CHAPTER TWO

Subgroups and Cosets

2A

What sorts of questions should we ask about a group G? What can we hope to
answer? What do we need to know to claim that we “understand” G? In most
cases, it would not be very practical (or interesting) to write down the multiplication
table for the group, but we can get considerable insight into the “structure” of G by
investigating its subgroups.

(2.1) DEFINITION. Let G be a group. A subset H < G is a subgroup if H is
closed under multiplication in G and forms a group with respect to this multi-
plication.

For instance, the permutation groups G < Sym(X) are precisely the subgroups
of the full symmetric group Sym(X). For another example, view the integers Z as a
group with respect to addition. Then, for each n € Z, the set nZ of all multiples of n
is 2 subgroup of Z. (In fact, these are all of the subgroups of Z.) Of course, obvious
examples of subgroups for any group G are G itself and the singleton subgroup {1}.
We shall (in the hope that this will not cause confusion) write 1 in place of {1} to
denote this trivial subgroup of any group. Also, if G is a group and we write H < G,
we generally intend this to mean that H is a subgroup of G unless we explicitly allow
the possibility that  is merely a subset.

If H € G is a subgroup, then H must contain some element e that acts as an
identity element for H. In particular, ee = e. Since el = ¢ also (where 1 is the
identity of G), we conclude that 1 = ¢ by Lemma 1.5, and thus |1 € H. Now if
h € H, then there must exist »' € H with hk' = 1, and it follows that b’ = h~!
(where h™ is the inverse of  in G). We have now shown that subgroups of a group
G are closed under taking inverses (in G) as well as under multiplication.

Conversely, we have the following lemma.
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(2.2) LEMMA. LetG beagroupandlet H C G be a nonempty subset. Suppose
xy™' € Hforallx,y € H. Then H is a subgroup of G. In particular, any
nonempty subset of G closed under multiplication and taking inverses in G is a

subgroup.

Proof. Choose # € H. Then } = hh™! € H by hypothesis. For y € H, we have
y =1yt € H,and ifalso x € H, then xy = x(y~')~! € H. Therefore, the
G-multiplication does define an operation on A and the associative property is
inherited from G. Since 1 € Hand y~! € H forall y € H, we see that H has
an identity and inverses and so is a group. |

(2.3) COROLLARY. Suppose that H is a collection of subgroups of some group
G and let
D = m H.

HeH
Then D is a subgroup of G.

Proof. Since each H € H contains 1, we have 1 € D and, in particular, D # &.
Now if x,y € D, thenx,y € H forall H € H and so xy~! € H for all such
H. Thus, xy~! € D and D is a subgroup. |

As a convenient notational shorthand, we will often write

mH in place of m H.

HeH

How can we construct subgroups for a group? Much of group theory is con-
cerned with variations on this question, but we will discuss a few such constructions
now. Given any subset X C G, we can consider the family 7 of all subgroups
H C G such that X C H. (Note that G € H.) The subgroup [ H is called the
subgroup generated by X and is denoted (X). This subgroup is characterized by
two properties:

1. X € (X).
2. If X € H and H is a subgroup of G, then (X) € H.

In other words, the group generated by X is the smallest subgroup of G that contains
X (where the word *“smallest” should be understood in the sense of containment).
Note that if X C G isitself a subgroup, then (X) = X.

There is a more explicit (though somewhat less “clean”) alternative construction
of {X).

(2.4) LEMMA. LetG bea group and suppose that X < G is an arbitrary subset.
Then {X) is the set of all finite products

Wz - - Uy
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of elements u; € G such that either u; or u;' € X. (The “empty product’ with
n = 0 is understood to equal 1.)

Proof. Let § be the set of all finite products as in the statement of the lemma. Note
that 1 € Sand so S # & (even if X = &). Now S is clearly closed under
multiplication, and since

-t -1,,-1 -1
(ypiqtdsy -~ Up)™ =u, Uy_y - u; €8S,

it follows that § is a subgroup.
Since X C 8, we have {X) € S. On the other hand, since X C (X) and
(X} is closed under multiplication and inverses, it follows from the definition

of Sthat S C (X). The proof is complete. [}

If X is given as an explicitly listed set, for instance, X = {a, b, ¢}, then it is
customary to omit the braces and write {a, b, ¢) instead of ({a, b, ¢, }}. An important
case of this is when | X| = 1. A group G is said to be cyclic if there exists some
g € G with (g) = G. In general, for any element g of any group, the subgroup
(g} is cyclic. The following result is immediate from Lemma 2.4. (Note that for
negative integers n, the power g" is defined as (g~!)™".)

(2.5) COROLLARY. Letge G.Then{g) ={g" | necZ). [ |

Cyclic groups are ubiquitous, since they occur as subgroups in every group. We
shall therefore take the time to study them in some detail.

(2.6) LEMMA. Let G = (g), so that G is cyclic. Let H € G be a subgroup and
suppose that g" € H, where n is the smallest positive integer that makes this

true. Then

a. form € Z, we have g™ € H iff n divides m and
b. H = (g").

Note that if g has infinite order and A = |, then there is no positive integer n
suchthat g” € H. (Recall that o(g) = oo means that no positive power of g is 1.)
In all other cases, if either H > | or o(g) < 00, then there does exist a positive
integer m with g™ € H, and so the mteger n of the lemma does exist. To see this,
observe that if 0(g) < oo, wecantakem = o(g), and if H > 1,thenif 1 £ h € H,
it follows that either h or =7 will be of the form g™ for m > 0.

Proof of Lemma 2.6, If n[m (n divides m), we write m = nq, with ¢ € Z. Then
g = (g") € H. Conversely, suppose g” € H. Write m = gn + r with
0 <r < n. Then
g =2"¢")"eH,
and by the minimality of #n, it follows that r = 0 and n divides m, as required.
Statement (b) follows, smce certainly (g") € H and if 4 is any element of H |
then A = g™ for some m, and soby part (a), m = gnand h = (g")? € (g"). ™
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(2.7) COROLLARY. Every subgroup of a cyclic group is cyclic. [ ]

(2.8) LEMMA, letg € Gwitho(g) =n < oo. Then

a g"=1 :'ﬁ”n[m,
b. g" =g’ iffm=1modn ard
c. [(g}=n

Proof. Apply Lemma 2.6(a) to the group (g) with # = |. This yields part (a).
Part (b) follows from (a) since g™ = g' iff "~ = 1. Finally, by part (b), the
elements of (g) are in one-to-one correspondence with the residue classes of
integers mod 7, and there are exactly »n of these. [ |

Note that if ¢ € G and o(g) = 0o, then all powers of g are distinct, since if
g™ = g' withm > [, then g”~ = 1 and g has finite order. We can thus write
({g)] = o(g) in all cases.

(2.9) THEOREM. Let G be a finite cyclic group of order n. Then G has exactly
one subgroup of order d for each divisor d of n, and G has no other subgroups.

Proof. Write G = (g) so that o(g) = n by Lemma 2.8(c). For each divisor 4 of
n, we write e = n/d and put H; = (g°). It is easy to see that 0(g¢) = 4 and
thus | H;| = d by Lemma 2.8(c). What remains is to show that every subgroup
H C G is one of the H;.

If H € G, then by Lemma 2.6, H = (g°) for some integer ¢ that divides
every integer m such that g™ € H. Since g" = 1 € H, we conclude that ¢
divides n, and thus # = H,, where d = n/e. |

We mention that the additive groups of the integers and of the integers mod n
are examples of cyclic groups. In fact, it is easy to prove (and we shall do so later)
that every cyclic group is isomorphic to one of these.

To state our final results about cyclic groups in this chapter, we remind the reader
that if @ and b are integers that are not both zero, then their greatest common divisor,
denoted gcd(a, b) is the largest integer that divides both @ and 5. Also, Euler’s
totient function (n) is defined for positive integers n by @(n) = |U,|, where

Up={reZ{0<r<n and ged(r,n) = 1}.

(2.10) THEOREM. Let G be cyclic of finite order n. Then G contains precisely
@(n) elements of order n, and these are the elements g" for r € U,, where g is
any element of order n in G.

Proof. By Lemma 2.8(c), the elements x € G of order n are just those elements

for which (x) = G. Let g be any such element, so that the powers g" for

0 < r < n are the n distinct elements of G. We need to show that o(g") = n iff
ged(r,n) = 1.

Suppose first that ged(r, n) > 1. Thend = n/ged(r, n) < n and n divides

rd. It follows that 1 = (g")¢ and so 0(g") < d < n, as required. Now suppose

gcd(r,n) = 1 and let e be the least positive integer such that g¢ & (g"). By
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Lemma 2.6(a), we see that e divides r and also (since g" = 1 € (g"}) e divides
n. Thus,e = 1 and g € {g"). Therefore, (¢") = G and 0(g") = n. [ |

(2.11) THEOREM. Let B and C be cyclic of order n < 00. Then B = C and
there are exactly @(n) different isomorphisms that map B to C.

Proof. Fix b € Bsuchthat B = (b). If 6 : B — C is any isomorphism, write
6(b) = c. Then (™) = ™ forall m & Z, and thus 8 is completely determined
on all of B once we are given ¢ = 6(b). Also, since 8 is surjective, every
element of C must have the form ¢™ for some m € Z, and thus ¢ is a generating
element of C.

We have now constructed an injective map from the set of all isomorphisms
6 : B — C into the set of all generating elements ¢ of C; this map carries 6 to
the generator ¢ = 6(b) of C. Since the total number of generating elements of
C is ¢{(n) by Theorem 2,10, it suffices to show that for every choice of generator
¢, there exists an isomorphism € : B — C such that (b} = c.

The isomorphism we seek will necessarily map 4™ to ¢™, and so we will
define 8 by 6(b™) = ™ form € Z. The problem with this is that the element p™
of B might also be called b’ for some other integer . We need to show that the
value of @ at this element is unambiguously defined. We need, in other words,
to show that ¢” = ¢’. Since o(b) = |B| = n by Lemma 2.8(c), the equation
b™ = b' yields that m = I (mod n) by Lemma 2.8(b). Thus, ¢ = ¢! by Lemma
2.8(b) and (c). We now know that € is well defined, and what remains is to show
that 6 is an isomogphism.

Since every element of C has the form ¢® = 6(b™), we see that 9 is
surjective. It is thus necessarily injective, since |B| = |C| < oco. Finally,

g(bmbl) — G(bm-{»—:') _ Cm-H = Cmcl _ e(bm)e(cm) .

and so 6 really is an isomotrphism. [ |

2B

Recall that a group G is abelian if xy = yx for all x, y € G. (Note that cyclic
groups are automatically abelian.) If G is nonabelian, we might wish to consider
for some g € G, the set

Colg) ={x € G| xg = gx}
of all elements that commute with g. This set is the centralizer of g in G, and what
makes it especially useful is that it is a subgroup of G.
(2.12) LEMMA. Let g € G. Then C;(g) is a subgroup of G.

Proof. Since 1 € Cg(g), the centralizer is nonempty and it is easy to see that it
is closed under multiplication. If x € Cg(g), then xg = gx, and multiplying
by x~! from both the left and right yields x *(xg)x~! = x~!(gx)x~!. Thus,
gx' =x"lgand x~! & Cy(g), as required. [ ]
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We can define the centralizer of an arbitrary subset X € G by
Ce(X)={yeG|xy=yx forall x € X}.

Thus,
Co(X) = () Cotx).
xeX
and so the centralizer of any subset of a group is a subgroup, by Corollary 2.3. In
particular, taking X = G, we get the center of G, denoted Z(G). Thus

L(G)=Cs(G)={y € G |xy=yx forall x € G}

s a subgroup.

Note that Z{G) is an abelian group and that G is abelian iff G = Z(G). Of
course, it can happen (and often does) that the center of a group is trivial. For
instance, for the dihedral groups,

1Z(Dsy)| = {; if n 18 odd

if n i1s even.

The rotation groups of the five regular polyhedra all have trivial centers, but the full
groups of symmetries of four of these objects have centers of order 2. (Which one
1s the exception, and why?)

The following is an example that shows how one can use the fact that centralizers
are not merely sets of elements but are subgroups.

(2.13) LEMMA. Ler X € G be a subset such that xy = yx forall x,y € X.
Then (X) is abelian.

Proof. This follows fairly easily from Lemma 2.4, but we prefer this argument.
By hypothesis, X € Cg(X). Since Cs(X) is a subgroup, we conclude that
{X) € Co(X)andso X € Cs({X)). As above, this yields (X) C Cg{({X)) and
so (X} is abelian. =

H 6 : Gy — G is an isomorphism, it should be clear that 6(Z(G,)) = Z(G,).
Although this can be proved by a routine computation, we hope the reader will
see that this has to be true because the center is a “group theoretic” object, and
isomorphisms capture all group theoretic information.

An important special case is where G, = G;. An isomorphism from a group
G to itself is called an automorphism of G. (Note that the identity map on G
is an automorphism, but most groups have many other automorphisms, 100.) Since
isomorphisms carry centers to centers, it follows that every automorphism of G maps
Z(G) to itself. A subgroup H < G with the property that 8(H) = H for every
automorphism & of G is said to be characteristic in G, and we write H char G.

Not only is the center of a group characteristic, but generally any subgroup
uniquely defined by group theoretic properties and not dependent on arbitrary choices
or on the names of elements is also characteristic. A good rule of thumb is that any
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subgroup described by the definite article “the” is characteristic. In Problem 2.7, for
example, we shall define the “Frattini subgroup” of a group. Without referring to
the definition, the reader should understand that the Frattini subgroup of any group
is characteristic.

An important example of an automorphism of G is the inner automorphism 6,
induced by an element g € G. This is the map

B (x) = g~ 'xg.

(The reader should check that 6; is really an automorphism.) A fairly standard

notation that we shall adopt is
1

x¥ =g xg

forx, g € G. The element x¥ is said to be the conjugate of x with respect to g. In this
language, the inner automorphism induced by g is the corresponding conjugation
map. Observe that if x and g commute, then x# = x, and thus in an abelian group,
inner automorphisms are trivial. (As if to compensate for this, another type of
automorphism exists only in abelian groups: this is the map 6(x) = x~! forx € G.)

The set Aut{G) of all automorphisms of G is a subgroup of Sym(G), and the
set Inn{G) of inner automorphisms is a subgroup of Aut(G). (The reader should
check these assertions.)

Let us go back to the situation of an isomorphism € : G, — G;. It should be
clear that if H < G is a subgroup, then 8(H) is a subgroup of G,. In particular,
automorphisms map subgroups to subgroups. The subgroup

Hf = (h® | h € H)

is a subgroup conjugate to H. 1t is, of course, the image of H under the inner
automorphism mduced by g.

Since characteristic subgroups are fixed by all automorphisms, they are surely
fixed by inner automorphisms, and so if C char G, then C = C2 for all g € G.
(Note that this is completely obvious in the case C = Z(G), since then x# = x for
all x € C. In general, the equation C# = C does not imply that x4 = x for all

xeC.)
This leads us to the definition of what is certainly one of the most important

concepts in group theory.

(2.14) DEFINITION. A subgroup N C G is normal if N¥* = N forall g € G.
We write N « G in this situation.

In other words, the normal subgroups of a group are precisely those subgroups
fixed by all inner automorphisms. All characteristic subgroups are normal and all
subgroups of abelian groups are normal. Of course, the subgroups 1 and G are
always normal in any group G.

(2.15) LEMMA. Let H & G be a subgroup. Then, H « G if H® < H for all
geqi.



SUBGROUPS AND COSETS 21

The reader should be warned that this lemma does not state that H8 = H
whenever H¢ € H. Since the inner automorphism induced by the element g is a
bijection, it is certainly true that |H2| = |H|, and if H is finite, this equality of
orders together with the containment Af C H certainly does imply that Hf = H.
For infinite subgroups, however, this does not follow and is not generally true. (An
example is given in the problems at the end of this chapter.)

Proof of Lemma 2.15. We must show that H¢ = H forallg € G. Since H* € H
for all elements g, it follows that

H = (H®)®" C H¥
forall g € G. Applying this result with the element g~! in place of g, we obtain
HcCH®Y = Hs
and thus H = H3, ]

For example, consider the case G = D,, the dihedral group, and let H be the
set of plane rotations in G. Since H is closed under multiplication, we have H? € H
if g € H. On the other hand, if g ¢ H, then g is a “flip” that interchanges the front
and back of the n-gon. In this case g~! = g, and for & € H we have h® = ghg,
which does not interchange front and back. Thus, h¥ € H forall 4 € H, and it
follows that H « G.

Now H is cyclic of order n and it follows that each subgroup C of H is char-
acteristic in A. This is so since if # € Aut(H), then #(C) is a subgroup of H such
that |C| = 16(C)|. It follows by Theorem 2.9 that C = 6(C), as required. Thus, C
char H and H < G. The next result shows that C « G.

(2.16) LEMMA. Let N < G and suppose that C char N. Then C < G.

Proof. Let g € G. Since N <« G, the conjugation map (inner automorphism)
induced by g maps N to itself and, in fact, defines an automorphism of N.
(Caution: It may not be an inner automorphism of N.) Since C is characteristic
in N, this automorphism of N maps C to itself, and so Cf = C, as required. @

In contrast with Lemma 2.16, it does not follow that C <« G if all that is known
is that C « N and N < G (or even that N char G).
We give one more example of a normal subgroup now.

(2.17) THEOREM. Let G be any group. Then Inn(G) <« Aut(G).

Proof. Let& € Inn(G) and o € Aut(G). By Lemma 2.15, it suffices to show that
8° € Inn(G) for any choice of @ and o.
We can write § = 6, (the conjugation map induced by g € G). To compute
67, we applyittox € G.

(x)67 = (x)o 7160 = (g7 (x0 TNg)o = @ H)o - x - (g)o,
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where the last equality follows since o is an automorphism. We have
(x)6° = (go)™' - x - (g0),

and 50 8° = )., the inner automorphism induced by (g)o € G. |

2C

Let X, Y C G be any two subsets. We write

XY ={xy|xeX,yeY}.

Even if X and Y are both subgroups, it does not follow that XY is a subgroup.

(2.18) LEMMA. Let H, K < G be subgroups. Then HK is a subgroup iff

HK = KH.

Proof. Assume that HK is a subgroup. Since 1 € H, we have K € HK and

similarly # € HK. It foliows that XH C HK since HK is closed under
multiplication. Also, if x € HK, thenx~! € HK, and we can write x ' = hk
forsome h € H and k € XK. It follows that

x=0k) ‘= 'h e KH

and thus H K € K H. This provesthat HK = KH.
Conversely, assume H K = K H. To prove that this set is a subgroup, let x
and y be any two elements and write

x = hk, and y = kxh,
for hy, ho € H and k,, k, € K. Then
xy~' = hkohy ks

However, kh;' € KH = HK, and we can write k\h;' = hsks withhy € H
and k3 € K. We now have

xy~l = (hihs)(kak;') € HK
and thus A X is a subgroup. |

In the case where X = {x}, we write xY or Yx instead of {x}Y or Y{x}.

(2.19) DEFINITION. Let H < G be a subgroup. If g € G, then the sets

Hg = (hg | h € H)

and
gH = {gh| h e H]}

are, respectively, the right coset and the left coser of H determined by g.
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Note that if g ¢ H,thenalso g~! ¢ H,and it follows that 1 ¢ Hgand 1 ¢ gH.
In particular, the cosets H g and g H are not subgroups in this case. If g € H, on the
other hand, then Hg = H = gH, and thus the subgroup H is one of its own right
cosets and left cosets. Also note that for any element g € G, we have g € gH and
g € Hg. This shows that G is the union of all the right cosets and also of all the left
cosets of any subgroup.

(2.20) LEMMA. Ler H € G be a subgroup.

a. If Hx N Hy # &, then Hx = Hy.
b. If xHNyH # &, thenxH = yH.

Proof. First note that Hh = H for h € H. (This is really part of Lemma 1.5
applied to H.) Thus
H(hx) = (Hh)x = Hx,
and so if g € Hx N Hy, we have
Hg=Hx and Hg= Hy,
so that Hx = Hy, as desired. Part (b) is proved similarly. |

(2.21) COROLLARY. Let H < G be a subgroup. Then G is the disjoint union
of the distinct right cosets of H. The analogous result also holds for lefi
Cosets. |

(2.22) LEMMA. Let H C G be a subgroup. For every g € G, we have
|lgH| = |H| = |Hg|.

Proof. The map 6: A — Hg defined by (h)¢ = hg certainly maps onto Hg and
itis injective by Lemma 1.5. It follows that |H | = | Hg|, and the other equality
is proved similarly. |

If H € G is a subgroup, then the index of A in G, denoted |G : H|, is the
number of distinct right cosets of #/ m G. As we shall see, the cardinality of the
set of left cosets of H in G 1s equal to that of the right cosets, and so the index of a
subgroup is, in fact, left-right symmetric.

In Theorem 2.9, we showed that if G is a finite cyclic groupand H € G isa
subgroup, then | / | divides |G|. We are now ready to prove this much more generally.

(2.23) THEOREM (Lagrange). Suppose H C G is a subgroup. Then |G| =
|H\\G : H|. Inparticular, if G is finite, then |H| divides |G| and (G|/|H| =

|G : H|.
Proof. The group G is the disjointunion of |G : H| right cosets, each of cardinality
equal to | H|. |

Note that we could as well have worked with left cosets and concluded that if G
is finite, then the “left index™ equals |G|/| H | and therefore the left and right indices
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are equal for subgroups of finite groups. The proof of this fact for arbitrary groups

is left to the problems at the end of the chapter.
An important consequence of Lagrange's theorem is the following corollary.

(2.24) COROLLARY. Let G be finite and let g € G. Then o(g) divides |G| and
gIGJ =1.

Proof. We have o(g) = |(g)| by Lemma 2.8(c), and this divides |G| by Theorem
2.23. The last assertion is immediate from Lemma 2.8(a). ]

As an application of Corollary 2.24 we mention the number theoretic result of
Euler that a*” = | mod n for positive integers a and n such that ged(a,n) = 1.
The trick here is to observe that

U, ={reZ|0=<r<n and ged(r,n) = 1)

becomes a group under multiplication if we identify each element r with its residue
class mod n. (A few things need to be checked, but we will not do so here.)
Observe that Euler’s theorem is immediate by applying Corollary 2.24 to the

group U,.

2D

There is an important connection between the normality of a subgroup and the
properties of its cosets.

(2.25) THEOREM. LetH < Gbeasubgroup. Thenthefollowing are equivalent:

. HaG

. Hg=gHforallg € G.

iii. Every left coset of H in G is a right coset.

iv. The set of right cosets of H in G is closed under set multiplication.

Proof. First assume (i). Then g~'Hg = H for all ¢ € G, and multiplication by g
on the left yields Hg = g H, proving (ii). That (ii) implies (iii) is obvious, so
we assume (iii) and prove (iv).
If x, y € G, we must show that HxHy is a right coset, By (iii), however,
xH = Hg for some g € G, and we have

HxHy = H(Hg)y = Hgy,

which is a right coset, as required.
Finally, assume (iv). Then Hg~! Hg is a right coset containing ¢~'g = 1.
Thus
g 'Hg CHg 'Hg=Hl =H,

and H is normal by Lemma 2.15. ]
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Note that item (ii) of Theorem 2.25 is left-right symmetric. It follows that we
can get two additional conditions equivalent to H being normal by exchanging the
words “left” and “right” in (iii) and (iv).

(2.26) COROLLARY. Let H € G be a subgroup. Then the following are
equivalent:

1. HaG.
il. Everyright coset of H in G is a left coset.
iti. The set of left cosets of H in G is closed under set multiplication. [ |

If H « G, we use the notation G/ H (read “G mod H”)todenote {Hg | g € GJ.
By Theorem 2.25, we know that G/ H is closed under set multiplication.

(2.27) THEOREM. If H « G, then G/H is a group. The identity element of
G/H is the coset H, and the inverse of the coset (Hx)inG/H is Hx™*. Also

(Hx)(Hy) = H(xy)
forallx,y € G.

Proof. We have H(Hx) = Hx and (Hx)H = HxH = HHx = Hx since
xH = Hx. Also, xy € (Hx)(Hy) and thus (Hx)(Hy) = H(xy) by Lemma
2.20. In particular, (Hx)(Hx™') = H = (Hx"")(Hx). m

The group G/H is called the guotient group or factor group of G by H. For
example, if G = Z (with respect to addition) and H = nZ (the multiples of »), then
the (additive) coset H + m is the residue class of m mod n and the factor group G/ H
is the additive group of residues mod »n.

Note that if G is finite and H < G, then |G/H| = |G : H| = |G|/|H] by
Lagrange’s theorem.

The following is another consequence of Theorem 2.25.

(2.28) COROLLARY. LetN<Gandlet H C G be any subgroup. Then HN =
NH is a subgroup and it is normal if H « G.

Proof. We have
HN=|JrN =|JNh=NH
heH heH
by Theorem 2.25. It follows that HN is a subgroup by Lemma 2.18,
Ifg € ‘G, then since conjugation by g defines an automorphism of G, we
have (HN)? = HEN® = HEN. If H « G, then H* = H and the proof is
complete. |

2E

Even if the subgroup H C G is not normal, we may still be able to use some of our
results about normality. The idea is to find some subgroup K € G suchthat H« K.
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In fact, we shall see that for any subgroup H < G, there is a unique subgroup

K 2 H maximal with the property that H « X.
It is convenient to work more generally and consider subsets that may not be

subgroups. If X C G is any subset, then we define the normalizer of X in G to be

the set
Ng(X)={g€ G| X*=X}.

(2.29) LEMMA. The normalizer Ng(X) is a subgroup of G for every subset
X C G. If X is a subgroup, then X € Ng(X).

Proof. First, notethat X! = X and (X#)* = X#* forelements g, h € G. Itfollows
that Ng (X) is nonempty and that it is closed under multiplication. To see that
it contains the inverse of each of its elements, suppose that g € Ng(X). Then

X2 o (XE = x¥ = X=X

and thus g~} € Ng(X), as desired.

If X is a subgroup, then conjugation by any element x € X defines an
automorphism of X and, in particular, the conjugation map is surjective. Thus
X* = X for x € X, and it follows that X € Ng(X), as required. [

(2.30) COROLLARY, Suppose H C G is a subgroup and write N = Ng(H).
Then H <« N, and if K € G is any subgroup containing H, then H < K iff
KCN. [

We saw in Corollary 2.28 that if N <« G, then AN = NH,andso NH is a
subgroup of G. This can be generalized as follows.

(2.31) COROLLARY. Let H K C G be subgroups. If K € Ng(H), then
HK = KH and HKX is a subgroup of G.
Proof. Since H <« Ng(H), we can apply Corollary 2.28 in the group Ng(H). @

The reader should note that although the condition xH = Hx implies that
x € Ng (H), 1t does not follow from the equation H K = KH that K C Ng(H).

Problems
2.1 Suppose G = HUK, where H and X are subgroups. Show thateither H = G
or K =0G.

2.2 Let G be a group with the property that there do not éxist three elements
x.y, 2 € G, notwo of which commute. Prove that GG is abelian.

2.3 Suppose o € Aut{(G).

a. If x° = x~! for all x € G, show that G is abelian.
b. If 62 = 1and x° # x for | # x € G, show that if G is finite, it must be

abelian.
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HINT: For part (b), show that the set {x~!x° | x € G} is the whole group G.
To do this, consider the map x — x'x? forx € G.

Suppose G has precisely two subgroups. Show that G has prime order.

A proper subgroup M < G is maximal if whenever M € H C G, we have
H = M or H = G. Suppose that G is finite and has only one maximal
subgroup. Show that |G| is a power of a prime.

Let H C G with |G : H| =2. Show that H « G.

The Frattini subgroup ©(G) is the intersection of all maximal subgroups of
G. (If there are none, then ©(G) = G.) We say that an element g € G is
a nongenerator if whenever (X U {g}) = G, we have {X) = G for subsets
X C G. If G is finite, show that ®(G) is the set of nongenerators of G.

If H C G, aright transversal for H in G is a subset T C G such that each
right coset of H in G contains exactly one elementof T. Now let H, K € G
and let S be a right transversai for H N X in K.

a. Show that there exists a right transversal T for H m G with T 2 S.

b. If Tisasinpart(a),showthat T = Siff HK = G.

c. If |G : H| < oo, show that {[K : H N K| < |G : H| with equality iff
HK =G.

d. If |G| < oo and HK = G, show that |G| = |H||K|/|H N K|.

(Dedekind’s lemma) Let H € K C Gand L € G. Showthat KN HIL =
H(KNL).

Suppose G is finite and G = H U K U L for proper subgroups H, K and L.
Showthat |(G: H|=|G: K|=|G:L|=2,

HINT: First get (say) |G : H! = 2 and then use Problem 2.8 to complete the
proof.

Let G be finite and assume H, K € G with ged(|G : H|,|G : K|) = 1.
Show that HK = G.

HINT: f U €V C G, then |G : U| = |G : V||V : U|. Compute
|G : H N K| and use Problem 2.8.

If x,y € G, then the commutator of x and y, denoted (x, yl, is equal to
x~'y~lxy. Ifalsoz € G, then [x, y, z] means {[x, y], z]. Note that [x, y] = 1

iff x and y commute. Prove the following commutator identities.
a. [x,y]fy,x]=1

b. {xy, g) = (x, gV[y. g]

c. [x,y L Py, xFla, x" Ly =1

NOTE: Par (c) was discovered by P. Hall.

Let H, K € G be subgroups. Write [H, K1 to denote the subgroup of G
generated by all commutators [k, k] withkh € Hand k € K.
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a. Show that H C Co(K) iff [H, K] = 1.
b. Show that H € Ng(K) iff [H, K] € K.
c. f H K« Gand HN K = 1, show that H C Cs(K).

Let H, K C G be subgroups, and let [H, K] be the subgroup defined in
Problem 2.13.

a. Showthat[H K] = [K,6 H}.

b. Show that H € Ng([H, K]).

HINT: For part (b), use Problem 2.12(b).

let H C G be a subgroup. Let R and £ denote the sets of all right and left
cosets of H in G, respectively.
a. Show that there is a bijection § : R — L such that 9(Hx) = x ' H for all

x € G.
b. If there exists a bijection ¢ : R — L such that gp(Hx) = xH for all

x € G, show that H « G.
NOTE: Part (a) tells us that the “right index”’ and the “left index” of a sub-
group are always equal.
Suppose Z € Z(G) and G/Z is cyclic. Show that G is abelian.

Let Qg be the group of Problem 1.9. Show that every subgroup of Qg is
normal.

NOTE: Itis a theorem that if |G| is odd and every subgroup is normal, then
G is abelian.

Let ;r be a set of prime numbers. A finite group is said to be a x-group if
every prime that divides its order lies in . If G is finite, show that G has a
unique largest normal 7 -subgroup (which may be trivial and may be all of G).

NOTE: The largest normal -subgroup of G is denoted O, (G).

Let C be cyclic of order n. Show that Aut(C) is an abelian group of order
p(n).

HINT: Take B = C in Theorem 2.11.

NOTE: In fact, Aut(C) = U,. If # is an odd prime power this is cyclic but
observe that U is not cyclic.

Given a positive integer »n, show that

n:ng(d).

din
HINT: Let C be cyclic of order n. How many elements of order d are in C?

Suppose A < G is abelian and AH = G for some subgroup H. Show that
ANHaGQG.
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HINT: Show that A ©€ Ng((A N H)) and H € Ng((A N H)).
NOTE: The computation of the normalizer of a subgroup is often a good way
to prove normality.

Let G be the affine group of the line. (Recall that this is the set of all maps
R — Rof the form x — ax + b witha, b € Randa # 0. Show that G has a
subgroup H such that H¢ is a proper subgroup of H forsome element g € G.

HINT: Let H be the set of maps wherea =1 and b € Z.



