i.e. lack loops and parallel elements. This results in no lack of generality (cf.
Proposition 7.4.1).
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7.5.5. Proposition. Let M be a simple matroid with n > r. Then
() e < Wy, forall0<k<j<r-k,
(i) Dy £ Byp_p41, if 2 < k < (r+ 1)/2 and M has fewer than k connected
components, or if k = 1,4 < r < n -2 and M is connected.

7.5.6. Proposition. Let M be a simple matroid and ¢ = ¢ps. Then

c=-2 . 0
. n—-r+it—-1\[r—-i
axg (7))

i=0

for k = 0,1,...,r, and equality holds for some k > ¢~ 1, or equivalently for all k,
if and only if M is isomorphic to the direct product of the free matroid B,_c41
and the (¢ — 1}-uniform matroid Ue_y n—rsc1.

Taking k = r in Proposition 7.5.6 we obtain

n—r+c-2)

(7.23) ﬁ(M)Z( c—9

It also follows (since ¢ > 3 for simple matroids) that

(7.24) B > (;) +(n—r) (,: - i)

for ¥ = 0,1,...,r, with equality exclusively characterizing the direct products of free
matroids and lines. It is interesting that the lower bounds 7.5.2 and 7.5.6 are attained by
precisely the same class of matroids.

Proof. These results arise from applying Proposition 7.2.5 to a broken circuit complex
of M. For 7.5.5 see Exercise 7.5.3.

We need here only verify the characterization of equivalencein 7.5.6. If M = B@U where
B = .B,-_c+1 and U = U -1, n—r+4c=-1 then ‘li),- = ﬂ(M) = ﬂ(B)ﬁ(U) = ﬁ(U) = (n—:i—zc—'.’),
which according to 7.2.5 implies equivalence in 7.5.6 for all k.

Suppose now that M is such that equivalence holds in 7.5.6 for all k, in particular
then (M) = ("‘:_'f;‘z). While proving Proposition 7.2.5 we showed that this implies
that the Tutte polynomial Tps(z,0), being the shelling polynomial of the broken circuit
complex, equals Tar(z,0) = 2" + (n — r)z™1 4 ... 4 (""7+:=3)27-c42  From the form of
Tm(z,0) we can deduce that M is the direct product of r— c+2 connected simple matroids
M, M3, ..., Mr—cy2 (cf. Exercise 7.5.1). Assume that M; is of rank #; and cardinality n;
fori=1,2,...,r - ¢+ 2. Clearly, i(M;) < (:‘.':11) since there are ji(M;) nbc-bases in M;
ali of which contain the first element under some ordering. From the same viewpoint it is
apparent that i(M;) = (’r'.':ll if and only if M; is r;~uniform. We get that

R(M) = IG53% B(M;) < TWZEH (’,Tf ‘ 11) < (” B 2) = (M),
i .

But (‘;11)(::) < (2:1::) with equality if and only if a; = b = 0 or a3 = by = 0. Thus
ni = r; = 1 for all ¢ except one, say i = 1, for which n, =n-r+c-1,r1y =c¢c-1 and
ﬁ(Ml) = (:1;:311) So J'Y.l’l = Uc-l,'n.-r+c—1 and Mz S...0 M,-_c+2 = Br-c+l- o
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Let (ho,h1,...,hr) be the h-vector of a broken circuit complex of a simple matroid M.
Thus Ta(z,0) = hoe + hiz™* + ... + h,. We know from (7.6), Proposition 7.4.7 and
Exercise 7.2.1 that in general hg=1, by =n—r, by = B(M) and h, = 0. However, as
was the case for the matroid complex, when M is connected more can be said.

7.5.7. Proposition. If M is connected then h; > n —r for i = 2,3,...,7 — 2, and
hr—] 2 1.

Proof. B(M) > 1 is equivalent with M being connected (Proposition 7.4.8). For the
other inequalities see Brylawski (1977b), Theorem 3.1.2. o

7.5.8. Proposition. Let M be a connected simple matroid and ¢ = cp. Then

c~2 . .
_ n—r+i1—1\[{r—1 r—c+2 _
D> ( ; )(k—i>+(n—r)(k-c+1) fork=0,1,...,7r =2,

=0

c—2 .
w,_lzz(r-o(”"f"l)+(n—r)[("§+2) ~ 1]+ B(M) , and

=0 t

n—r4+c—2

B(M) 2 ( S ) +(n = r)(r =) + B(M).
Proof. The inequalities arise from (7.5), that is,

- A r—14
wk=2 h,‘(k_i),k=0,1,...,’r;

=0

since h; = (""j""l) fori=0,1,...,c—2by (7.8),and h; 2 n—rfori=c~-1,c,...,7 =2,
by 7.5.7. (The last two inequalities, the k = r — 1 and k = r cases, actually require that
¢ <r.If¢> 7 then M is uniform and @, = (,7,), (M) = (21).) o

r—-1

By taking ¢ = 3 in the above formulas we get inequalities which hold for all connected
simple matroids, namely

x> () +(n=1)(l,), for k=0,1,...,7r -2,
(7.25) o 2 74 (n=DI() — 11+ A(M), and
A(M) 2 14 (n = r)(r - 2) + B(M).
To eliminate the appearance of (M), the last two of these formulas can be replaced by
(7.26) W1 2r+(n—r)(3) —1,and
A(M) 2 (n—r)(r - 1),

which hold for all connected simple matroids with the exception of the parallel connection
of three 3-point lines for which r = 4, n = 7, i = 8 and @3 = 20, see Brylawski
(1977b). The connected simple matroids which achieve equality in (7.25) and (7.26) have
not been characterized; some examples are parallel connections of circuits and lines, the
Fano projective plane and the complete graph Kj.
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7.8. Order complexes of geometric lattices

Let L be a finite geometric lattice with proper part L = L — {6, 1}. The chains z, < 2, <
.+. < z4 of L are the simplices of a simplicial complex A(L), called the order complex of
L. If rank (L) = r, then A(L) is a pure (r — 2)~dimensional complex.

We assume familiarity with the cryptomorphic correspondence between simple matroids
M = M(S) and geometric lattices L, see Section 3.4 of White (1986). Under this
correspondence the ground set S is identified with the set L! of atoms of L. For 0 <
k < r= rank (L) let I*¥ = {z € L : (z) = k}, and for z € L* let oz denote the
corresponding flat ez = {p € L! : p < z} in M. To ordered matroids M = M (5,w)
correspond atom-ordered geometric lattices (L,w), i.e., w is a linear ordering of L!.

Let (L,w) be an atom-ordered geometric lattice. Denote by Cov(L) C L x L the set of
coverings, i.e., pairs (z,y) such that if z € L* then y > z and y € L+, An edge-labeling
A=A, :Cov(L) — L' is defined by the rule

(7.27) A(z,y) = min, (oy - =x).
Note that the label A(z,y) is well-defined since the indicated set of atoms must be
nonempty. Also, the labeling A = A, of course depends on w.

7.6.1  Example. Figure 5(a) shows the geometric lattice of flats of the matroid from
Example 7.3.5. Figure 5(b) shows the edge-labeling induced by the natural
ordering 1 < 2 < 3 < 4 < 5 of its atoms.

Figure 5.

The edge-labeling (7.27) induces a labeling of unrefinable chains. If the chain c:z¢ <
Z1 < ... < zj is unrefinable, meaning that (z;_;,z;)is a covering for 1 < i < &, let
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(7.28) Me) = (A(20, 21), A(Z1522)s - - -y M(Tk14 Tk ))-

This label A(c) is an ordered k-tuple of atoms. As an (unordered) k-subset of atoms,
Me) is independent (cf. Exercise 7.6.3). Let us call A(c) increasing if Mz, 11) <
A(z1,22) < ... < MZk-1,Tk), Where the comparisons are made with respect to the order
w of L. If all inequalities go the other way A(c) is decreasing.

The crucial combinatorial properties of this labeling A will now be stated.

76.2. Lemma. Let z,y € L with z < y, and let M;, = { unrefinable chains
T=29<21<...< 2Tk =y} Then
(%) there exists a unique chain ¢,y € My, With increasing label,
(i3) Mcz,y) is lexicographically least in the set {A(c) : ¢ € Mgy}

Proof. Put 2o = z, and define recursively elements p; € L! and z; € LT(®)+ by
p; = min,(oy — oz;_1) and z; = z;_; V p;. This recursive definition will end with z; =y,
where k = r(y) — r(z). Let czy : Zo < 1 < ... < Z4. Then Megy) = (P1,P25 -+ »Pk);
which by construction is increasing.

Suppose that ¢ : z = yo < 1 < .< Yy =y, withy; =z, for0 <i<e-1and
Ye # Te. Then A(c) = {P1,.-.,Pe1s0es--- Gk} With ge # pe. The construction shows that
in fact pe < ge, and that p. = g for some f > e. Hence A(c) is lexicographically greater
than A(czy), and A(c) is not increasing. o

The facets of the order complex A(L) are the maximal chains in L. Extending these
by 0 and 1 we get an identification with the set M = Mp ; of maximal chains in L. This
leads to the main result of this section.

7.6.3. Theorem. Let (L,w) be an atom-ordered geometric lattice. Then the w-
lexicographic order of labels A(c) determines a shelling order of the set M of
maximal chains (facets of A(L)). In particular, A(L) is shellable.

Proof. By (7.3) the following must be verified: If ¢,d € M with A(d) < A(¢), then
there exists e € M and z € c¢ such that A(e) < A(c)and cNd CcNe=¢c—=z.

Supposethatc:ﬁ:zo<w1<...<x,.=i,andd:f)=yo<y1<...<y,-=i,and
A(d) < A(c). Suppose furthermore that z; = y; for 0 < ¢ < f, and that z74y # ys41. Let
g be the least integer greater than f such that z, = y, (g is well-defined since z, = y).
Then g — f > 2 and f < i < g implies that z; # y;. See Figure 6.
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Figure 6.

The fact that A(d) < A(c) shows that Ty < Zj31 < ... < T, cannot have the
lexicographically least label in the set Mz, z,- Hence by Lemma 7.6.2 there exists f<i<g
such that A(zi~1,2;) > A(i,Zi+1). Again by the lemma there exists a unique z; € L such
that i1 < zi < zi41 and A(zic1, %) < A(2i, 2i41). Replace z; in ¢ by z;. This gives a new
maximal chain e such that eNd C e Ne = ¢ - z;, and (by the lemma) A(e) < A(c). o

Letc:z7) < 22 < ... < 2,7 be a maximal chain in L. As before, ¢ may tacitly be
identified with its extension by zo = § and z, = i to a maximal chain in L. The shellability
proof (and in essence Lemma 7.6.2) shows that there exists a maximal chain e such that
A(e) < Alc) and enc = ¢ —z; if and only if A(zi_y,2;) > A(Zi,Zi41). Hence, the restriction
operator induced by the shelling in Theorem 7.6.3 is given by

(7.29) R(e) = {=z:i € ¢ : M=i1, 2i) > A(zi, 2i1)}-

Let us write simply u(L) for the M&bius function value p(0,1), computed over the
geometric lattice L. A well-known theorem of P. Hall gives that #(L) is equal to the
number of odd cardinality chains in L minus the number of even cardinality chains in [
(including the empty chain), see Rota (1384) or Stanley- (1986). Part (%) of the following
proposition is a restatement of Hall’s theorem for L. Part (%) is then implied via (7.29)
and Corollary 7.2.4.

7.6.4. Proposition. Let L be a geometric lattice of rank r. Then
(4) x(A(L)) = (L), 4
(&) (L) = (-1) - #{c € M : Xc) is decreasing}, for any labeling A = ),
induced by an atom-ordering w as in (7.27) and (7.28). ;

For an illustration of this result, take a look at the rank 3 geometric lattice in Figure
5. Direct computation of the M&bius function, using its recursive definition, gives that
#(L) = —4. The 4 decreasing labels of maximal chains are (4,2,1), (4,3,1), (5,2,1) and
(5,3,1).

The combinatorics of the edge-labelings (7.27) of geometric lattices L extends to so
called rank-selected subposets, obtained by deleting an arbitrary set of rank levels L*
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from L. The results developed so far in this section have more general versions for rank-
selected subposets and their order complexes, see Exercise 7.6.5.

Combining Proposition 7.4.5 and part (ii) of Proposition 7.6.4 we find that the number
of nbe-bases in L equals the number of maximal chains with decreasing label. This fact
can also be established by an explicit bijection.

For an atom-ordered geometric lattice (L,w) of rank r, let DM denote the set of
maximal chains in L with decreasing labels, and let nbe = nbc(1) denote the set of nbc-
bases of L. Suppose that ¢ € DM, with A(c) = (A1, Az,..-»Ar), A1 > A2 > ... > A, Then,
clearly,

(7.30) p(e) = {Ar; Ar-1,...,A1} is an nbc -basis .

Conversely, suppose that B = {b;,bs,...,b,} € nbe,by < bz < ... < br, and construct
the maximal chain ¥(B) : 0 < b, < (byVb,_1) < (b;Vbr_1Vhr_3) < ... < (byV...Vb) = il
Then

(7.31) A($(B)) = (by,br—1,..-,b1), hence $(B) € DM.

Since ¢ o ¢)(B) = B for all B € nbc, and conversely, we conclude that ¢ and ¢ are
bijections DM « nbec.

Statement (7.31) is a consequence of
(7.32) if A€ BC,(L),then min, A € 4,

i.e., the least element in A is also the least element in the flat spanned by A, which
in turn follows directly from the definitions. Statement (7.32) also implies that if B =
{b1,b2,...,b,} € nbe,b; < b2 < ...< b, and if 7 € S, is a permutation, then

(7.33) 1(B) € DM if and only if 7 = id,
where '(,b,r(B) 0 < b,,.(,) < (b,,(,.) A b,,(,._l)) <...< (b,,(,.) V...V br(l)) =1.

7.7. Homology of shellable complexes

This section will review the construction of simplicial homology and the basic facts about
the homology of a shellable complex. The presentation is essentially selfcontained and
should be accessible to readers without a background in algebraic topology. Readers having
such a background can proceed directly to Theorem 7.7.2.

Let A be a simplicial complex on vertex set V. We will temporarily assume that
V is linearly ordered, but the particular order chosen is of no significance for the end
product. Let us agree to permit a nonvoid face F' = {vo,v1,...,v} of A to be written
F = [vo,v1,...,v&) if and only if vg < v; < ... < v, in the given order of V. Then let
Ci(A) denote the free Abelian group generated by the symbols [vg,v1,...,0v%], i.e., by
the set of k—dimensional faces of A written in canonical form. The elements of Ci(A)
are formal linear combinations with integer coefficients of k—dimensional faces. Thus,
C_1(A) 2 Z,Co(A) = ZIV1, the direct sum of |V| copies of Z, and Ci(A) = 0for k < -1
and k > d = dim A. Let group homomorphisms

3k H Ck(A) — Ck._l(A)
be defined on the basis elements by
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k
(7'34) ak[v()a V1y.0 1”1:] = 2 (—1)'.[1)0, V1,y... ,")t'a ore ,‘Dk],

=0

and extend linearly to all of Cx(A), for k = 0,1,...,d. Put 8; = 0 otherwise. Here the
hat symbol “A” has the meaning that what stands underneath should be deleted. Thus,
for instance Jp[vo] = @ and 8;[vo, v1, va2] = [v1, v2] ~ [v0, V2] + [v0, t1].

The elements p of C(A) such that 8x(p) = 0 are called k—dimensional cycles, they
form a subgroup denoted by Z;(A). The elements o of Cx(A) which satisfy ¢ = 8;,1(7)
for some 7 € Ci41(A) are called k—dimensional boundaries and form a subgroup Br(A).
It is easy to verify that 9y 0 941 = 0 for all k¥ € Z. Thus, Bi(A) C Zx(A) for all k € Z.
The quotient group

(7.35) Hi(A) = Zi(A)/Bi(A)
is the k—dimensional homology group of A with integer coefficients.

The homology groups we have defined are usually referred to as “reduced” homology
and denoted “Hj(A)”. Since we have no occasion to consider any other variation of
homology, we adhere to the simpler terminology. A technical feature of this definition
is that H_;(A) & Z for the “empty complex” A = {@}, while H_;(A) = 0 as soon as
there are vertices (nondegenerate complexes). Also, the rank of Ho(A) is one less than the
number of connected components of A.

The rank of the Abelian group Hi(A) is called the k-th Betti number of the complex
A. By the rank of a finitely generated Abelian group we mean the maximum number of
linearly independent elements of infinite order.

A complex A is called acyclic (over Z) if Hx(A) = 0 (i.e., H;(A) is isomorphic to the
trivial group) for all k& € Z. The following two facts will be needed:

(7.36) a cone is acyclic, and

(7.37) if Ay,Azand A; N Aj are acyclic complexes then A; U A, is also acyclic.

Both facts are completely elementary given some knowledge of topology. For instance,
(7.37) follows from the Mayer-Vietoris long exact sequence. They are also elementary in
the sense that straightforward proofs directly from the definitions are easy.

7.7.1. Lemma. Given a shelling of a complex A, let A’ = A — {facets F such that
R(F) = F}, where R(F) is the induced restriction operator. Then A’ is acyclic.

Proof. The first observation to be made is that the ordering of facets of A, restricted
to the facets in A’, gives a shelling of A’. The second observation is that the restriction
operator R(F') induced by this shelling of A’ coincides with the original one, in particular
then R(F) # F for all facets F € A’. These observations are simple consequences of the
definition (7.3).

We will prove that A’ is acyclic inductively using its shelling Fy, F3,...,F;. Let F, =
{GeA'":GCF},and A;=FUFRU...UF,1<i<t We have that F; is a cone with
any of its vertices as apex, and A;_; N F; is a cone with any vertex in F; — R(F;) as apex.
Therefore by (7.36), F; and A;_; N F; are acyclic, and by (7.37), if A;_; is acyclic then so
is also A;. Since A; = F is acyclic, it follows by finite induction that so is A=A o
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We shall use the notation p(F) = a to denote that the k-dimensional face F' occurs
with the coefficient a € Z in the formal linear combination p € Ci(A).

7.72. Theorem. Let A be a shellable d-dimensional complex. Suppose furthermore
that {facets F such that R(F) = F} = {F,F;,...,Fp},where R(F) is the
restriction operator induced by some shelling. Then

(0 mw={ 5 1T

() There are cycles p1,p02,--.,0p € Hi(A) uniquely determined by

1, ifj=k,
Pk(F:i)={ 0, ;f:;';ék.

(i) {p1,02,---,pp} is a basis of the free group Ha(A).

Notice that for d = 1 the theorem states the familiar fact that the cycle space of a
connected graph has a basis (unique up to signs) induced by the family of edges lying
outside some fixed spanning tree. Notice also that rank Hg(A) = p = (—1)x(A), by
Corollary 7.2.4 (this is a special case of the Euler-Poincaré formula).

For illustration, consider the complex A of Example 7.2.1. Taking any shelling (for
instance the one mentioned after 7.2.4) one concludes from the theorem that Ha(A) = Z
while H;(A) = 0 for all i # 2. This also follows from the fact (obvious upon inspection)
that A is homotopy equivalent to the 2-sphere.

Proof. The subcomplex A’ = A — {F, F3,...,Fp}, which by Lemma 7.7.1 is acyclic,
differs from A only in dimension d. So Cx(A') = Ci(A) for all k < d, and consequently
Hi(A) = Hy(A") = 0for all k < d—1. Also, Bg_3(A’) € Ba_1(A) C Zg_1(A) = Zg_1(A")
and Hy_1(A’) = 0 imply that Hy_3(A) = 0. Thus we have proved that H;(A) = 0for all
i # d.

For 1 < k < p we have that 83(F;) € Ba-1(A) € Z4_1(A) = Zg_1(A'), and since
A’ is acyclic there exists p}, € Ca(A') such that 84(p}) = 84(Fi). Let pr = Fi — p. By
construction 84(px) = 0, s0 px € Z4(A) = Hy(A), and also px(F;) = 6;x (Kronecker’s
delta), for 1 € j £ p. If o € Hy(A) satisfies 0x(F;) = 64,1 < j < p, then ox — pi €
Hy(A") = 0, so o4 = pi. This proves part (ii).

We will now show that {p1,p2,...,pp} is a basis of Hy(A). [Remark: One could argue
that Hy(A) = Z4(A) must be free, since it is a subgroup of the free Abelian group Cy(A),
but this will of course be a direct consequence of providing a basis.]

Linear independence: Let 0 = T°F_, axpi, with aix € Z. Part (i) shows that o(F;) = aj,
which means that c = O only if ay =0 forall1 < k < p.

Generating property: Let o € Hy(A). Consider the cycle 7 = ¢ — 3 %_, 0(Fi)pi- Part
(i) shows that 7(F;) = 0 for all 1 £ j < p, which means that 7 € H4(A') = 0. So,

) 4
(7.38) o= o(Fi)ps.
k=1

All claims about the structure of Hg(A) made in parts (¢) and (éi) have now been
established. o
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The cycles py,...,pp induced by a shelling are sometimes (e.g. for matroid complexes
and geometric lattices) the fundamental cycles of spherical subcomplexes. By this the
following is meant. Suppose that a simplicial complex A is homeomorphic to the d-sphere.
Then H4(A) = Z and the generator p of Hy(A), which is unique up to sign, is a linear
combination in which every facet of A occurs with coefficient +1 or —1. This generator p
is called the fundamental cycle of the spherical complex A.

7.8. Homology of matroids
As a direct consequence of Theorem 7.7.2 and our work in Sections 7.3 and 7.4 (see
particularly 7.3.3, 7.4.3 and 7.4.7) we obtain the following two results.

78.1. Theorem. Let A = IN(M) be the complex of independent sets in a matroid M
of rank r. Then

Ay [ ZRM) 5 =1
H‘(A)‘{o, if igr—1.

78.2. Theorem. Let A = BC, (M) be the reduced broken circuit complex of an
ordered loopless matroid M = M(S,w) of rank r. Then

_ ZAM) i f=r 2,
H'(A)E{o, if i#r—2.

For illustration, consider the rank 3 matroid M of Example 7.3.5. We have in Section
7.3 computed its Tutte polynomial Ta(z,y) = 2% + 222 + y® + 2zy 4+ z + y, whose values
A(M*) = Ta(0,1) = 2 and (M) = Qggt(o, 0) = 1 should be checked against the topology
of the complexes IN(M) and BC,,(M). These complexes are depicted in Figures 3 and 4.

Theorem 7.8.2 and Proposition 7.4.8 together imply a curious topological duality for
reduced broken circuit complexes that seems to lack a systematic explanation. For any
matroid M = M(S) without loops or isthmuses, and for any orderings w,w’ of its ground
set S:

(7.39) H{(BC,(M)} ¥ Hig|_;_o(BT +(M*})),
forallie Z.

We will now describe a basis for the homology of matroid complexes IN(M ). It follows
from 7.3.3 and 7.7.2 that such a basis is implicitly determined by any ordering w of the
ground set. What we seek here is a simple explicit description of these bases directly in
terms of matroid structure.

Let M(S,w) be an ordered matroid of rank r with no isthmus. For each basis B of M
construct a simplicial complex }"p , as follows:

For each b € B let ¢(b) ¢ B be the least element of the basic bond bo(B,b) - b (which
is nonempty since b is not an isthmus), and define elements p; by @(B) = [p1,D2, ... , P&
with p1 <... < p. Next,let A; = {p;}U~1(p;) for 1 < i < k. The sets A; are the blocks
of a partition of the set x(B) U B. Finally, let 28w ={FCBUW(B): A; € F for all
1<i<k)

7.8.3. Proposition. ({) Be g, C IN(M),

(i) L p ., is homeomorphic to the (r — 1)-dimensional sphere.

Proof. As a simplicial complex D(A)={EC A: E # A}, for A # 0, is the boundary
of an (JA|-1)-simplex, and hence topologically an (| A| — 2)-sphere. We have that (writing
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¥ B = Lp, for simplicity)

(7.40) ZB = D(Al) * D(Ag) *...% D(Ak),

and |A;] > 2 for 1 < i < k, where the asterisque denotes simplicial join. [The join of two
simplicial complexes A; and Aj is defined by A1 xAz = {FiUF;: Fi € Ay and F; € Az} ]
From (7.40) it follows that B € T p (delete p; from A, for all 1 < i < k), and hence that
dim Y5 = r — 1. It is well-known in topology that the join of two simplicial spheres is
homeomorphic to a sphere (see e.g. Munkres (1984), p. 370), so part (#i) follows.

The argument for part (i) hinges on the following technical observation:
(7.41) 1<i<j<k=ci(B,p;)NnA;=0,

which follows from the definition of A; using Lemma 7.3.1.

We will prove by induction on |F N ¢(B)| that every facet F of 3_p is a basis of M.
Clearly, |F N @(B)| = 0 if and only if F = B. Suppose that F N ¢(B) # @ and that ¢ is
minimal such that p; € F N o(B). There is a unique b; € A; N B such that b; ¢ F. Let
F' = (F - p;) Ub;. Then F' is also a facet of T g and |F' Np(B)| = |F np(B)| -1, so by
the induction hypothesis F’ is a basis. It follows from (7.41) that ci(B,p;) = ¢t (F',p;),
and from @(b;) = p; that b; € ci (B,p;). Hence, b; € ¢i (F',p;) and we conclude using
Lemma 7.3.1 that F = (F' - b;) U p; is a basis. D

For each basis B of M let og,, denote the fundamental cycle of the spherical complex
Y B, There is also the explicit expression (cf. (7.40))

31 Ck . .
(7.42) OBw= 3 ... 3 (=1)F % (4 —al)U...U (4 —af),

11=0 1x=0

where 4; = [ag,a{, - ,azj] is listed increasingly in the w-ordering, for 1 < j < k. Since
¥ B is a full-dimensional subcomplex of IN(M) we have that o, € H._1(IN(M)). To
remove the sign ambiguity we could demand that op,(B) = 1. [Remark: Readers unhappy
with the reliance on topology for the derivation of op,, can take (7.42) as its definition
and check by direct computation that 8,_3(op.) = 0 for the simplicial boundary map
(7.34).]

For the following result, recall that i(B) denotes the internal activity in a basis B,
defined in Section 7.3.

7.8.4. Theorem. Let M = M(S) be a matroid of rank r with no isthmus. Then for
every ordering w of S the set of cycles {op,, : i{(B) = 0} forms a basis for the
free Abelian group H,.1(IN(M)).

Proof. We apply Theorem 7.7.2 to the w-lexicographic shelling of IN (M) constructed
in Section 7.3. In view of 7.7.2 (i) and (7.9) all that needs to be checked is that if
IP(B) = B (equivalently: i(B) = 0) and F € }_p , for some basis F # B then IP(F) # F.

Suppose then that IP(B) = B,F # Band F € 3 g . Let F = F; = (B—~{by,...,b;})U
{p(81),...,9(b;)}, where by,...,b; € B and ¢(b;) < ... < ¢(b1). We will prove by
induction on j > 1 that ¢(b;) is internally active in F;. For j = 1 this is clear, since
@(by) is the least element of bo (B,b;) — by (by definition), ¢(b1) < by (since by € IP(B))
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and bo (B,b;) = bo (F1,(b1)). For general 7 > 1, suppose to the contrary that there exists
q € bo (Fj,¢(b;)) such that ¢ < ¢(b;). One can then make the following observations:

(9) g¢ Band g ¢ Fj,

(%) bj ¢ ci (B,q),

(i)  bj € ci (Fj-1,9),

(iv) o(b;) € ci (Fj_1,q),for some 1 <i<j-1.

For (i) use that ¢ ¢ F; (by definition) and that ¢ < ¢(b;) < ¢(b;) < b; for 1 < i < j, with
the last inequality following from the fact that b; is internally passive in B. Observation
(#%) is equivalent to ¢ ¢ bo (B,b;), which is clear since by definition (b;) is minimal in
bo (B,b;) — b; and g < o(b;) < b;. Similarly, (i) is equivalent to g € bo (Fj_1,b;), which
follows since bo (Fj,p(b;)) = bo (Fj_1,b;). Finally, if (iv) were false then ci (Fj_1,q) C
B U g, hence ci (Fj_1,q) = ci (B, q) which would contradict (i) and ().

Now, choose i maximal so that ¢(b;) € ¢i (Fj-1,q). Then ¢i (Fj_1,q) C F: U g,
hence c¢i (Fj.1,q9) = ci (F;,q), and we have that ¢(b;) € ci (F;,q), or equivalently
g € bo (F;,(b;)). However, since g < (b;) this contradicts the induction hypothesis,
which says that ¢(b;) is internally active in F;. We conclude that the existence of such an
element g is impossible, and the induction step is complete.

We have shown that ¢(b;) is internally active in F; = F, hence IP(F) # F. o

7.8.5. Corollary. IN(M) = UX g, with union over all bases B of zero internal
activity.

Proof. Let B’ be an arbitrary basis. From o5/, = 2,-(3)=0 npop. and op(B') =1
it follows that op,(B') = %1, or equivalently B’ € 35, for some B such that i(B) = 0.

o

In summary, we have shown that every isthmus—free matroid complex IN(M) is
the union of ji(M™) spherical subcomplexes whose fundamental cycles give a basis for
homology. Observe that a basis B of M satisfies i(B) = 0 if and only if § — B is an nbc-
basis of the orthogonal matroid M*. Hence, the broken circuit complex BC,,(M*) plays
a role for the homology of IN(M) similar to that played by BC,(M) for H,_s(L), cf.
Theorem 7.9.3.

7.8.6. Example. Let M be the matroid of Example 7.3.5. A picture of the complex
IN(M) appears in Figure 3. There are two bases of zero internal activity: 235 and
245. For 235 we find that ¢(2) = ¢(3) = 1and ¢(5) = 4,50 T_p35 = D(123)+D(45)
in the notation of (7.40). For 245 we have ¢(2) = ¢(4) = ¢(5) = 1, so
2245 = D(1245). These spherical complexes are shown in Figure 7, which should
be compared to Figure 3.
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(a) Xoas (b) X245

Figure 7.

S _-W

7.9. Hom'ology of geometric lattices
The fact that there are interesting homological aspects of matroid theory was first made
clear by the following result of Folkman (1966). Here 4(L) = (—=1)"u(L) > 0is the unsigned

M3buis fanction value u(L) = u(0,1).
7.9.1. -Theorem. Let A = A(L) be the order complex of a geometric lattice L of rank
r. Then )
, o) 2 fi=r-2,
& H(A) {01 1f1#7'—
»ﬁanf.Follows directly from 7.6.3, 7.6.4 and 7.7.2. o

This .séé‘hcn will be devoted to a more detailed study of the homology of geometric
lattices. First a basis for the non-vanishing order homology group H,_;(A(ZL)) will be de-
scribed,'- 3 ‘:Lhwger ob ject, the Whitney homology algebra, H W(L), will be constructed.

In theﬂmng, let (L,w) be an atom-ordered geometric lattice of rank r. For each
nonempty mdependent set of atoms A = [a1,82,...,8k],8; < a3 < ... < @, and each

< (a,,(l) Varg) V...V a,,(k_l)).

Hence, c4,» is a maximal chain in the open interval (0,4) in L (if £ = 1 this is the empty
chain). Pggthermore, let

(7.44) pA= E sign(r)ca, ».
®ESi
£ :
If one element SaY Gn(1) V ...V Gn(;), is removed from cg4,r, then the resulting subchain
is contained in exactly one other chain c4 ,/, namely for the permutation =’ which differs
from « by transposition of the values of j and j + 1. Then sign (7') = —sign(r), so

9k-32(pa) = O for the simplicial boundary operator & defined by (7.34). We have proved
the follow;ag ;

- SR i ans,”
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7.9.2. Lemma. If A # 0 is independent and 4 = z, then p, € H,(z)-2(0,z).

Here and in the sequel we write simply H;(0,z) for the order homology of the open
interval (0,2) = {z € L: 0 < z < z}, instead of the needlessly pedantic H;(A((0,z))).

The elementary cycles p4 provide non—zero homology representatives corresponding to
all independent sets A. It is now easy to describe a basis for homology. Recall the notation
nbe (z)={A€BC,(L)y: A=z},forz € L.

7.9.3. Theorem. Let z € L - {0}. Then the elementary cycles {p4 : 4 € nbe(z)} form
a basis for the free Abelian group E,.(,,)_z(f),z).

Proof. We have earlier concluded that nbe(z) is the family of nbc-bases of the
geometric lattice [0, z] with the induced atom—-ordering (see the proof of Proposition 7.4.5).

Hence the present proof reduces to the case z = i, i.e., we must show that the nbc-bases
of L induce a basis of H,_,(L).

Using (7.29) and Theorem 7.7.2 all that needs to be checked is that if B is an nbc-basis
then pp contains exactly one chain ¢ » with decreasing label. But this was already shown
in (7.33). o

It follows that for every geometric lattice L the order complex A(L) is the union of (L)
spherical subcomplexes whose fundamental cycles give a basis for homology, cf. Exercise
7.9.2,

7.9.4. Example. Let L be the geometric lattice considered in Examples 7.3.5, 7.4.4 and
7.6.1, with the natural ordering 1 < 2 < 3 < 4 < 5 of its atoms, which we here
print in boldface to distinguish them from integers.

If z is any atom of L, then H_,(0,z) = H_,({#}) = 20 and Pz} = 0.
If z = {1,2,3}, then Hy(0,2) = {aal14+c2-24+c3-3:c54+ca4¢5 = 0} and
Pz} =1-2,pn33=1-3. '

Finally, let z = {1,2,3,4,5} = i, and let By, B,,...,Bs be the bases of L indexed as
in Example 7.3.5. The elementary cycies p; = pB; are better expressed by a picture than
in algebraic notation, for example see pg in Figure 8.

123 iy s Y as U5
o -] o Pl »
= o
AY
o -]
1 2 3 Y s
Figure 8.

The nbc-bases of L are By, B;, Bs and By, so {p1,P2; P3,p4} is a basis of Hy(L). To
express another cycle in terms of this basis we need only check its coefficients on the chains
with decreasing labels (by the general principle (7.38)). The four chains with decreasing
labels in our example are shown in Figure 9, with the number of the corresponding nbc-
basis indicated in parentheses.
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Figure 9.

From the two figures we immediately read off: ps = p1 — p2 — p3 + P4, and similarly,
ps = —p3+ pa, ps = —p1 + p3 and pr = —p3 + p4.
The following identity for elementary cycles will later be of use.

7.9.5. Lemma.f C = {z1,...,2;} is a circuit, z; < ... < T}, then
k -
> (-1) pc-z; = 0.
=1

Proof. Each chain Zx1) < (Tx() V Zx(z))) < -+ < @x@) V.-V Tr(k-2)), for given
7 € Si, appears twice in the expansion of the given sum. Once in the term pc—z,, _,, and
once, with the opposite sign, in the term pc_z,,,- o

Let L be a geometric lattice of rank r. Introduce a‘'symbol “py” (the elementary cycle
corresponding to the empty set) and formally let H_3(0,0) = Zpy. Then for each z € L
we have a free Abelian group H,(z)_g(f),::) of rank (—1)"® (0, z). We now combine all
this homology into one global object:

(7.45) HW(L) = ®z€LHr(z)-2(6’ z),

called the Whitney homology of L. This algebraic object can also be obtained as the
homology of an algebraic chain complex (Exercise 7.9.7), and the name “Whitney” stands
to indicate that AW (L) is a direct sum of pieces

HIZV = @r(=)=ka—2(6, Z),
whose ranks are the Whitney numbers of the first kind:

(7.46) rank HY = Y (-1)*u(0,2) = @:.
r(z)=k

From now on, fix an atom-ordering w of L. The elementary cycles p4 of independent
subsets A C L! are elements in HY(L), cf. Lemma 7.9.2, and we will now define a
combinatorial multiplication rule for them. If A, B € IN(L), let

{ +psup, if ANB=0and AUB e IN(L),
0,

(7.47) pPa- PB. = otherwise.
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The sign of psup is positive if the elements of A followed by the elements of B gives
an even permutation of A U B (all sets listed increasingly); it is otherwise negative. By
counting inversions one finds that

(7.48) papp = (-1)4HBlppp,, for all 4,B € IN(L).

Also, papp = pgpa = pa for all independent sets A.

We will now show that this multiplication uniquely extends to all cycles. The relevant
algebraic terms are reviewed at the beginning of Section 7.10.

7.9.6. Theorem. ({) Whitney homology A" (L) has a unique structure of an anticom-
mutative L-graded Z-algebra, with grading (7.45) and with multiplication that
specializes to (7.47) on elementary cycles.

(#) A linear basis for " (L) is given by {p4 : A € BC,(L)}.
Proof. Part (i) follows from Theorem 7.9.3. The work to be done for part (i) lies
entirely in showing that the partial multiplication (7.47) extends so that

H.-H, C H,y,, where H, = H,.(,_.)_z(ﬁ, z). This global multiplication is then automatically

anticommutative, since by (7.48) it is anticommutative on a basis.

The plan for the following proof is to first construct a more simple-minded algebra,
whose multiplication is very manageable, and then show that HW (L) is a subalgebra.

Let C be the set of all lower chains in L — {0}, ie., C = {f}U {21 < 22 < ... <
2t r(zi) = 4,1 < i < k}. Let ZC = {3} aic; : a; € Z,c; € C} be the Abelian group
freely generated by C. Define the product of basis elements x : z; < 22 < ... < z; and
Y i1 <y2<...<y as follows:

x-0=0-x=x,

v = | Zosign(o)-z(o,x,y), if r(zxvy)=k+1,
(7.49) == { 0, otherwise.

The summation in (7.49) is over all (k,!)-shuffles o, i.e., all permutations o of {1,2,...,k+
1} such that o7%(1) < ... < 07}(k) and 67} (k + 1) < ... < o~1(k + ); and 2z(0,x,y)
denotes the lower chain z,(1) < (25(1) V Z6(2)) < - -+ < (2Zo(1) V Zg(2) V -+ V Zy (k1) ), Where
(21522504 o5 Zk41) = (21, Z2, o« 1 ks Y10 Y20 w2, W),

The mapping C x € — ZC thus defined extends by linearity to a multiplication
ZC X ZC — ZC (associativity requires checking), making ZC into a ring with identity
element 0.

We have the following situation:
Wy _ A ® N 4
H (L) = ®zELHr(z)—2(0a z) —> ezGLCr(z)—2(0a .‘L‘) —ZC.

Here C,(,_.)_z(f), z) is the chain group in the sense of Section 7.7, i.e., the free Abelian group
generated by all maximal chains in the open interval (0,z), and ¢ is the embedding of
the subgroup of (r(z) — 2)-cycles, for all z > 0. Also, put C_,(d,0) = H_2(0,0) = Zp,.
The mapping ¢ is defined by sending the basis element 33 < yo < ... < Yr(z)-1 in
Chr(z)-2(0,2) to the corresponding basis element g; < y3 < ... < Yriz)-1 < £ in ZC, with

A
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appropriate modification for the degenerate case z = 0. These mappings have the following
key properties:

() @ is an injection of L-graded Abelian groups (clear),
(#) 1 is an isomorphism of Abelian groups (clear), and
(#17) ZC is an anticommutative - graded algebra under the direct sum decomposition

¢~ (follows from definition (7.49)).

We conclude that
T= ¢O(p:HW(L)-——»ZC

is an L-graded embedding of #W (L) as a subgroup of the L-graded algebra ZC. To finish
the proof we will show that

J ifANnB d AuB € IN(L),
(iv) 7(pa) - T(pB) ={ % 7(pauB), i)thervnse, @ an € IN(L)

where A, B € IN(L) and the rule for signs is as in (7.47),
(v) HY (L) = I'm 7 is multiplicatively closed in ZC.

If ANB # 0 or if AU B is dependent, then r(AV B) < r(4) + r(B), and if A =
la1,...,az],B = [b1,...,b], rule (7.49) shows that 7(p4) - 7(pB) = 0 in ZC. Otherwise
r(AV B =r(4) + r(B) and if A = [e;1,...,ax), B = [b1,...,b), rule (7.49) shows that
7(pa) T(pB) is a linear combination of signed chains z(c,&4 »,ép ») Where o € Sky1/Sk XS
(the set of (k,I)-shuffles), (7,7') € Sk X Si , and &4, is the chain (7.43) augmented by
ar(1)Van(2)V-- Va,,(k) A. But via the natural bijection (Sk4.1/Sk X S1)X(SkXS1) — Sk+1
these chains are in sign-compatible bijection with the chains &4uB,., for v € Siy;, that
occur in 7(p4up). This proves (iv).

We know that {r(pa) : A € BC,(L)} is a basis for Im 7, and (4v) has shown that
products of basis elements remain in I'm 7. Hence, (v) follows. a

7.10. The Orlik-Solomon algebra

In this section a certain anticommutative L-graded algebra .A(L) will be constructed, for
each geometric lattice L. The basic combinatorial properties of .A(L) will be derived with
emphasis on its intimate ties to the order homology of L.

We begin with a brief review of definitions and basic facts concerning graded algebras
and exterior algebra. More details can be found in algebra books, such as Bourbaki (1970).

Let M be a commutative monoid with identity element e, whose composition we write
multiplicatively, and let R be a commutative ring. By an M—-graded R-algebra A we mean
aring A together with a direct sum decomposition A = ®zepr A, (as an additive group)
such that A, @ R and A; - Ay, C Agy. In particular, via the identification A, = R, each
Ay is an R-module. An element a € A is called homogeneous if a € A for some z € M,
and an ideal is homogeneous if it is generated by homogeneous elements. Eqmvalently,
an ideal I C A is homogeneous if and only if I = @zepm(I N Az). For any homogeneous
ideal I there is a naturally induced structure of M-graded R-algebra on its quotient:
A/l = @rem(Az/IN Ag).

In most cases where graded algebras occur, M = (N7,+) and R is a field. We shall
mainly use M = (L, V), where L is a geometric lattice, and R = Z. The reason for using
integer coefficients is to get sharper algebraic statements, in particular to show that no
torsion arises. The following arguments would go through with an arbitrary ring R instead
of Z, on condition that R-coefficients had been used also in our previous work on homology.
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An L-graded algebra A = @,¢r Ay, where L is a geometric lattice, will be called
anticommutative if a - b = (=1)"®)*(Mp . a for all a € A,,b € A,.

Let E be a free Abelian group with basis {e;,ez,...,e,}. The exterior algebra AE =
®}_,A*E is an N-graded Z-algebra with main properties (multiplication denoted by “A™):

(VD zAy = ()" yAaz, for z € A*E and y € A'E. In particular, for
2, y€e E=AE:zAy=-yAz (s0,zAz=0).

(2) A*E is a free Abelian group with basis {e4 : card A = k}, where A =
[t1,%2,...5),1 <4 < i3 < ...< i < n,and

(7.50) ; es=e€; Aej, A... A€,

Consequently, rank A*E = (7).
(3) The multiplication of basis elements is (as follows from (1) and (2)) given by:

_f *esaus, fANB=9,
eahep = { 0, otherwise,

with the sign determined by the parity of the permutation that brings A followed
by B to AU B (all sets listed increasingly).

Now, let L be a geometric lattice and let E(L) be the Abelian group freely generated by
the set of its atoms L! = {ei,ez,...,€,}. Whenever convenient we may assume given also
an atom-ordering w : e; < ez < ... < e,. For A C L! let e4 € AE(L) have the meaning
(7.50). Then,

AE(L) = ®zer Az, where A, = @5, Zeg,

and this direct sum decomposition gives AE(L) the structure of an L-graded Z-algebra,
sinceeq Aep € Z equp C Agyp.

For each circuit C = {z1,29,...,2:} C L}, 21 < ... < 2, let (ec) = Z;’;l(—l)i €C—z;,
and let I be the two-sided ideal of AE(L) generated by the elements 8(ec) for all circuits
C in L. The quotient

(7.51) A(L) = AE(L)/I

is the Orlik-Solomon algebra of L. Since I is a homogeneous ideal (the generators
d(ec) € A¢ being homogeneous), A(L) inherits an L-grading from AE(L):

(7.52) A(L) = @zer Az, Where A, = A, [ (INAL).

Denote by &4 the class of e4 in A(L), for subsets A C L1

7.10.1. Lemma. (i) &4 # O if and only if A is independent.
(#) {€4 : A € BC,(L)} linearly generates A(L).

Proof. (i) Suppose A is dependent, and let ¢; € C C A for some circuit C. Then
ea = *e; A d(ec) A eg—c € I. The converse, which will not be needed in the sequel, is a
consequence of Theorem 7.10.2.

(éi) Suppose that €4 # 0, and that A contains the broken circuit C — z;, where C =
{z1,-..,2}, 21 < ... < z}. Then A is independent by (i), so z; ¢ A. The relation
d(ec) A es—c € I takes the form

k
ea =3 (~1) &ausy)-z:s

=2
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expressing 24 as a linear combination of €g’s with index set B lexicographically preceding
A. ¥ any such B contains a broken circuit, &g can be similarly expanded in terms of
lexicographically earlier elements, and so on. When the process eventually stabilizes, all
index sets must be free of broken circuits. ]

We now come to the main result of this section, which relates the Orlik—Solomon algebra
A(L) to the Whitney homology algebra H" (L) of Section 7.9. For both objects a family of
elements &4 resp. p4 (elementary cycles) indexed by independent sets A play an important
role.

7.10.2. Theorem. (i) The correspondence &4 «— p4, for independent subsets A C I,
extends to an isomorphism A(L) & HY (L) of anticommutative L-graded alge-
bras.

(#i) {€a : A € BC, (L)} is a linear basis for .A(L).

Proof. Define a surjective linear mapping
h:AE(L) — HY(L)

by letting h(es) = pa, if A is independent, and h{es) = 0 otherwise. The rule (7.47)
shows that h preserves multiplication, so h is actually a surjective ring-homomorphism.
Furthermore, Lemma 7.9.5 shows that h(8(ec)) = 0 for every circuit C, so I C Ker h.
Therefore h induces a surjective ring—homomorphism

R A(L) — HY(L),

such that h(24) = pa,for all A € IN(L). Specializing to A € BC,,(L), and using Theorem
7.9.6 (if) and Lemma 7.10.1 (i), we then deduce the result from the following obvious
lemma: If f : G — H is a surjective linear map of Abelian groups sending a generating
set in G to a linearly independent set in H, then f is an isomorphism and both sets are
bases. o

For 0 < k < r = rank (L), let
(7.53) AF(L) = @,(z)=k Az & AFE(L) [ (I n AFE(L)).

Then A(L) = @}_, A*(L) gives A(L) structure of an N-graded anticommutative algebra.
An expression for the Hilbert—Poincaré polynomial of .A(L) under this coarser grading
follows directly from (7.46) and the isomorphism A, & H,(;)- (0,z).

7.10.3. Corollary. Ti_, (rank A*(L)) t* = Ti_, @ t* = (~t)p(L;-1),
where p (L; A) is the characteristic polynomial of L (defined in Section 7.4).

7.11. Notes and Comments
We end with references to original sources and related remarks. Additional results can be
found among the exercises.

§7.1. There are several known topological aspects of matroid theory, in addition to
the topics treated here (which are mostly of an algebraic nature). We would like to
mention: (1) the homotopy theorems of Tutte and Maurer, (2) the topological theory
of oriented matroids (particularly the Folkman-Lawrence representation theorem), (3)
simplicial matroids, and (4) matroid versions of Sperner’s lemma. Expository accounts
with further references appear for (1) and (2) in Bjorner (1990) and for (3) and (4) in
White (1987), Chapter 6.
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§7.2. The notion of shellability originated in polytope theory in connection with at-
tempts from the mid-1800’s on to prove the generalized Euler formula by induction
(Griinbaum, 1967). It has been most intensively studied for polytopes and spheres {Da-
narajand Klee, 1978), but recently also for many other types of complexes (Bjorner, 1990).
Many of the basic combinatorial properties of a shellable complex, such as 7.2.2 and the
role of the h-vector, are due to McMullen (1970).

A numerical characterization of the h-vectors of shellable complexes was given by
Stanley (1977). The proper setting for this result is the theory of Cohen-Macaulay
complexes (Stanley, 1977, 1983). Proposition 7.2.5 depends only on the most elementary
properties of h-vectors (such as non-negativity), and is valid for all Cohen-Macaulay
complexes. Part () has been generalized to all pure complexes by Stanley (unpublished),
and further to all pure multicomplexes by Hibi (1989).

§7.3 — 7.4. The shellability of matroid and broken circuit complexes was first proven
by Provan (1977), see Provan and Billera (1980), using the recursive method of “vertex
decomposability”. The lexicographic method presented here and its close connection to
the concepts of internal/external activity and the Tutte polynomial was found by Bjdrner
(1979). [Remark: This reference is a preprint version of Sections 7.2 ~ 7.5 of this chapter.]

There are two complementary approaches to Tutte polynomials: the recursive approach
based on contraction and deletion (see Chapter 6), and the constructive or generating
function approach (of which a glimpse has been given here). The theory of Tutte polyno-
mials was generalized from graphs to matroids by Crapo (1969), to whom 7.3.6 and 7.3.7
are due. A generalization of 7.3.6 appears in Dawson (1981).

The h-vectors and Stanley—Reisner rings of matroid complexes are discussed by Stanley
(1977). He proves that such h-vectors are “level sequences”, but his conjecture that they
are “pure O-sequences” is still open. The result of Exercise 7.3.3. implies that IN(M)
is “(n ~ h)-Cohen-Macaulay connected”, which Baclawski (1982) shows has interesting
consequences for the Betti numbers and canonical module of the Stanley-Reisner ring of
IN(M). The h-vector of IN(M) is also studied by Dawson (1984).

Theorem 7.4.6, the key enumerative fact about broken—circuit—free sets, was discovered
by Whitney (1932) for graphs and extended to matroids by Rota (1964). The proof given
for 7.4.5 - 7.4.6 is from Bjorner and Ziegler (1987). The broken circuit complex was for the
first time considered as a simplicial complex by Wilf (1976), for the purpose of studying
Whitney numbers (and ultimately the chromatic polynomials of graphs). Many of the
basic combinatorial properties of (reduced) broken circuit complexes, such as 7.4.7, are
due to Brylawski (1977a). See also Brylawski and Oxley (1980, 1981) and Bjorner and
Ziegler (1987).

§7.5. Inequalities for independence numbers and Whitney numbers of matroids have a
sizeable literature. Much work in this area has been motivated by the still open unimodality
conjectures (Mason, 1972). For a survey of Whitney numbers see Chapter 8 of White
(1987), for independence numbers see Welsh (1976),Dowling (1980), and Mahoney (1985).
Applications of Whitney number inequalities to the enumeration of cells in hyperplane
arrangements are discussed by Greene and Zaslavsky (1983) and Zaslavsky (1981, 1983).

Matroid inequalities reflect the deeper and more intrinsic question of characterizing the
h-vectors of matroid and broken circuit complexes, about which quite little is known. The
direct connection to characteristic polynomials (in the case of broken circuit complexes)
indicates that these questions are likely to be very difficult.

The material in this section is from Bjorner (1979, 1980b). The ¢ = 2 and ¢ = 3 cases
of 7.5.2 were independently found by Purdy (1982), and the ¢ = 2 cases of 7.5.6 and
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7.5.8,1.e., (7.24) and (7.25) — (7.26), are due to Dowling and Wilson (1974) and Brylawski
(1977b), respectively. Heron (1972) had earlier found the inequalities 7.5.6, but did not
characterize the case of equality. Formula (7.22) for connected matroids is due to G. Dinolt
and U. Murty, see Welsh (1976), p. 299.

§7.6. Theorem 7.6.3 is from Bjérner (1980a), and represents a special case of the method
of lexicographic shellability for posets. The edge-labelings (7.27) had earlier been used by
Stanley (1974) to prove a more general version of 7.6.4 (ii), see Exercise 7.6.5. The bijection
(7.30) also appears in that paper.

The lexicographic shellability of geometric lattices has been extended to related more
general posets by Wachs and Walker (1986) and Laurent and Deza (1988). Also, the
particular shellings constructed in Exercise 7.6.6 (c) have been generalized from modular
geometric lattices to all Tits buildings in Bjorner (1984).

The facet graph of a pure simplicial complex A has as its vertices the facets of A and as
edges the pairs of facets that differ in only one element. Facet graphs of matroid complexes
IN(M) were studied by Maurer (1973), who obtained a characterization of this class of
graphs. The facet graphs of geometric lattice complexes A(L) have been studied by Abels
(1989, 1990). As discussed by Bjorner (1984) and Abels (1990) there are several structural
similarities between geometric lattice complexes on the one hand and Tits buildings on
the other. This is of course not surprising, since both structures generalize (in different
directions) the properties of the subspace lattice of a finite-dimensional vector space. The
similarities concern the role played by “frames” (Boolean sublattices and apartments,
respectively) and metric properties of the facet graphs.

§7.7. The material discussed is in principle well known. Part (i) of 7.7.2 can be
sharpened to the statement that A has the homotopy type of a wedge of p copies of
the d—sphere.

For more about simplicial homology, and algebraic topology generally, see e.g. Munkres
(1984). Bjorner (1990) surveys applications to combinatorics, including more details about
shellable complexes.

§7.8. Theorems 7.8.1 and 7.8.2 appear to be due to Stanley, they are certainly implicit
in Stanley (1977). The spheres g, were considered by Cordovil (1985) for other purposes
(generalizations of Sperner’s lemma). Proposition 7.8.3 is due to him. Theorem 7.8.4
appears to be new.

§7.9. Theorem 7.9.1 is due to Folkman (1966), and the basis results 7.9.3 and 7.9.6 (if)
to Bjorner (1982). Whitney homology HW (L) was introduced via sheaf cohomology by
Baclawski (1975). The exact relationship of Whitney homology to order homology, taken
here as the definition of H" (L), was analyzed by Bjorner (1982) and Orlik and Solomon
(1980), see Exercise 7.9.7. Our construction of the multiplicative structure on HY (L) is
based on ideas of Orlik and Solomon (1980).

A surprising connection between the homology of finite partition lattices and free
Lie algebras has been discovered by Barcelo (1988). She proves a direct correspondence
between the homology basis of the broken circuit complex and the free Lie algebra basis
of Lyndon words.

§7.10. The definition of .A(L) and the isomorphism 7.10.2 (i) are due to Orlik and
Solomon (1980). The basis result 7.10.2 (é) is immediately implied by 7.10.2 (i) and 7.9.6
(#7). It was independently discovered by Jambu and Leborgne (1986), see also Jambu and
Terao (1989), Gel’fand and Zelevinskii (1986), and Zelevinskii (1988).
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The algebra .A(L) was introduced by Orlik and Solomon to give a combinatorial
presentation of the cohomology ring of the complement in C? to 2 finite union of central
(d — 1)-planes. It has also found use in the work of Gel’fand, Zelevinskii, and coworkers,

on hypergeometric functions. See Orlik (1989) for an expository account and further
references.

A finite group acting on a geometric lattice L of rank r has an induced action on
the homology H,_3(L). More generally, for each J C {1,2,...,r — 1} the group has a
representation on the homology of the rank-selected subposet L' = {z € L : (z) € J},
and for each 0 < k < r a representation of degree 1 on the graded component .A*(L) of
the Orlik-Solomon algebra .A(L). Such representations were first systematically studied by
Stanley (1982) and Orlik and Solomon (1980), respectively. Later papers include Barcelo
(1988), Barcelo and Bergeron (1988), Calderbank, Hanlon and Robinson (1986), Hanlon
(1984, 1989), Lehrer (1987), Lehrer and Solomon (1986), and Rotman (1985).



Exercises
Problems whose solution is unknown to the author are denoted by an asterisque.

7.2.1. Let A be a cone with apex v € V,and let A’ = {F € A: v ¢ F}. Show that A is
shellable if and only if A’ is shellable, and if so their shelling polynomials satisfy
hA(.’E) =X- hAr(z).

7.2.2.  This exercise refers to Proposition 7.2.5.
(a) Prove part (i).
(b) Show that h; > 1 implies h;_; > 1 and h; > 2 implies h;_; > 2,for1 < i< 7.
(c) Prove part ().
(d) Show that for r > 3:

h<fa<.o. < firrg £ firp211

where if r is even the last inequality presupposes that Af, /541 > 1. The last
inequality is strict if » is odd or if hy > 2.

7.2.3.  Say that a pure simplicial complex A is strongly connected if every pair of facets
F and G are connected by a sequence of facets F' = Fp, Fi,...,F; = G such that
codim (F;_1 N F;) =1, for 1 £ ¢ < k. Show the following:

(a) Every shellable complex is strongly connected.
(b) If A is (r — 1)-dimensional, strongly connected and has v vertices, then

fx 2 (’:) +(U-T)(,::1),
for0 <k<r.

(c) Equality holds in (b) for all k¥ (or, equivalently, for k = r) if and only if A is
shellable and h, = 0.

7.3.1.  Show that a simplicial complex A on vertex set V is a matroid complex if and
only if the induced subcomplex Ay = {F € A : F C A} is pure for all subsets
ACV,

7.3.2. Let M(S,w) be an ordered matroid, and let ¥ = {IP(B) : B a basis of M}.
(a) Show that if X,Y € F and |[X| > |Y|, then there exists an z € X — Y such
that Y Uz € F. [Dawson (1984)].
(b) Deduce using Lemma 7.2.6 and (7.9) that F is a greedoid. [See Section 8.2
for the definition.]
(c) Show that F has the interval property. [M. Purtill, 1986 (unpublished)].
(d)* Characterize those interval greedoids that arise from an ordered matroid in
this way. What can be said about their f-vectors (i.e., the h-vectors of matroid
complexes)?

7.3.3.  Let M(S) be a rank r matroid of size n, and define h to be the maximal size
of any hyperplane. Show that for any subset A C S such that |A| < n — A, the
subcomplex of IN(M) induced on § — A is shellable and of dimension r — 1.
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7.4.6.
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Consider the complete graph K, on labeled vertices 1,2,...,n. Let ¢; be the
number of connected spanning subgraphs of K, with k edges, and define C,,(1) =
Ekckt"‘.

(a) Show that Cp(t) = t"~1 . Tk, (1,1 + ).

[Hint: Use (7.12) and Proposition 7.2.3.)

Now, let 7, be the set of all spanning trees of K,. Define an inversion of a tree
T € 7, to be an ordered pair (i,5) of vertices such that { > j > 1 and such
that the unique path from 1 to j passes through i. Let inv (T') be the number of
inversions in T', and define I(t) = Trer,t™ ).

(b) Show that Cp(t) = t*~1. I,(1 + ).

[Gessel and Wang (1979)]

(c) Conclude that the number of trees in 7;, with k inversions equals the number
of trees in 7, with k externally active edges (with respect to a fixed arbitrary
ordering of the edges of K ).

(d) Prove part (c) directly by constructing a bijection between the two classes of
trees.[Beissinger (1982)]

Show that every matroid complex is a reduced broken circuit complex, i.e., given a
matroid M construct an ordered matroid (M’,w) such that IN(M) = BC,(M").
[Brylawski (1977a))

(a) Characterize (reduced) broken circuit complexes. [Brylawski (1977a)]
(b) Characterize the f-vectors (or, h-vectors) of broken circuit complexes. [Wilf
(1976) and others]

Let M(S) be a simple matroid of rank r and size n with characteristic polynomial
p(M;)X). Let k be a positive integer and suppose that k+1 colors are available, one
of which is blue. Show that k"~"(—1)"p(M;—k) equals the number of (k + 1)-
colorings of S which have no blue broken circuit. (Broken circuits are defined
with respect to some fixed but arbitrary ordering of 5.) [Wilf (1977), Brylawski
(1977a)]

(a) Let (L,w) be an atom-ordered geometric lattice, and let A be an w-initial
segment of L!'. Show that BC,(L) = A4 * Ap, where A4 and Ap are the
subcomplexes induced on the complementary subsets A and B = L! — 4, if
and only if A is a modular flat. [Brylawski (1977a). The join of two simplicial
complexes Ay and A; is defined by Ay # Ay, = {FUF;: Fy € Ayand F; € Az}]
(b) Deduce using (a) that the characteristic polynomial p([0, z]; A) of a modular
flat z € L divides p(L;A). [Stanley (1971)]

Let L be a supersolvable geometric lattice with M—chain 0 = mg < m; < ... <
my=1.For1<i<rlet A;={pell:p< mi,p £ m;_,} and a; = |A;|. Show
the following: _

(a) Let w be an atom-ordering such that all of A; comes before all of A;,;, for
1<i<r—1.Then BC {L)=Ay4 *Ay4,+...00,.

(b) Each subcomplex A4, in (a) is 0-dimensional.

) p(L;A)=(A=-a1)(A—-az)...(A —a,).

[A geometric lattice is called supersolvable if it has an M-chain, meaning a
maximal chain of modular elements. This concept is due to Stanley (1972), who
also proved (c). Parts (a) and (b) follow from Brylawski (1977a).]

Show that the following conditions on a geometric lattice L of rank r are
equivalent:
(a) L is supersolvable.
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(b) For some atom—ordering w, the broken circuit complex BC,,(L) is a multiple
join of 0—dimensional subcomplexes.

(c) For some w there exists a partition L! = A4; U A; U... U A4,, such that
|B N A;| =1 for all nbc-bases Bandall1<¢<r.

(d) For some w, the 1-skeleton of BC, (L) is a complete r—partite graph.

(e) For some w, the 1-skeleton of BC,(L) is an r-partite graph.

(f) For some w, the inclusion~wise minimal broken circuits all have size 2.

(g) There exists a partition L! = A; U A2U...U A, such that for any two distinct
z,y € A; there is a z € A;, for some j < ¢, such that {z,y,z} is a circuit.
[Bjérner and Ziegler (1987))

Show that a supersolvable geometric lattice is determined by its 3-truncation,
i.e., it can be reconstructed from its point-line incidences.
[Halsey (1987), Bjérner and Ziegler (1987)]

For every geometric lattice L, certain families of subsets of L! (the set of atoms),
called neat base-families, are recursively defined as follows:

({) If rank L = 1, then {{i}} is a neat base—family.

(#) If rank L > 1, then pick an arbitrary atom p € L! and for each hyperplane
h € L™= such that h ¥ plet Bj, be a neat base-family in [0, k). Then B = {AUp:
A € By, h # p} is a neat base—family in L.

Show the following:

(a) Every member of a neat base—family is a basis of L.

(b) Every neat base—family has fi(L) members.

(c) The facets of any broken circuit complex BC, (L) is a neat base-family, but
not conversely.

[Bjorner (1982))

Let L be a geometric lattice and 7 : L — 0 — L! a map, such that 7(z) < z and
7(¢) € y < z implies 7(y) = n(z), for all z,y € L — 0. A subset A C L! is called
rooted if 7(B) € B for all nonempty subsets B C A. The collection of rooted sets
for L and =, denoted RCr(L), is called a rooted complex.

Show the following:

(a) RCr(L) is a simplicial complex.

(b) RCx(L) is pure of dimension rank L — 1.

(c) All members of RC,(L) are independent. [I.e., RC(L) is a full-dimensional
subcomplex of IN(L).]

(d) RCx(L) is a cone with apex m(1).

(e) Define m—broken circuits as subsets of the form C — x(C), for circuits C such
that 7(C) € C. Then RC,(L) consists precisely of those subsets of L! that do
not contain any w-broken circuit.

(f) Forz € L — 0, put rc (z) = {4 € RCx(L) : 4 = z}. Then re(z) is a neat
base~family in [0,z].

(g) For all z € L, |rc (z)| = (—1)"®)u(d, z).

(h) The face numbers of RC,(L) coincide with the Whitney numbers of the first
kind of L.

(i)* Is RC,(L) shellable?

[Bjorner and Ziegler (1987)]

Show that every broken circuit complex BC,(M) is a rooted complex RC,(L),
but not conversely.
[Bjorner and Ziegler (1987)]
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For a loopless matroid M of rank r, show that:

(a) Tp(z,0) = 27 + a;z" ! + ... + apz*, with a; # 0, if and only if M is the
direct product of £ connected simpie matroids.

(b) Tans(z,1) = 2" +byz"~ ! +...+ byz*, with b # 0, if and only if M has exactly
k isthmuses.

This exercise refers to Proposition 7.5.1.

(a) If M has exactly p isthmuses, show that h,_p # 0 and h,_,41 = 0 for the
h-vector of IN(M).

(b) Prove part (ii). Show that equality holds if and only if n = r + 1. [Hint: Prop.
7.5.3 is of use.]

(c) Show that for r > 3:

h<h<.. <lIypm<ippes

where if r is even the last inequality presupposes that M has fewer than r/2
isthmuses, The last inequality is strict if 7 is odd or if n > r + 1. [Cf. Exercise
7.2.2]

This exercise refers to Proposition 7.5.5.

(a) If M has exactly p connected components, show that h,_p # 0and hr_p41 = 0,
for the h-vector of BC,(M).

(b) Prove part (#i). Characterize the case of equality. [Hint: Prop. 7.5.7 is of use.]
(c) Show that for r > 3:

B < @ < ... < W9 < Dpryojt1s

where if r is even the last inequality presupposes that M has fewer than r/2
connected components. The last inequality is strict if r is odd or if M is connected
and n > r + 1. [Cf. Exercise 7.2.2].

(d) Show that ®,_; > @,. [Hint: Here and for the k = 1 case in (b) use that
BC,(M) is a cone.)

(e) Deduce that the sequence (g, W1, ..., @, ) is unimodal for r < 6.

Prove that the sequence (Ip, I1,...,I;) is unimodal for r < 7.
[Dowling (1980)]

Suppose that a simple matroid M of rank r and size n has exactly g circuits of
the minimal cardinality ¢ = eps. Show the following:

@< (7EY, |
(b) I 2 5o ("N GI) — e, for0 < k < 1,

T

¢) @k 2 S ("TTHTGI) ~ a7 for 0< k<1
1=0 H k=1 r—k

Prove that b(M) > 2 . i(M), with equality if and only if M is an r—uniform
matroid.
[Bjbrner (1982)]

Show that inequality (7.22) is true for all matroids without loops and isthmuses
with only the following exceptions: C, @ C}_,,for2<r<n-2,C g 8C;3,C g &
Cs, Cg and C ;. Here C; denotes the i—point circuit and C g is the direct product
of k copies of Cz. Show also that in these cases (7.22) fails by at most 2 units.

Let L be a geometric lattice of rank r.
(a) Linearly order the atoms of L and for each z € L let B; be the lexicograph-

ically first basis of the interval [0,z]. Show that {B, : 2 € L} is a simplicial
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complex. [R. Stanley, 1987 (unpublished)]

(b) Show that (Wy, W;,...,W,) is the f-vector of a simplicial complex, where
W; = card L* are the Whitney numbers of the second kind. [Wegner (1984)]

(c) Show that the complex in (a) is a subcomplex of the broken circuit complex.

Deduce from Proposition 7.6.4 that (—1)"¥)-"(®) u(z y) > 0forall z < y in a
geometric lattice L. [The inequality is due to Rota (1964).]

Let L be a geometric lattice. Show that the order complex A(L — A) is shellable
for the following subsets A C L:

(a) A = [z,1], for some z € L — 0. [Wachs and Walker (1986)]

(b) A is any subset containing no k-element antichain, supposing that every line
of L has at least k points. [Baclawski (1982)]

(c) A is the antichain of maximal complements of a fixed element z € L.[Bjérner
(1980a)]

Show that the k-tuple A,(c) of (7.28), considered as an unordered set of atoms,
contains no broken circuit.

For a geometric lattice L, let F = {R(c) : ¢ € M}, where M is the set of
maximal chains and R is the restriction operator (7.29).

(a) Show that F is a simplicial complex.

(b) Conclude that the h—vector of A(L) equals the f-vector of F.

(c) Show that F in general is neither pure nor connected.

[Bjorner, Frankl and Stanley (1987)]

Let L be a geometric lattice of rank r, and for subsets J C {1,2,...,r — 1} define
the rank-selected subposet L' = {z € L : r(z) € J} = Ujes L. Let A(LY)
denote the order complex of L’. Prove the following:

(a) A(LY) is a pure (|J| — 1)-dimensional complex.

(b) u(Z7) = x(A(Z7)) = (-1)VI-1 - #{c € M : D(A(c)) = J}.

[Here u(L7) denotes the Mdbius function value u(0,1) computed on the poset
L7 u{0,1},X = A, is any labeling (7.28) of the set M of maximal chains in L,
and D()\],Az, . ,A.,-) = {2 A > A,'.H}.]

(c) A(LY) is shellable.

(d) Determine the homology of A(L7).

(e)* Describe in matroid-theoretic terms a “natural” basis for the homology group
H)j-1(A(L7)) consisting of fundamental cycles of spherical subcomplexes.
[Part (b) is from Stanley (1974), (c¢) and (d) from Bjbrner (1980a). See also
Stanley (1986).]

Let L be a supersolvable geometric lattice with M—chain 0 = mg < m; <

... < my = 1 (for the definition see Exercise 7.4.5). Define an edge-labeling
A i Cov(L) — {1,2,...,r} by the rule

AMm (2,y) = min{i : m; vz = m; vy},

and extend to alabeling Aas of unrefinable chains as in (7.28). Show the following:
(a) Lemma 7.6.2 holds for Apy.

(b) Proposition 7.6.4 holds for Ay, as well as its generalization in Exercise

7.6.5 (b).

(c) Theorem 7.6.3 holds for Aps and the natural lexicographic order of labels.
[The definition of Aps and part (b) are from Stanley (1972), part (c) is from
Bjorner (1980a)]
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Let L be a supersolvable geometric lattice as in the preceding exercise. For z € L
define

Alz)={i:miyva=m;vz}C{1,2,...,7},

(a generalized Schubert symbol). Show that
(a) |A(z)| = r(z),forallz € L,
(B) {An(2,9)} = A(y) = A=), for all (z,4) € Cov(L).

Now, let P be any partial ordering of {1,2,...r} such that i < j in P implies
t < j in IN. Define

Lp = {z € L: A(z) is an order ideal in P}.

Show the following:

(c) Every maximal chain in Lp has length r. Consequently, the order complex
A(Lp) is pure (r — 2)-dimensional.[Lp = Lp — {0,1}.]

(d) The labeling Apas of maximal chains of L constructed in the preceding exercise
restricts to a labeling of the maximal chains of Lp for which (the analogues of)
Theorem 7.6.3 and Proposition 7.6.4 hold. In particular, A(Lp) is shellable.

(e) If L is Boolean then Lp is a distributive lattice, and every finite distributive
lattice arises this way.

(f) If L is the subspace lattice of a 4-dimensional vector space, and P is the
ordering of {1,2,3,4} whose only comparability relation is 2 < 3, then Lp is not
a lattice.

[A. Bjorner and R. Stanley, 1985 (unpublished). See also Exercise 49b on p. 164 of
Stanley (1986). Part (e) is the fundamental theorem for finite distributive lattices,
due to G. Birkhoff (ibid., p. 106). When L is the subspace lattice of a vector space
and P is a preordered linear forest, the poset Lp coincides with a quotient of a
Tits building of type A, as studied by Wachs (1986). Part (f) answers a question
left open by Wachs.]

Let T = Il 41 be the lattice of partitions of the set {0,1,...,7} ordered by
refinement. A covering relation z < y in II corresponds to a merging of two
distinct blocks B; and B; of z into one block By U B; of y. Let

A(z,y) = maz{minB,,minB,},

for all (z,y) € Cov(II).

Show the following:

(a) II is a supersolvable lattice.

(b) The edge-labeling A of II is a special case of the general construction in
Exercise 7.6.6.

(c) There are exactly r! maximal chains in II with decreasing labels.

(d) u(IT) = (-1 -

() u(I7) = ()W £, 07 03 .07,

where II7 is the rank-selected subposet defined as in Exercise 7.6.5, and the
summation is over all permutations & € S, such that {i : o; > 0;43} = J, and
or = ok —#{i : i < k and 0; < o;}. [E.g., if 0 = 42513, then o07...0} =

4.2-3.1-1=24]

Now, let P be a partial ordering of {1,2,...,r} such that i < j in P implies i < j
in IN. Define

k
Ip = {(B1,Bs,...,Bx) €I : | | (B; - {minB;}) is an order ideal in P}.

=1



44

7.6.9.

7.6.10.

7.6.11.

7.7.1.

7.7.2.*

Here minB; denotes the least element of B; in the natural ordering of IN.

(f) Show that the poset Ilp is a special case of the general construction in Exercise
7.6.7.

(g) Deduce that every rank-selected subposet %, for J C {1,2,...,7 — 1}, has
shellable order complex.

(h) Give a formula for u(IIf).

[Stanley (1972), Bjorner and Stanley (unpublished)]

Show that the following subsets of the partition lattice II,, with the induced
ordering, have shellable order complexes:

(a) {partitions whose block sizes are = 0(mod &)}, if k divides r,

(b) {partitions whose block sizes are = 1(mod &)}, for any k 2 2,

(c) {non-crossing partitions}, i.e.,partitions such that for any blocks B; and B,
the conditions z;,23 € By, 22,24 € By and 2, < 3 < z3 < 24 imply By = Bs.
[For (a) and (b) see Calderbank, Hanlon and Robinson (1986), for (a) also
Sagan (1986). For (c) see Bjorner (1980a). In each case the Mobius function
has interesting form, see the cited sources.]

Let L be a semimodular lattice of rank r. Say that two maximal chains in L are
adjacent if they differ in exactly one element. Placing edges between adjacent
pairs we get a graph M, whose vertex set is the set of maximal chains in L. Let
8(c,d) denote the usual graph distance (i.e., length of shortest connecting path)
in M L

Prove the following:

(a) The graph M, is connected.

(b) 8(c,d) = #{c;vd; :0< 4,j <r}—r -1, for any two chains c: ¢p < ¢; <
...<¢,andd:dp < dj <...<d,. [Abels (1989)]

(c) diam (M) = maxcq 8(c,d) < (3). [Bjérner (1980a)]

(d) If L is geometric, then diam (M) = (}).

Let a Boolean packing of a rank r geometric lattice L mean a family of injective
and cover—preserving mappings ¢; : B; — L from finite Boolean lattices
B;,1 < i<t,such that

(8) r(#i(0)) + r(ei(1)) 2 7, forall 1 < i < t, and

(#%) L is the disjoint union of the images ;(B;).

(a) Show that every rank 3 geometric lattice has a Boolean packing.

(b)* Is the same true for rank > 47

The 3-element sets 123,125,126, 134, 136, 145, 234, 235, 246, 356, 456 are the facets
of a pure 2-dimensional simplicial complex A on the vertex set {1,...,6}. Show
that:

(a) A is shellable,

(b) A — {123} is not shellable. [Hint: This is a triangulation of a surface. Which
one?]

(c) Hy(A) = Z, and in the generating 2—cycle (unique up to sign) the facet 123
has coefficient 2, while all other facets have coefficient +1.

Find general conditions on a shellable complex A (or on a shelling) that guarantee
that the basic cycles pj,...,p, of Theorem 7.7.2 are the fundamental cycles of
subcomplexes of A homeomorphic to spheres, whose union is A. [This is the
case e.g. if A is a psendomanifold (Danaraj and Klee, 1974), for the lexicographic
shelling of A(L) (Theorem 7.9.3. and Exercise 7.9.2), for the lexicographic shelling
of IN(M) (Theorem 7.8.4), and for the shellings of Tits buildings and their type-
selected subcomplexes considered in Bjbrner (1984).]
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For any matroid M, show that:

(a) IN(M) is acyclic <=> M has an isthmus <= IN(M) is a cone.

(b) NS(M) is acyclic <= M has a loop <= NS(M) is a cone.

(c) BC.(M) is acyclic <=+ M is not connected <= BC,,(M) is a cone.

Here NS(M) is the complex of nonspanning subsets, and w is an arbitrary
ordering of the ground set. [For part (b), cf. Exercise 7.9.5.]

Show that if a cycle o, for arbitrary basis B’ and ordering «’, is expressed
in the basis {op,, : {(B) = 0} of Theorem 7.8.4 then all coefficients must equal
~1,0 or +1.

(a) Show that the mapping ¢ : B —> S — B of Proposition 7.8.3 is never
injective, if M is a simple matroid. (Equivalently, the sphere Y g, is never a
hyperoctrahedron.)

(b)* Is it true that for any two bases B, B’ € IN(M) there exists some spherical
subcomplex 3~ C IN(M) such that B,B' € 3_?

Compute the homology of reduced rooted complexes RC,(L). These are defined
by the property that RC.(L) is a cone over RCr(L), see Exercise 7.4.9.
[Bjorner and Ziegler (1987)]

(a) For every simplicial complex A on a vertex set V such that V ¢ A, let
A*={ACV:V-A¢ A} Show that A** = A.

(b) Deduce from Alexander duality on the (n — 2)-dimensional sphere, where
n = |V|, that H;y(A) = H,_3_;(A*),for all i € Z. (Here we use reduced homology
with coefficients in a field.)

(c) Let M be a matroid of cardinality » and rank > 1. If A = NS(M), the
complex of nonspanning subsets, then A* = IN(M*). Compare the duality
H;(NS(M)) = H,_3_; (IN(M*)) to the result of Exercise 7.9.5 in view of The-
orems 7.8.1 and 7.9.1.

(d) Let M be a matroid of rank > 2. Find a relationship hetween the homology
of the complex of subsets contained in some cocircuit and the complex of subsets
not containing any hyperplane.

{e) Generalize paris (c) and (d) to greedoids (Chapter 8).

[For Alexander duality see e.g. Munkres (1984), p. 432. We require field coeffi-
cients here only to get a simpler statement avoiding cohomology.]

Give an explicit combinatorial construction of a basis for the homology of

(a) the reduced broken circuit complex BC, (M) of a connected ordered matroid
M(S,w),

(b) the dual complex G* of a greedoid G (cf. Section 8.6.3),

(c) the order complex of a geometric semilattice, as defined by Wachs and Walker
(1986).

Show that the following conditions are equivalent for & matroid M:

(a) IN(M) is homeomorphic to a sphere,

(b) M is a direct product of circuits,

(c) every independent set of corank one is contained in exactly two bases,
(d) p(M~) =1,

(e) IN(M) has the homology of a sphere.

[For (c) == (b) see Provan and Billera (1982)]

(a) Give an example of a matroid M(S) and two orderings w and «’ of S such
that BC,(M) is homeomorphic to a sphere while BC (M) is not.
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(b)* Characterize those ordered matroids M(S,w) for which BC (M) is homeo-
morphic to a sphere.

[It follows from Brylawski (1971) that a necessary condition for (b) is that M is
the matroid of a planar graph without a K4 minor, see also Welsh (1976), p. 237.)

Show that the following conditions are equivalent for a semimodular lattice L:
(a) A(L) is homeomorphic to a sphere,

(b) L is Boolean,

(c) every interval in L of length two has cardinality four,

(d) #(z,9) = (-1)®~"C), forall z < y in L.

If L is known to be geometric then also the following conditions are equivalent
to the preceding ones:

(e) every colisie is covered by exactly two copoints,

(d) (0, 1)] = 1,

(g) A(L) has the homology of a sphere.

Let L be a geometric lattice of rank r. For each basis B C L! let TP be the
subcomplex of A(L) generated by the maximal chains cp, for all 7 € §,, see
(7.43). Show the following:

(a) T8 is homeomorphic to the (r — 2)-sphere.

(b) A(L) = U8, with union over all nbe-bases B.

(c¢) The fundamental cycle of 3°2 is equal to the elementary cycle pg (up to sign,
see (7.44)).

(d) If pp is expressed in the basis {p4 : A € nbe} of Theorem 7.9.3 then all
coefficients must equal —1,0, or +1.

Let B be a neat base-family in a geometric lattice L of rank r, as defined in
Exercise 7.4.8. Show that the elementary cycles {p4 : A € B} form a basis for
H,_o(L).

[Bjorner (1982)]

The set of bases Bf, of a geometric lattice L has the structure of a simple matroid
induced by linear independence of the elementary cycles pg, B € By, in the free
Abelian group H,_o(L).

Show the following:

(a) For every subset F C By, if {pp : B € F} is a basis of H,.2(L) then F is a
(matroid) basis of By,

(b) If L is the lattice of the 3—uniform matroid of size 6, then the matroid By, is
not regular.

(c) Deduce from (b) that the converse to (a) is in general false.

(d) Bg, is 2—partitionable. [A matroid M(S) is 2-partitionable if for every z € §
there is a partition § —z = 5;US5;,51 NS, =@, such that z ¢ S; and z ¢ 5,.)
[Bjorner (1982), Lindstrom (1981). See also Section 6.5 of White (1987).]

Let M = M(S) be a simple matroid and L the corresponding geometric lattice
of flats. The nonspanning subsets of S form a simplicial complex N S(M).

(a) Show that NS(M) and A(L) have isomorphic homology groups in all dimen-
sions. [Folkman (1966))

(b) Deduce Theorem 7.9.1 from (a). [Folkman (1966)]

(c) Show that NS(M) and A(L) are of the same homotopy type. [Lakser (1971))

Let M be an infinite matroid of rank r and let L be the corresponding geometric
lattice.
(a) Show that H; (IN(M))=0fori<r—1and H{(A(L))=0fori<r—2.
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(b) Show that H,_;(IN(M)) and H,_»(A(L)) are free Abelian groups and
determine their ranks.

(c) Define shellability for infinite finite-dimensional simplicial complexes in a
reasonable way. Prove the basic properties of this concept.

(d) Show that IN(M) and A(L) are shellable.

(e) Define BC,,(M) and BC,,(M) for a well-ordering w of the ground set. Develop
the basic theory of infinite broken circuit complexes.

(f) Show that BC,(M) is shellable and compute its homology.

[Bjbrner (1982, 1984), Wachs and Walker (1986)]

Let L be a geometric lattice. For 1 £ k < r let Di(L) be the Abelian group
freely generated by all k—chains z; < 2 < ... < 23 in L—0. Put Dg(L) = Z, and
Di(L)=o0forall k < 0Oand all k£ > r. For 2 < k < r define group homomorphisms
d‘f : Di(L) — Dy_1(L) on basis elements by

k-1
df (mi<za<...<zp)=3 (1) (21 < ... < & < ... < z5),

=1

and extend linearly to all of Dy (L). Let "/ = 0 for all other k. Then d k‘fl o
d v,:/ = 0, for all k € Z (check this). The homology of this algebraic chain complex,

HY (L) = Ker df¥ /Im d}%,,,

is the Whitney homology of L.
(a) Show that

HY (L) = { %xeL-ﬁ Hi_2(0,2), g’l: z g‘

FLN ™

{b) Conclude that the definition (7.45) of Whitney homology is equivalent to the
one given here.
[Baclawski (1975), Bjorner (1982), Orlik and Solomon (1980))]

Let L be a geometric lattice and e an atom which is not an isthmus. Let L — e
and L/e denote the geometric lattices of the deletion and contraction by e,
respectively. Show that there exist linear maps giving short exact sequences of
algebras:

(a) 0 — A{L —e) — A(L) — A(L/e) — 0,

(b) 0 — HW(L — ¢) — HY (L) — HY(L[e) — 0.

[Orlik, Solomon and Terao (1984), Jambu and Terao (1989)]

Let RC(L) be a rooted complex in a geometric lattice L, as defined in Exercise
7.4.9. Show that {€4 : A € RCyx(L)} is a linear basis for the Orlik-Solomon
algebra A(L).

[Bjérner and Ziegler (1987). Hint: An alternative to a direct argument is to use
Theorem 7.10.2 (1) together with Exercises 7.4.9 (f) and 7.9.3.]
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