CHAPTER ONE

Definitions and Fxamples
of Groups

1A

From the abstract, axiomatic point of view that prevails today, one can argue that
group theory 1s, in some sense, more primitive than most other parts of algebra
and, indeed, the group axioms constitute a subset of the axiom systems that define
the other algebraic objects considered in this book. Things we learn about groups,
therefors, will often be relevant to our study of modules, rings, and fields. In addition,
group theory has considerable indirect connection to these other areas. (The most
striking example of this is probably the use of Galois groups to study fields.) It is
largely for these reasons that we begin this book on algebra with an extensive study
of group theory. (If the whole truth were told, the fact that the author’s primary
research interest and activity are in group theory would be seen as relevant, too.)

The subject we call “algebra” was not born abstract. In its youth, algebra was
the study of concrete objects such as polynomials, rather than of things defined by
axiom systems. In particular, early group theory was concemed with groups of
mappings, known as “transformation groups.” (In the early literature, for instance,
the elements of a group were referred to as its “operations.”)

For at least two reasons, we begin our study of group theory by (temporarily)
adopting this nineteenth-century point of view. First, mappings of one kind or
another are ubiquitous throughout algebra (and most of the rest of mathematics, too)
and so it makes sense to begin with them. Furthermore, some of the most interesting
examples of groups are best constructed and visualized as transformation groups.

We begin our study of mappings with some notation and definitions. (It is
this author’s belief that mathematics at its best consists of theorems and examples.
Definitions are often dull, although they are a necessary evil, especially near the
beginning of an expository work. We pledge that the balance of theorems and
examples versus definitions will become more favorable as the reader progresses
through the book.)
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The notation f : A — B means that f is a mapping (that is, a function) from
the set A to the set B. (If either A or B is empty, there are no mappings, and so the
existence of f implies that A and B are both nonempty.) The set A is the domain
of f and B is the targetr. The image or range of f is denoted f(A). It is the subset

{fa|lac A} B.

The map f is onto or surjective if its image is all of the target B. It is one-to-one
or injective if distinct elements of A map to distinct elements of B. If £ is both
injective and surjective, we say that it is a bijection.

Note that we have not specified whether our functions “act on” the right or the
left, although in writing “ f ()™ above, we seem to be implying an action on the left.
Our point of view on this question is perhaps slightly unconventional, but it will, we
hope, be quite comfortable for the student.

We maintain that functions do not “act” on any particular side, and so it is
permissible to write f(a) or (@} f, whichever is more intelligible in a given context.
Both notations mean precisely the same thing: namely, the result of applying f to
a. What is the cost of this freedom of notation? Confusion could enter when two
mappings are composed. For instance, if

f:A—>B and g: 8B A,

does fg mean “f then g™ or does it mean *“g then 7 Proponents of “action on the
right” would say the former and “leftists” would choose the latter. Qur convention
throughout this book is that fg always means “ f then g.” This does not, however,
constrain us to write the mappings on the right, but in a setting in which function
compaosition is important, it will usually enhance clarity to do so, and so we shall.
According to our notation, therefore, we have

(@)(fg) = ((a)f)g,

but it would be equally correct (though more confusing) to write

(fg)a) = g(f(a)).
For any nonempty set A, we write i, (or sometimes just i) to denote the identity
map. Thus i4{a) = a for all a € A, and it is clear that

for arbitrary maps f : A — B and g : B — A. Note that the associative law for
maps is a triviality. If f : A — B, g: 8 - C,and h : C — D, then f(gh) and
(fg)h are equal, since both are the map obtained by doing first £, then g, and then 4.

(1.1) LEMMA. Letf:A - B.

a. f isinjective iff there existsh : B — A such that fh=i,.
b. f is surjective iff there exists g : B — A such that g f=ip.
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c. If f is a bijection, then the maps g and h above are uniquely determined and
equal.

Proof. Suppose f is injective. Fix an elementa € A and define 4 : B8 — A by

a ifb&(A)f
x tf(x)f = b forsomex € A.

(byh = [

Note that by the injectivity of f, there is at most one element x € A such that
(x) f = b. Also, the mapping 4 is unambiguously defined, since the two cases
are mutually exclusive and exhaust the possibilities.

Conversely,if 4 : 8 — Aand fh = i 4, we wish to show that f is injective.
Suppose (x) f = (y)f. Thenx = (x)fh = (y)fh =y, as required.

Now suppose f is surjective. Foreachb ¢ B, choosea € A with (a) f =b,
and once this choice is made, define g : B - A by (b)g = a. Clearly gf = ig.
Conversely, suppose gf == ig. Then

B = (B)ipg = (B)gf C (A)f,

since (B)g C A. It follows that (A) f = B, as required.
Finally, assume f is a bijection so that maps / and g as in parts (a) and (b)
exist. Then
g8 =8ia=8(fh)=@NHh=igh=nh.

In particular, g is uniquely determined, since it must equal any valid choice for
h. Similarly, A is uniquely determined. |

In our proof that g exists when f is assumed to be surjective, we needed to
make some choices; the definition of g was not forced. In fact, if 8 is an infinite set,
we would need to make infinitely many choices. Some mathematicians feel that a
definition that requires infinitely many choices is somewhat suspect, and they have
created an additional axiom of set theory, called the “axiom of choice,” to deal with
this situation. (It is precisely this axiom to which we implicitly appealed in the pre-
ceding proof.) It has been proved that the axiom of choice is nota consequence of the
rest of set theory, but that it can be assumed without introducing any contradictions
into mathematics. Most mathematicians (except those working in set theory itself)
freely assume and use the axiom of choice whenever it is convenient to do so, and
we will follow that policy here. We shall have a little more to say about the axiom
of choice in Chapter 11, when we prove Zorn’s lemma.

In Lemma 1.1(a) we say that h is a right inverse of f and in (b), that g is aleft
inverse. In the case that f is a bijection, the unique left and right inverse of f is
simply called the inverse of f and it is denoted f~!. It is interesting to observe the
striking symmetry in the statement (though not in the proof) of Lemma 1.1. The
conditions that f has right and left inverses are essentiaily mirror images, although
there is no such relationship apparent between the equivalent conditions that f be
injective or surjective, respectively. We shall see more of this “duality” later.
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1B

Let X be an arbitrary nonempty set. We denote by Sym(X) the set of all bijections
from X to itself. (These bijections on X are also called permutations, and if X is
finite, this is, in fact, the more common term.) The object Sym(X) is called the
symmetric group on X. (Note that if X is finite, containing n elements, say, then
Sym(X) consists of precisely n! permutations.)

(1.2) COROLLARY. Let G = Sym(X).

a. iy eG.
b. g7} exists and lies in G for each g € G.
c. ghe Gforeachg, he@G.

Proof. Part (a) is immediate, and (b) follows from Lemma 1.1. It is not hard to
prove (¢) directly, but we prefer the following argument. Given g, 4 € G, we

see that
(ghy(h™ g™y =i = (h""'g")gh,

and thus g/ has a left and right inverse. It follows by Lemma 1.1 that gh €
Sym{X). |

(1.3) DEFINITION. Let X beany set. A permutation groupon X is any nonempty
subset G € Sym(X) such that

i. g 'e Gforeachg e G and
ii. G is closed under function composition.

Note that for g € G, there is no question that the mapping g~' exists and lies
in Sym(X). The point of condition (i) is that g~ actually lies in the subset G.
Conditions (i) and (ii), together with the assumption that G # &, imply thatix ¢ G,
and so this need not be assumed,

Given a nonempty set G of mappings on some set X, perhaps the best strategy
for showing that G is a permutation group is first to verify that each element g € G
has both a left and a nght inverse in G. From this it follows that G € Sym(X) and
this condition need not be verified separately. All that remains, then, is to check the
closure condition.

Some obvious examples of permutation groups are Sym(X) and the singleton
set {ix} for arbitrary nonempty X. We devote the next few pages to descriptions of

several more interesting examples.
Consider asquare ABCDandlet X = {A, B, C, D} be its vertex set (see Figure

1.1). Within Sym(X), let G denote the set of permutations of X that can be realized
by a physical motion of the square through 3-space. For instance, imagine the square
being rotated 90° counterclockwise about its center. This brings A to the position
formerly occupied by D, and so on, and the associated element of G is the map
g:Am— D CrH B+ A. Similarly, a “flip” about the vertical axis v yields
themapis : A+ B> A, C — D C. If we first do the rotation and then the
flip, the result is the same as a flip about the diagonal axis 4, and the corresponding
element of G is precisely the compositiongh : A C— A, 8— B; D~ D.
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The reader should be warned of a possible source of confusion here. One might
be tempted to say that the effect of the 90° counterclockwise rotation is that position
A is now occupied by vertex B and so the associated map ought to take A to B. With
this scheme, this rotation would yield the permutationg’: A +—> B — C +— D+ A.
The flip about axis v still yields &, but the combined operation, the flip about d, does
not yield the composition g’4. (In fact, it yields 4g’.) We conclude that if we want
function composition, which is the group operation, to correspond to “composition
of rotations,” we should use the convention given earlier: The mapping g associated
with a physical motion satisfies (x)g = y if x goes to the position where y was,

A few moments of reflection should convince the reader that G is a group and
that it contains exactly eight elements. One way to obtain the count is to focus on a
particular edge, say A B. After arotation, A B will coincide with the original position
of one of the four sides, and in that position it can be in either of two orientations.
This yields a total of eight alternatives for how to place AB, and each of these
uniquely determines the locatlons of all four corners.

The eight elements of G are the permutations induced by the four “flips” (about
axes A, v, e, and d)) and the four “‘planar rotations™ of 0°, 90°, 180°, and 270°. The
standard name for our group G is the dihedral group of order 8 and it is denoted Ds.
The word “dihedral,” meaning two-sided, refers to the front and back sides of the
square, which are interchanged by half the elements of the group.

In general, the order of a group G is its cardinality (number of elements), and
we write |G) to denote this number. (We also write | X | to denote the cardinality of
any set X, although the word “order” is generally reserved for groups.)

If, instead of a square, we had started with a regular n-gon (n > 3), the resulting
dihedral group would be D,, of order 2n. As with Djg, half the elements of D,
correspond to flips and half (counting the identity) correspond to plane rotations.
We should mention that many users of group theory write D, to refer to the dihedral
group of order 2n, whereas most group theorists use the notation we have presented
here.

As a further source of interesting examples of groups, let us move up to three
dimensions. Consider the vertex set X of a regular polyhedron. The permutations of
X induced by physical rotations of the object form a group called the rotation group
of the object. A usually larger group is the full group of symmetries, which consists
of all permutations of X realizable by geometric congruences of the polyhedron.
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Consider the case of a cube. The full group of the symmetries includes the
“antipodal map” t, which reflects each vertex through the center of the cube. (Thus
(A)t = F and (C)t = H inFigure 1.2, forinstance.) The reader should check that
7 does not correspond to any rotation. Note that there is no antipodal map for the
regular tetrahedron, although it is true for that figure too that there are symmetries
that are not rotations. In fact, in this case, the full group of symmetries is the full
symmetric group on the vertex set, of order 4! = 24.
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Let us compute the order of the rotation group R of a cube. After a rotation,
face ABCD can coincide with any of the six faces of the original cube, and in
each location, it can have any of the four rotational orientations. It follows that
|R] = 6 -4 = 24. The full group of symmetries S, on the other hand, has order 48.
(We leave this as an exercise.) What are the 24 symmetries-that are not rotations?
Among these are the reflections in the nine planes of symmetry of the cube. These
planes of symmetry are of two types: six that contain four vertices (for instance,
the planes determined by 8, D, G, E or by A, E, B, F) and three that are paratlel
to faces of the cube. A tenth nonrotational symmetry is the antipodal map t. The
remaining 14 nonrotational symmetries are rather hard to visualize and we shall not
discuss them further now. The product (composition) of each of the nine reflections
with 7 yields a rotation of order 2. (The order of an element g of a group, denoted
0(g), is the least positive integer #», if it exists, such that g” is the identity. If there is
no such n, we say that g has infinite order and write 0(g) = 00. Elements of order
2 are usually called involutions.) A good exercise is to count how many elements
of each order there are in the rotation group of a cube.

We shall briefly mention three more examples before proceeding with our study
of groups in general. The first example is the “general linear” group GL(V), where
V is a vector space. This is the group of all nonsingular (invertible) linear transfor-
mations of V. It should be obvious that GL(V) € Sym(V) is, in fact, a group.

Next we consider the “affine group” of the line. This is the set of all mappings
on the real numbers R that are of the form x +> ax + b, where @, b € R and a # 0.
The reader should check that this reatly is a group.

Our final example is the group associated with the Rubik cube puzzle. (We
assume that the reader has some familiarity with this object.) Of the 54 colored
squares on the surface of the cube, six may be viewed as never moving from their
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mnitial positions (although they do rotate). In other words, if we start with the red
face on top and the green face in front, then all interesting cube moves can be made
while keeping the red center square on top and the green center square in front. (Of
course, this prohibits rotations of the entire cube, but such rotations are not strictly
necessary for solving the puzzle.) Now let G be the group of those permutations
on the 54 — 6 = 48 colored squares that can be realized by some sequence of cube
twists. How does one compute |G|?

As a first approximation, consider disassembling the cube. When this is done,
one obtains eight small “comner’” cubes having three colored faces each, and 12 small
“edge” cubes having two colored faces each. The six face-ceniers remain attached
to one another, and we view them as being fixed in space. To reassemble the cube,
we can permute the corner cubes in 8! ways and the edge cubes in 12!. In addition,
each corner cube can occur in three different orientations and each edge cube in two
different orientations. This yields a total of 8! - 12! - 3% . 212 ways to reassemble the
cube. It turns out (although it is not trivial to prove) that only one-twelfth of these
are attainable via legal moves without doing violence to the puzzle. The order of
the Rubik cube group, then, is given by

|G} = (35) 8! - 12! - 3% . 2'? = 43,252,003,274,489,856,000.

1C

Throughout most of the nineteenth century, the word “group” meant “permutation
group.” We are now ready to give the modern deflnition, attributed to the English
mathematician Arthur Cayley. Recall that a binary operation on a set G is a rule
that assigns to each ordered pair of elements x, y € G another element of G. If o
is a binary operation, we write x o y to denote the result of applying this rule to x
and y, and we say that o is associative if x o (y 0 2) = (x o y} o z for all elements
x,y,2€0G.

(1.4) DEFINITION. A group isaset G together with an associative binary oper-
ation o defined on G such that there exists e € G with the following properties:

i. Foreachx e G,xoe=x=c¢ox.
it. Foreach x € G, thereexists y € G suchthat xcy=e =yox.

Note that the “closure” conditionthat x o y € G whenever x, y € G need not be
stated explicitly, since it is subsumed in the assumption that o is a binary operation on
G. Observe also that any permutation group is a group with respect to the operation
of function composition. In addition to permutation groups, Definition 1.4 allows
such objects as the additive group of the integers, the multiplicative group of the
positive rationals, and the groups of n x n nonsingular matrices over fields (with
respect to matrix multiplication).

We shall usually follow the custom of suppressing the symbol “o” and writing
xy in place of x o y. The operation is usually called “multiplication,” and xy is
referred to as the “product” of x and y.
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(1.8) LEMMA. LetGbeagroup. Then,fora, b € G, there exist unique elements
x.y € G such that
ax =b and ya=~b.
In particular, the element e is unique, and for each x € G, the element y of
Definition 1.4(11) is unique.

Proof. Choose z such that az == e = za. Now

a(zb) = eb = b,

and so we can take x = zb.
For uniqueness, if ax = ax’, we have

X =ex =zax = zax' =ex' = x’,

as required. The existence and uniqueness of y are proved similarly. |

In a permutation group, the unique element satisfying condition (ii) of Definition
1.4 is, of course, the identity map i. By analogy, this special element in an abstract
group is called the identity element of the group and it is costomarily denoted 1.
The reader should note that the identity of a permutation group is defined by what
it is (a particular mapping), whereas the identity of an abstract group is defined by
how it behaves with respect to the group operation. Similarly, the element yofa
permutation group that satisfies condition (ii) with respect to x is the inverse map,
x~1 and by analogy, in an abstract group, y is said to be the inverse element of x
and the notation x ! is used in this case, too.

In fact, the conditions of Definition 1.4 are more stringent than they really need
to be.

(1.6) THEOREM. Ler G be a set with an associative multiplication and SUppose
there exists e € G With the Jollowing properties:

i. xe=xjforallx € Gand
il. for each x € G, there exists y € G withxy = e.

Then G is a group.

Proof. Let x € G and choose y according to property (ii). It suffices 10 show that
ex = x and yx = e,
Use property (ii) to find z € G with yz = ¢. We have

x =xe=1x(yz) = (xy)z = ez,
and so
yx =y(ez) = (ye)z = yz = e,

as required. Now
ex = (xy)x = x(yx) = xe = x,

and the proof is complete. [
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We should mention that the “elementwise” calculations in the preceding proof
are not typical of most of algebra. The proof of Theorem 1.6, in fact, could almost
serve as a model of what algebra is not, or at least should not be, in the opinion of
the author.

One way to describe the operation (multiplication) in an abstract group G is via
a multiplication table. This is a square array, with rows and columns labeled by the
elements of G and where the position in row x and column y is occupied by the
element xy. Generally, it is neither useful nor practical to actually write down a
multiplication table for G, but we can think of G as being defined by such a table.

One of the advantages of thinking about groups abstractly, as.in Definition 1.4,
is that it allows us to see that certain groups, perhaps defined very differently, are
essentially “the same.” Suppose, for example, that we rename all the elements of
some group G, and that we use these new names to relabel the rows and columns
of the maltiplication table of G and also to replace the entries in the table. The
result will be the multiplication table of a group that is not, in any essential respect,
different from G. We can make this notion of “essential sameness” more precise, as
tollows.

(1.7) DEFINITION. Let G and H be two groups and suppose § : G — H isa
bijection. We say that & is an isomorphism if

6(xy) = 6(x)6(y)

forall x, y € G. We say that G and H are isomorphic, and we write G = H if
an isomorphism between them exists,

If 6 is an isomorphism from G to H, then § induces a maich-up of the elements
of G with the elements of H that causes their multiplication tables to coincide. To
the extent that we view groups as being defined by their multiplication tables, we see
that isomorphic groups are essentially “the same.” All “group theoretic” questions
will have the same answers in G and H. For example, each of G and H will have
equal numbers of elements of any given order, and G will be abelian iff # is abelian.
(A group is said 10 be abelian if all of its elements commate, if xy = yx for all
elements x, y.)

As a concrete example, consider the group R of rotations of a cube and § =
Sym(4). (We write Sym(n) as a shorthand for Sym({1, 2, ..., n}).) We have seen
that | R} = 24 and, of course, |S| = 4! = 24. In fact, we will see that R = S, and
so these differently constructed objects are group theoretically identical. (Note that
R permutes eight objects, the vertices of a cube, and S permutes {1, 2, 3,4}. As
permutation groups, therefore, R and § are quite different.)

In the cube of Figure 1.2, there are four “major diagonals’ AF, BE, CH, and
DG. Each element of R corresponds to a rotation of the cube and each such rotation
induces a permutation of these four diagonals. If we fix an assignment of the numbers
1, 2, 3, and 4 to the four diagonals, then cach element of R determines a particular
element of S = Sym(4). To see that the corresponding mapping 8 : R — S is
an isomorphism, we need to establish that ¢ is a bijection. It is not very hard to
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see (although we will not write a formal proof) that 8 is injective. In other words,
two different rotations cannot induce the same permutation of the diagonals. Since
IR| = 24 = ||, it follows that 8 maps onto S. Because the multiplications in both
R and § come about by simply following one operation by another, it should now
be fairly clear that € is an isomorphism.

Note that if § : G — H is an isomorphism, then 6! : H — G is an isomor-
phism also. Furthermore, if ¢ : H — K is another isomorphism, it is routine to
checkthatf¢ : G — X is anisomorphism. It follows from all this that isomorphism
of groups is an equivalence relation.

Problems

1.1

1.2

1.3

1.4

1.5

1.6

1.7

A permutation group G on a set X is said to be transitive if for every two
elements x, y € X, there exists g € G with (x)g = y. Also, G is regular if it
is transitive and there is a unique element that carries x to y forall x, y € X.
Show that a transitive abelian permutation group is necessarily regular.

Let G be any group. Forx € G, letr, and I, be the mappings G — G defined
by

(8)r: =gx and (g)l; =xg,
or in other words, by right and left multiplication by x on G, Let R = {r, |

x € G}and L = {I, | x € G}. Show that R and L are permutation groups on
Gandthat R=G = L.

NOTE: The fact that every group is isomorphic to a permutation group is
known as Cayley's theorem.

Let G, R and L be as in Problem 1.2. Show that

L={f e Sym(G)| fr =rf forall r € R}.

Let G be a group of mappings on a set X with respect to function composition.
a. Find an example where G € Sym(X) and |G| > 2.
b. Show that if G contains some injective function, then G € Sym(X).

Let G be the dihedral group D,,. Lett € G correspond to a “flip” and let
r € G correspond to a “plane rotation.” Show that trt = r~!, Conclude that
if 7 is odd, then only the identity of G commutes with all elements of G.

Decide whetber or not Do, is isomorphic to the group of rotations of a cube.
Prove your answer.

Let V be an n-dimensional vector space over a field F with (a finite number)
g elements. One writes GL(n, q) to denote GL (V). Show that

IGL(n, )| =(q" - D" —)@" —g> - (g" —q"").



1.8

1.9
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Let G be a group in which every nonidentity element is an involution. Show
that G is abelian.

NOTE: An abelian group in which every nonidentity element has the same
prime order p is called an elementary abelian p-group.

Consider the eight objects X1, i, & j and dk with multiplication rules:
ij=k jk=1i ki = j
ji =~k kj = —i ik = —j
=2 =k =-1,
where the minus signs behave as expected and 1 and ~ 1 multiply as expected.

(For example, (—1)j = —j and (—i)(—~j) = ij = k.) Show that these
objects form a group containing exactly one involution.

NOTE: This is called the quaternion group and is denoted Q.



