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ABSTRACT

HIGHEST WEIGHT CLASSIFICATION OF THE IRREDUCIBLE

REPRESENTATIONS OF THE SPECIAL UNITARY GROUP

Thomas Holtzworth

Representation theory of the special unitary group, SU(n), has a fundamental

role in theoretical physics. Therefore it is the purpose of this thesis to provide

a detailed exposition of the highest weight classification of the irreducible repre-

sentations of SU(n). This method is built from two objectives: provide a com-

plete classification of all the irreducible representations, and build corresponding

SU(n)-modules to carry one of each.

The classification scheme is founded on the bijective correspondence between

the representations of SU(n) and the finite-dimensional complex analytic repre-

sentations of the special linear group of complex matrices, SL(n,C). These repre-

sentations of SL(n,C) are accompanied by the presence of weights, resulting from

the analytic nature of the representations. Ultimately, all such representations

of SL(n,C) are uniquely identified by their highest weights, which additionally,

are in a one to one correspondence with integer partitions of length less than or

equal to n− 1.

The construction phase utilizes the representation theory of the symmetric

group, Sm, and the general linear group of complex matrices, GL(n,C). Ir-

reducible representation of Sm are identified by integer partitions, where the

irreducible representation of SL(n,C) are found within the tensor power repre-

ii



sentations of GL(n,C) on the mth tensor power of n-dimensional complex space.

The symmetric group will be needed in constructing modules to carrying the ten-

sor power representations of GL(n,C). Just as the symmetric and anti-symmetric

subspaces of the tensor powers of n-dimensional complex space are the images of

projection operators, realizations of the irreducible representation are constructed

as the images of specific projection operators built from the integer partitions of

the associated highest weights.
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Chapter 1

General representation theory

In this chapter general group representation theory will be introduced. Decomposition and
classification theorems will be of primary importance as they will be necessary in the following
chapters addressing representation theory for the symmetric group as well as tensor product
representations of the group of complex invertible matrices.

Group representation theory can be described in the language of linear group actions or
modules. Both are advantageous; however, the shape of this chapter will rest heavily on the
latter. The main influences for the treatment here include the expositions given by Sagan
[3] and Sternberg [4].

Unless otherwise stated, vector spaces are assumed to be complex and finite-dimensional.

1.1 Definitions and basic concepts

In this section the equivalent notions of group representations, matrix representations, and
group modules will be defined.

If V and W are vector spaces, denote by GL(V ) the group of invertible linear transfor-
mations on V , and denote by HomC(V,W ) the space of linear transformations from V to W .
In addition, GL(n,C) is the group of complex n × n invertible matrices, and Mn(C) is the
space of all complex n× n matrices.

Definition 1.1.1. Let G be a group. A representation of G is a group homomorphism

ρ : G→ GL(V ),

where V is a vector space.

If ρ : G→ GL(V ) is a representation of G, one says V carries the representation ρ.
Suppose dimV = n. By fixing a basis for V , one identifies ρ(g) with an n×n nonsingular

complex matrix, leading to the following definition.

Definition 1.1.2. Let G be a group and n be a positive integer. Then, a matrix represen-
tation of G is a group homomorphism

X : G→ GL(n,C).
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Definitions 1.1.1 and 1.1.2 are equivalent in the sense that, by use of a fixed basis of V,
each gives rise to the other. Alternatively, the operation

v 7→ ρ(g)v,

can be interpreted as multiplication of vectors v ∈ V by group elements g ∈ G. This allows
one to consider V as a left module over a ring, as described below.

Let G be a finite group. The group algebra of G (over C), denoted as C[G], is the set
of complex-valued functions on G, with its natural vector space structure and ring product
defined by

(f1 ∗ f2)(h) :=
∑
g∈G

f1(g
−1h)f2(g)

for all g ∈ G and f1, f2 ∈ C[G]. Consider G to be contained in C[G]; then ∗ is the unique
distributive, bilinear extension to C[G] of the group product on G. Let ε be the group
identity element, and f ∈ C[G]. Then

ε ∗ f = f ∗ ε = f.

Consequently, C[G] is a unital associative algebra over C. Note C[G] is commutative if and
only if G is abelian.

For simplicity, the use of ∗ will be suppressed. Furthermore, f ∈ C[G] will typically be
expressed using the formal sum,

f =
∑
g∈G

cgg,

where cg = f(g) ∈ C. In the formal sum notation,

f1f2 := (
∑
g∈G

cgg)(
∑
h∈G

bhh) =
∑
h∈G

(
∑
g∈G

cgbg−1h)h.

Let R be a ring with unity. A left R-module is an abelian group M endowed with scalar
multiplication by elements of R,

(r,m) 7→ rm,

such that, for all m,n ∈M and r, s ∈ R,

(1) r(m+ n) = rm+ rn,

(2) (r + s)m = rm+ sm,

(3) (sr)m = s(rm), and

(4) 1Rm = m.

An R-submodule of an R-module M is an additive subgroup N of M satisfying rx ∈ N
for all r ∈ R, x ∈ N . For simplicity, a left C[G]-module is called a G−module. If V is a
G−module, then for each g ∈ G, the multiplication

v 7→ gv
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defines an element ρ(g) ∈ GL(V ). The mapping ρ is representation of G. Conversely, if
ρ : G→ GL(V ) is a group representation, then the binary operation

G× V → V

defined by
(g, v) 7→ ρ(g)v

endows V with a natural G−module structure. In this way, one has a bijective correspon-
dence between representations of G and G-modules.

1.2 G−submodules and reducibility

Just like in other algebraic settings, notions of substructures and reducibility exist for group
modules. In this section, these definitions will be extended to the setting of group repre-
sentations. Additionally, the full reducibility of modules over finite groups will be presented
through a fundamental result known as Maschke’s Theorem.

For simplicity, the modifier “Hermitian” in “Hermitian inner product” will be omitted.
In particular, if V has an inner product 〈· | ·〉, then

(1) 〈λx | y〉 = λ〈x | y〉, and

(2) 〈x | λy〉 = λ〈x | y〉

for all λ ∈ C, x, y ∈ V . The notation ⊥ denotes orthogonality relative to an inner product.

Definition 1.2.1. Let V be a G−module. A G−submodule of V is a subspace W such that

fw ∈ W

for all f ∈ C[G] and w ∈ W. A submodule W is trivial whenever W = {0} or W = V .

If V carries the representation ρ : G→ GL(V ), then a submodule W is said to be invariant
under ρ. This terminology also extends to a matrix representation X : G → GL(n,C) by
considering Cn to carry the representation given by X.

Definition 1.2.2. A nonzero G−module V is reducible whenever it contains a non-trivial
G-submodule. Otherwise, V is irreducible.

Moreover, if V is the (internal) direct sum of irreducible G-submodules, then V is said
to be completely reducible.

One uses the same terminology for a representation ρ : G→ GL(V ) by considering invariant
subspaces of V instead of G−submodules. For example, ρ is irreducible whenever V has
no non-trivial invariant subspaces. Likewise, this terminology is also used for a matrix
representation X : G→ GL(n,C) by considering Cn to carry the representation given by X.

An inner product 〈· | ·〉 on V is invariant under G if, for all v, w ∈ V and g ∈ G,

〈gv | gw〉 = 〈v | w〉.
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Lemma 1.2.3. Let V be a G−module, W a G-submodule, and suppose 〈· | ·〉 is an inner
product on V invariant under G. Then W⊥ is a G−submodule.

Proof. Suppose W is a G−submodule. Let v ∈ W⊥, g ∈ G, and w ∈ W. Then

〈w | gv〉 = 〈g−1w | g−1(gv)〉
= 〈g−1w | (g−1g)v〉
= 〈g−1w | v〉
= 0,

since g−1w ∈ W. Hence gv ∈ W⊥. Consequently, for all f ∈ C[G], fv ∈ W⊥.

Theorem 1.2.4 (Maschke’s Theorem). Let G be a finite group, and V a nonzero G−module.
Then V is completely reducible. In other words,

V = W1 ⊕W2 ⊕ ...⊕Wn,

where each Wi is a nonzero irreducible G−submodule of V .

Proof. The proof will use induction on n = dimV . If n = 1, then V is completely reducible,
since V is irreducible itself.

So, suppose dimV = k > 1, and that the result is true for all G−modules with dimension
less than k. Suppose V is not already irreducible. Then from a basis {v1, ..., vk} for V , one
obtains a Hermitian inner product on V by setting

〈vi | vj〉 := δij.

Using 〈·|·〉, create a G-invariant Hermitian inner product by setting

〈w | u〉G :=
1

|G|
∑
g∈G

〈gw | gu〉

for all w, u ∈ V . (It is straightforward to verify that 〈·|·〉G is Hermitian.)
Now, let W be a G−submodule of V . Note W⊥ is also a G-submodule by Lemma 1.2.3.

Furthermore, dimW < k and dimW⊥ < k. Thus by the inductive hypothesis, W and W⊥

are both completely reducible. Therefore V = W ⊕W⊥ is completely reducible.

1.3 Homomorphisms of G−Modules and Schur’s Lemma

To obtain the full classification of irreducible G-modules for a group G, one will need to
know when seemingly different modules are, in fact, the same. Homomorphisms will be
needed to establish equivalences between various group modules and submodules. Here,
these functions will be defined, and Schur’s Lemma, a fundamental piece in the theory of
group representations, will be stated and proved.

For an integer n ≥ 1, denote the set {1, 2, ..., n} by [n].
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Definition 1.3.1. Let V and W be G-modules for the group G. Then a complex-linear map

φ : V → W

is a G−homomorphism whenever
φ(fv) = fφ(v) (1.3.1)

for all v ∈ V and f ∈ C[G]. The set of all such homomorphisms is denoted by HomG(V,W ).

Note that φ is a G-homomorphism if and only if φ is a complex-linear transformation such
that 1.3.1 holds for all g ∈ G.

Just like linear transformations, if φ is bijective then φ−1 is also a G−homomorphism.
Therefore one has the following notion of equivalence.

Definition 1.3.2. Let V and W be G−modules for the group G. Suppose φ ∈ HomG(V,W ).
If φ is bijective, then φ is a G−isomorphism. If so, then V and W are isomorphic as
G−modules. However, if no such φ exists, then V and W are inequivalent.

Two representations ρ : G → GL(V ) and % : G → GL(W ) for G are said to be equiv-
alent whenever V and W are isomorphic as G−modules. Once more, there is analogous
terminology for matrix representations.

For φ ∈ HomG(V,W ), the definition of its kernel and image, respectively denoted kerφ
and imφ, are the same as any linear transformation. In addition, the following usual algebraic
result will be of use.

Proposition 1.3.3. Let φ ∈ HomG(V,W ). Then kerφ is a G−submodule of V , and imφ is
a G-submodule of W. Moreover, φ is injective if and only if kerφ = {0}.

Corollary 1.3.4. Suppose φ ∈ HomG(V,W ) is non-trivial.

(1) If V is irreducible, then φ is injective.

(2) If W is irreducible, then φ is surjective.

Proof. By Proposition 1.3.3, kerφ is a G−submodule of V . Thus kerφ = {0} whenever V
is irreducible, since φ is non-trivial. But, by Proposition 1.3.3, if kerφ = {0}, then φ is
injective.

Now, suppose W is irreducible. Then, by Proposition 1.3.3, imφ = W . However, if
imφ = W , then φ is surjective.

Now one has Schur’s Lemma.

Theorem 1.3.5 (Schur’s Lemma). Let V and W be G−modules for the group G. Suppose
φ ∈ HomG(V,W ) is non-trivial. If V and W are irreducible, then φ is a G−isomorphism.

Proof. Suppose that φ is non-trivial. Then by Corollary 1.3.4, φ is bijection, since both V
and W were assumed to be irreducible. Therefore φ is a G−isomorphism.
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Corollary 1.3.6. Let n ≥ 1, and X : G→ GL(n,C) be an irreducible matrix representations
for G. Let A ∈Mn(C), and suppose

X(g)A = AX(g)

for all g ∈ G. Then for some λ ∈ C, A = λI.

Proof. Using X : G→ GL(n,C), one considers Cn a G−module by

gv = X(g)v,

where the right hand side is computed using matrix multiplication of X(g) with the column
vector v. Note Cn is an irreducible G−module since X is assumed to be an irreducible
matrix representation.

The field is C. Thus A has an eigenvalue λ ∈ C, and hence ker(λI − A) 6= {0}. Since A
commutes G,

(λI − A)X(g) = X(g)(λI − A)

for all g ∈ G. Consequently (λI−A) also commutes with G, making it a G−homomorphism
on Cn. However, (λI − A) is not a G−isomorphism since ker(λI − A) 6= {0}. By Schur’s
lemma, (λI − A) = 0, and therefore A = λI.

Corollary 1.3.7. Let V and W be irreducible G- modules for G. If V and W are isomorphic
as G−modules, then HomG(V,W ) is one dimensional. Alternatively, if V and W are not
isomorphic, then HomG(V,W ) = {0}.

Proof. A quick application of Schur’s lemma shows that HomG(V,W ) = {0} if V � W. So
suppose otherwise.

First, consider the case when W = V as G−modules and let φ ∈ HomG(V, V ). Since V
is a finite dimensional complex vector space, there is a λ ∈ C such that

ker(λ idV −φ) 6= {0}.

Then by Schur’s Lemma,
φ = λ idV .

Therefore HomG(V, V ) is one dimensional.
Consider the general case. Since V and W are isomorphic irreducible G- modules, pick

some isomorphism φ ∈ HomG(V,W ), and let ϕ ∈ HomG(V,W ). Then

φ−1 ◦ ϕ ∈ HomG(V, V ).

Thus for some λ ∈ C,
φ−1 ◦ ϕ = λ idV .

Hence ϕ = λφ, and therefore HomG(V,W ) is one dimensional.

7



1.4 Multiplicity and isotypic components

When a nonzero G−module V is completely reducible, it is possible that some of its submod-
ules are isomorphic to one another. One can collect these isomorphic submodules together
in the decomposition of V. With this in mind, write

V = V1 ⊕ V2 ⊕ ...⊕ Vm,

where, for each i ∈ [m],
Vi = Wi1 ⊕Wi2 ⊕ ...⊕Wini

such that Wi1, ...,Wini are isomorphic irreducible G-modules. Furthermore, if i 6= l, one
insists that Wij � Wlk for each j ∈ [ni] and k ∈ [nl].

Now, let Wi represent a common irreducible G−module equivalent to each the factors
in Vi. Then Vi is called the isotypic component associated with Wi and ni is its multiplicity.
Finally, note that

dimV = n1 dimW1 + n2 dimW2 + ...+ nm dimWm.

Proposition 1.4.1. Let V be G−module that is completely reducible, and W be irreducible.
Suppose V has only one isotypic component of multiplicity m with W being the corresponding
irreducible G−module. Then

V ∼= Cm ⊗W

as G−modules, where the action of G on Cm ⊗W is given by

g(u⊗ w) = u⊗ gw.

Proof. Under the hypothesis, V = W1 ⊕W2 ⊕ ... ⊕Wm, where Wi
∼= W for each i ∈ [m].

Suppose
φi : W → Wi

is a corresponding isomorphism. Note that Wi is seen here as a subspace of V . Thus
V = φ1(W )⊕ φ2(W )⊕ ...⊕ φm(W ).

Let {ui |∈ [m]} be the standard basis for Cm, and {wj | j ∈ [k]} a basis for W , where
k = dimW . Then

{ui ⊗ wj | (i, j) ∈ [m]× [k]}

provides a basis for Cm ⊗W. Now, Cm ⊗W becomes a G−module by setting

g(u⊗ w) := u⊗ gw

for all u ∈ Cm and w ∈ W .
Define Φ : Cm ⊗W → V by setting

Φ(ui ⊗ wj) := φi(wj)

for each (i, j) ∈ [m]× [k], and then extending by linearity to all of Cm ⊗W . Note that Φ is
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a well defined linear transformation. Furthermore, since φi is an isomorphism,

{φi(wj) | j ∈ [k]}

is a basis for each Wi ≤ V . Thus

{φi(wj) | (i, j) ∈ [m]× [k]}

is a basis for W1 ⊕W2 ⊕ ...⊕Wm = V. This establishes Φ as a linear isomorphism.
Finally, let g ∈ G, and j ∈ [k]. Then for some collection of constants {glj},

gwj =
k∑
l=1

gljwl.

Thus

g(Φ(ui ⊗ wj)) = gφi(wj)

= φi(gwj)

= φi

(
k∑
l=1

gljwl

)

=
k∑
l=1

gljφi(wl).

Additionally,

Φ(g(ui ⊗ wj)) = Φ(ui ⊗ gwj)

= Φ(ui ⊗

(
k∑
l=1

gljwl

)
)

= Φ

(
k∑
l=1

gljui ⊗ wl

)

=
k∑
l=1

gljΦ(ui ⊗ wl)

=
k∑
l=1

gljφi(wl).

Hence
g(Φ(ui ⊗ wj)) = Φ(g(ui ⊗ wj)),

and therefore Cm ⊗W ∼= V.

9



Corollary 1.4.2. Let V be a completely reducible G−module. Suppose {Wi | i ∈ [m]} is a
collection of pairwise inequivalent irreducible G−modules, such that

V = V1 ⊕ V2 ⊕ ...⊕ Vm,

with each Vi being an isotypic component of multiplicity ni associated to Wi. Then

V ∼=
m⊕
i=1

Cni ⊗Wi,

where the action of G on
⊕m

i=1Cni ⊗Wi is given by

g(u1 ⊗ w1 + ...+ um ⊗ wm) = u1 ⊗ gw1 + ...+ um ⊗ gwm.

Proof. Repeat the proof of Proposition 1.4.1 to each isotypic component, Vi, then combine
appropriately.

Proposition 1.4.3. Let V1 and V2 be two completely reducible G-modules having only one
isotypic component each. Let m1 and m2 be the respective multiplicities with W1 and W2

being the corresponding irreducible G−modules. If W1
∼= W2, then

dim(HomG(V1, V2)) = m1m2.

Otherwise, dim(HomG(V1, V2)) = {0}.

Proof. Write

V1 =

m1⊕
l=1

W1l and V2 =

m2⊕
l=1

W2l

where Wil
∼= Wi for i = 1, 2. Note the following linear isomorphism, verifiable by considering

the ’block form’ of any given linear transformation from V1 to V2,

HomC(Vi, Vj) ∼=
m1⊕
l=1

m2⊕
k=1

HomC(W1l,W2k).

Likewise,

HomG(Vi, Vj) ∼=
m1⊕
l=1

m2⊕
k=1

HomG(W1l,W2k)

since, for all l, k and g ∈ G,

HomG(W1l,W2k) ≤ HomC(W1l,W2k),

with gW1l = W1l, and gW2k = W2k.
Suppose now Wi and Wj are inequivalent. Then dim(HomG(Vi, Vj)) = {0}. Indeed, by

Schur’s lemma dim(HomG(W1l,W2k)) = {0} for each l and k. However, if Wi and Wj are
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isomorphic, then by Corollary 1.3.7, dim(HomG(W1l,W2k)) = 1, for each l and k. Therefore

dim(HomG(Vi, Vj)) =

m1∑
l=1

m2∑
k=1

dim(HomG(W1l,W2k)) = m1m2.

Corollary 1.4.4. Let V be a completely reducible G-module, and {Wi | i ∈ [l]} be a collection
of pairwise distinct irreducible G-modules such that

V = V1 ⊕ V2 ⊕ ...⊕ Vl,

where each Vi is the isotypic component associated to Wi, has multiplicity mi, and dimWi =
ni. Then for each i ∈ [l], dim(HomG(Wi, V )) = mi, and

HomG(Vi, Vi) ∼= HomC(Cmi ,Cmi)

as rings.
Moreover,

HomG(V, V ) ∼=
l⊕

i=1

HomC(Cmi ,Cmi),

and in particular,
dim(HomG(V, V )) = m2

1 +m2
2 + ...+m2

l .

Proof. By Proposition 1.4.3, dim(HomG(Wi, Vj)) = miδij. With this in mind, note that

HomG(Wi, V ) ∼=
l⊕

j=1

HomG(Wi, Vj).

Thus dim(HomG(Wi, V )) = mi for each i ∈ [l].
A second use of Proposition 1.4.3 shows that

dim(HomG(Vi, Vj)) = mimjδij.

Thus HomG(Vi, Vi) ∼= HomC(Cmi ,Cmi), where the congruence denotes a linear isomorphism.
However, by choosing a bases B for Vi, one can verify that

[φ ◦ ϕ]B = [φ]B[ϕ]B.

Consequently the isomorphism is also one of rings.
Finally, considering each Vi,

HomG(V, V ) ∼=
l⊕

i=1

HomC(Cmi ,Cmi)
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as rings, since

HomG(V, V ) ∼=
l⊕

i,j=1

HomG(Vi, Vj) =
l⊕

i=1

HomG(Vi, Vi).

1.5 The classification of irreducible G-modules for finite groups

For a finite group G, the number of distinct irreducible G- modules is the same as the number
of conjugacy classes in G. Furthermore, their exists a natural G-module structure on C[G],
in which appears an isomorphic copy of each distinct irreducible G-module. Lastly, through
the full decomposition of C[G] under this G-module structure, one will see that the sum
of the squares of the dimensions of each irreducible G-module is equal to the order of the
group.

All groups in this section are assumed to be finite.

1.5.1 The regular representation and the group algebra

Let X be a set and let
CX := {f : X → C | |supp(f)| <∞},

where supp(f) := {x ∈ X | f(x) 6= 0} is the (set-theoretic) support of f . For the following,
consider CX with its natural vector space structure.

The standard basis for CX is the collection of functions {δx | x ∈ X}, where for each
x ∈ X

δx(y) =

{
1 if y = x

0 if y 6= x
.

If supp(f) = {x1, x2, ..., xk} for f ∈ CX , then f can be expressed in this basis as

f =
k∑
i=1

f(xi)δxi .

Proposition 1.5.1. If G acts on a set X, then CX becomes a G−module by setting

g(f) = f ◦ g−1.

Moreover, for each x ∈ X and g ∈ G,

g(δx) = δgx.

Proof. Showing that CX becomes a G−module under the defining action is simple. So the
proof centers on the remaining claim.

12



Let x ∈ X, and g ∈ G. Then

g(δx)(y) = δx(g
−1y) =

{
1 if g−1y = x

0 if g−1y 6= x
.

But g−1y = x if and only if y = gx. Therefore g(δx)(y) = δgx(y) for all y ∈ X.

From Proposition 1.5.1, as a G−module, CX carries the permutation representation as-
sociated with X.

Define an inner product on CX by setting

〈δx | δy〉 =

{
1 if x = y

0 if x 6= y

for each x, y ∈ X, and then extending by linearity to all of CX . This inner product is invariant
under G, seen by the following proposition.

Proposition 1.5.2. Let f1, f2 ∈ CX . For all g ∈ G

〈gf1 | gf2〉 = 〈f1 | f2〉.

Proof. It will be enough to show that the result holds for the standard basis {δx | x ∈ X}.
Let x, y ∈ X, and g ∈ G. Then gx = gy if and only if x = y. By definition

〈δgx | δgy〉 =

{
1 if gx = gy

0 if gx 6= gy
.

Therefore 〈δgx | δgy〉 = 〈δx | δy〉.

For C[G], the regular representation is the permutation representation associated with G
induced from G acting on itself via left translation. Considering Proposition 1.5.1, let g ∈ G,
and f =

∑
h∈G

ahh ∈ C[G]. Then

gf =
∑
h∈G

ahgh =
∑
h∈G

a(g−1h)h.

This agrees with the defining action of G on C[G] outlined in Proposition 1.5.1 since gf is
the function such that (gf)(h) = f(g−1h). However, under the formal sum characterization
a(g−1h) := f(g−1h).

1.5.2 The decomposition of C[G]

Here, the description of the decomposition of C[G] under the regular representation of G
will be provided. The method to be used follows from an approach given by Sternberg [4].
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Definition 1.5.3. Let V be a G−module. For each (g, α) ∈ G × V ∗, define gα ∈ V ∗ by
setting

(gα)(v) = α(g−1v)

for all v ∈ V. With this action of G, V ∗ is the dual G−module of V.

Remark. It is straightforward to verify that the defining properties of a G−module are
satisfied for V ∗ under this action of G.

Lemma 1.5.4. Let V be a G−module. Then V is irreducible if and only if V ∗ is irreducible.

Proof. Suppose V is irreducible, and W is a nonzero submodule of V ∗. Then

Ann∗(W ) := {v ∈ V | α(v) = 0, ∀α ∈ W}

is a submodule of V Indeed, let g ∈ G, α ∈ W , and suppose v ∈ Ann∗(W ). Then

α(gv) = (g−1α)(v) = 0

since g−1α ∈ W . Thus gv ∈ Ann∗(W ).
Now, W 6= {0} implies that Ann∗(W ) 6= V . As a result, Ann∗(W ) = {0} since V is

irreducible. However, Ann∗(W ) = {0} implies that W = V ∗.
Conversely, suppose V ∗ is irreducible, and W is a nonzero G-submodule of V . Then

following the previous argument,

Ann(W ) := {α ∈ V ∗ | α(v) = 0, ∀v ∈ W}

is a proper submodule of V ∗, i.e. Ann(W ) 6= V ∗. Thus Ann(W ) = {0}, and hence W = V.
Therefore V is irreducible as well.

With the introduction of the dual module and Lemma 1.5.4, the time is now appropriate
to justify the claim that each irreducible G-module can be embedded into C[G] as it carries
the regular representation of G.

Lemma 1.5.5. Let C[G] carry the regular representation of G, and V be an irreducible
G−module. Then, for each α ∈ V ∗ \ {0}, the map fα : V → C[G] defined by

fα(v)(g) = α(g−1v)

is an injective G-homomorphism.
Furthermore, let {αi | i ∈ [n]} be a basis for V ∗. Then the sum of subspaces of the images

n∑
i=1

fαi(V ) ≤ C[G].

is a direct sum.

Proof. Let α 6= 0 ∈ V ∗. It is easy to verify that

v 7→ fα(v)
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is a complex-linear transformation by using the linearity of both α and the action of G on
the module V. To see that it is also a G− homomorphism consider the following.

Let v ∈ V , and g ∈ G. Then, for each h ∈ G,

fα(gv)(h) = α(h−1(gv))

= α((g−1h)−1v)

= fα(v)(g−1h)

= (gfα(v)) (h).

Thus fα ∈ HomG(V,C[G]).
To show that fα is injective, one will need the submodule of V ∗ generated by α, which is

the subspace
〈α〉G := 〈gα | g ∈ G〉.

Since α 6= 0, 〈α〉G 6= {0}. Then as a G-submodule, 〈α〉G = V ∗. Indeed, by Lemma 1.5.4, V ∗

is an irreducible G−module since V is assumed to be irreducible.
Now, let β ∈ V ∗, and suppose that v ∈ ker fα. Then β =

∑
g∈G

aggα for some collection

{ag}, and fα(v) is zero function on C[G]. Thus for all g ∈ G,

α(gv) = fα(v)(g−1) = 0.

Hence

β(v) =
∑
g∈G

aggα(v)

=
∑
g∈G

agα(g−1v)

= 0.

But this implies that v ∈ Ann∗(V ∗) = {0}. Therefore fα is injective, since ker fα = {0}.
Alternatively, suppose that fα(w) = 0 for all w ∈ V , and let v 6= 0 ∈ V. Then 〈v〉G, the

submodule of V generated by v, must be all of V , and for each g ∈ G,

α(gv) = fα(v)(g−1) = 0.

So, let w ∈ V , and note that, for some collection {ag}, w =
∑
g∈G

aggv. Then

α(w) = α

(∑
g∈G

aggv

)
=

∑
g∈G

agα(gv)

= 0.

Thus α = 0. Therefore the linear assignment α 7→ fα is injective since its kernel is {0} ≤ V ∗.
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Considering this result, let {αi | i ∈ [n]} be a basis for V ∗. Then fαi(V ) ∩ fαj(V ) is a
submodule of both fαi(V ) and fαj(V ). Indeed, intersections of submodules are submodules
themselves. So, if fαi(V ) ∩ fαj(V ) 6= {0}, then

fαi(V ) = fαi(V ) ∩ fαj(V ) = fαj(V )

since both fαi(V ) and fαj(V ) are irreducible. Thus fαi ∈ HomG(V, fαj(V )). However,
HomG(V, fαj(V )) is one dimensional, which implies that fαi = cfαj for some c ∈ C. Therefore
αi = cαj by the injectivity of the linear assignment α 7→ fα. Hence αi = αj since the αi are
linearly independent. In other words,

fαi(V ) ∩ fαj(V ) = {0}

whenever i 6= j.
Pick any j ∈ [n], and suppose

fαj(V )
⋂(∑

i 6=j

fαi(V )

)
6= {0}.

Then fαj(V ) =
∑
i 6=j
fαi(V ) since sums of submodules are again submodules, and fαj(V ) is

irreducible. Pick another k 6= j ∈ [n]. Then

fαk(V ) ≤
∑
i 6=j

fαi(V ) ≤ fαj(V ).

Thus fαk ∈ HomG(V, fαj(V )), and again fαk = cfαj for some c ∈ C. This time however, a
clear contradiction has resulted: The previous statement implies that αk = αj. Therefore
one has the direct sum,

n⊕
i=1

fαi(V ) ≤ C[G].

Note that Lemma 1.5.5 has provided more than what was promised. Not only is there one
copy of each irreducible G-module appearing in C[G], carrying the regular representation of
G, there are at least the same number of distinct copies of a an irreducible G-module as its
corresponding dimension.

Lemma 1.5.6. Let V be a G-module, and 〈· | ·〉 be an inner product invariant under G.
Suppose that W1 and W2 are irreducible G-submodules. Then W1 ⊥ W2 whenever W1 � W2

as G-modules.

Proof. Since dimV <∞, W1 and W2 are closed (topologically) subspaces. Thus there exists
P , an orthogonal projection from W1 to W2 Note, for each w ∈ W1, P (w) is the unique
vector in W2 such that

〈u | P (w)〉 = 〈u | w〉
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for all u ∈ W2. Furthermore, W1 ⊥ W2 if and only if P = 0. Indeed, for any orthonormal
basis {ui} of W2,

P (w) =
k∑
i=1

〈ui | w〉ui,

where k = dimW2.
Suppose W1 � W2 as G- modules. Let w ∈ W1, u ∈ W2, and g ∈ G. Then gP (w) ∈ W2,

and

〈u | gP (w)〉 = 〈g−1u | P (w)〉
= 〈g−1u | w〉
= 〈u | gw〉

since 〈· | ·〉 is invariant. But P (gw) is the unique vector in W2 such that

〈u | P (gw)〉 = 〈u | gw〉.

Thus P (gw) = gP (w). Consequently

P ∈ HomG(W1,W2) = {0}.

Hence P = 0, and therefore W1 ⊥ W2.

With these two lemmas established, the focus turns to the decomposition of C[G] as a
G−module under the regular representation. Note that dimC[G] = |G|. Thus one can apply
Maschke’s theorem for the following.

Theorem 1.5.7. There are only finitely many distinct irreducible G−modules. Furthermore,
let C[G] carry the regular representation of G, and {Wi | i ∈ [l]} denote all the distinct
irreducible G-modules. Suppose

C[G] = V1 ⊕ V2 ⊕ ...⊕ Vl,

where each Vi is the isotypic component associated to Wi, and has multiplicity mi. Then for
each i ∈ [l],

mi ≥ dimWi.

Proof. Let V be an irreducible G−module with dimV = n. Let {αi ∈ V ∗ | i ∈ [n]} be a
basis for V ∗, and each fαi be the injective G−homomorphism from Lemma 1.5.5. Recall that
fαi(V ) is an irreducible G−submodule of C[G]. So, C[G], a G−module under the regular
representation of G, has an isomorphic copy of the irreducible V.

Now, suppose that {Wi | i ∈ [l]} is a collection of pairwise distinct G−modules such that

C[G] = V1 ⊕ V2 ⊕ ...⊕ Vl,

where each Vi is the isotypic component associated to Wi, and has multiplicity mi. Note that
C[G] naturally has an inner product 〈· | ·〉 invariant under G, described by 〈g | h〉 = δgh. Let
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i ∈ [l] and j ∈ [n] and write

Vi = Wi1 ⊕Wi2 ⊕ ...⊕Wimi

where each Wik
∼= Wi. Using Lemma 1.5.6, if V � Wi, then fαj(V ) ⊥ Wik for all k ∈ [mi].

Thus fαj(V ) ⊥ Vi as well. With this reasoning, if V � Wi for all i ∈ [l], then fαj(V ) ⊥ C[G].
Indeed, fαj(V ) ⊥ Vi for each i ∈ [l]. However, this can’t happen since C[G]⊥ = {0}.
Therefore for some i ∈ [l], V ∼= Wi. In particular, there can only be finitely many distinct
irreducible G−modules for G.

Finally, let Vi be the isotypic component associated to Wi such that V ∼= Wi. Then since
fαj(V ) ≤ Vi, for each j ∈ [n], Lemma 1.5.5 guarantees that one has the direct sum

n⊕
j=1

fαj(V ) ≤ Vi

Therefore (dimWi)
2 = n2 ≤ mi dimWi, and hence dimWi ≤ mi.

In remaining portion of this subsection, a full description of the decomposition of C[G]
under the regular representation of G will be provided by showing that the number isomor-
phic copies of each irreducible G-modules appearing in the decomposition of C[G] is, in fact,
equal to the dimension of that particular irreducible G-module. Through this, the formula
relating the order of the group to the squared values of the dimensions of the irreducible
G-modules will be apparent.

Let C[G×G] be the group algebra of the direct product of G with itself. Let C[G×G]
carry the permutation representation induced from the action of G on G×G, given by

(h1, h2)→ (gh1, gh2).

Also, consider HomC(C[G],C[G]), the space of linear operators on C[G], as a G−module
under the group action

(g, ϕ)→ g ◦ ϕ ◦ g−1.

The point here is that claiming the operator φ is a G−homomorphism is equivalent to
claiming that φ is fixed under this action, i.e. g ◦ φ ◦ g−1 = φ for all g ∈ G.

Now, let K ∈ C[G×G], and F ∈ C[G]. One can create a unique linear operator on C[G]
using K. Indeed, let

ΞKF ∈ C[G],

be given by

(ΞKF )(g) =
∑
h∈G

K(g, h)F (h).

Here standard function notation was used instead of the formal sum notation for simplicity.

Lemma 1.5.8. The function Ξ : C[G × G] → HomC(C[G],C[G]) is a G−isomorphism. In
particular, C[G×G] ∼= HomC(C[G],C[G]) as G−modules.

Proof. To start, it is clear that Ξ is well defined and linear. So the real effort comes from
showing that Ξ is G− homomorphism, and additionally, a bijection. Since, this is in the
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realm of finite dimensional vector spaces, one can show Ξ is a bijection by just verifying that
ker Ξ = 0.

With that said, suppose that K ∈ ker Ξ, and let and F = δg ∈ C[G]. Then for all h ∈ G,

0 = (ΞKF )(h)

=
∑
h′∈G

K(h, h′)F (h′)

= K(h, g).

Therefore K = 0,, and hence Ξ is a bijection. Now, once it is shown that Ξ is a G−
homomorphism, the proof will be complete.

So, let g ∈ G and K ∈ C[G×G]. Then for F ∈ C[G],

(ΞgKF )(h) =
∑
h′∈G

(gK)(h, h′)F (h′)

=
∑
h′∈G

K(g−1h, g−1h′)F (h′)

=
∑
h′∈G

K(g−1h, h′)F (gh′).

Alongside this, (g ◦ ΞK ◦ g−1)(F ) ∈ C[G] is given by(
(g ◦ ΞK ◦ g−1)F

)
(h) =

(
g(ΞKg

−1F )
)

(h)

= (ΞKg
−1F )(g−1h)

=
∑
h′∈G

K(g−1h, h′)(g−1F )(h′)

=
∑
h′∈G

K(g−1h, h′)F (gh′).

Therefore ΞgK = g ◦ ΞK ◦ g−1, and hence Ξ is a G− homomorphism.

From this result, one can describe operators in HomG(C[G],C[G]) in the setting of C[G×
G]. To be exact, ΞK ∈ HomG(C[G],C[G]) if and only if

ΞgK = g ◦ ΞK ◦ g−1 = ΞK

for all g ∈ G. Since Ξ is isomorphism, this amounts to gK = K for each g ∈ G. With this in
mind, the following lemma gives the necessary and sufficient conditions for a function to be
fixed under the action of a permutation representation. It also gives the dimension of the
subspace of such functions in terms of the number of orbits of G in X.

Lemma 1.5.9. Let f ∈ CX , where CX carries the permutation representation of some action
of G on the finite set X. Then gf = f for all g ∈ G if and only if f is constant on the
orbits of G in X. Furthermore, the dimension of the subspace of functions fixed under the
permutation representation is the number of orbits in X.
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Proof. Suppose f is constant on the orbits of G in X. Then for any x ∈ X,

(gf)(x) = f(g−1x)

= f(x)

since g−1x and x lie in the same orbit.
Conversely, suppose that gf = f for all g ∈ G, and let Ox denote the orbit of x under

G. For another y ∈ Ox, let h ∈ G be given such that y = hx. Then

f(y) = f(hx) = (h−1f)(x) = f(x).

Therefore f is constant on orbits.
Now the collection of functions fixed under the permutation representation forms a sub-

space in CX . In fact, it is also a G-submodule, whose irreducible components are all equiva-
lent to the trivial module. Using the previous result, one can determine the dimension of this
submodule by determining the dimension of the subspace of functions that are constant on
orbits. This number is simply the number of orbits themselves. To see this, let {Oi | i ∈ [k]}
denote all the orbits in X, where for any one Oi, set

χi :=
∑
x∈Oi

δx.

Then the collection {χi | i ∈ [k]} is a basis for this subspace of functions. Therefore the
number of orbits is the corresponding dimension. With this, the number of orbits is also the
dimension of the G−submodule of functions fixed under the permutation representation.

Proposition 1.5.10. Let C[G] carry the regular representation of G, and {Wi | i ∈ [l]}
denote a complete set of the distinct irreducible G−modules. Then

dim(HomG(C[G],C[G])) = |G|.

In particular |G| = m2
1 + m2

2 + ... + m2
l , where each mi is the multiplicity of the isotypic

component in the decomposition of C[G] associated to Wi.

Proof. Using Ξ : C[G×G]→ HomC(C[G],C[G]), the G−isomorphism used in Lemma 1.5.8,
one can determine the dimension of HomG(C[G],C[G]) in the setting of C[G × G]. Indeed,
by Lemma 1.5.9, φ ∈ HomG(C[G],C[G]) if and only if Ξ−1(φ) ∈ C[G×G] is constant on the
orbits of G in G×G. Furthermore,

dim(HomG(C[G],C[G])) = “the number of orbits of G in G×G.”

The claim is that {(ε, g) | g ∈ G} denotes a complete set of representatives for these
orbits in G×G. Let (g, h) ∈ G×G. Then g(ε, g−1h) = (g, h). Thus every element in G×G
is in an orbit determined by elements in {(ε, g) | g ∈ G}.

Now, suppose that there is some pair h and h′ in G such that for some g ∈ G, g(ε, h) =
(ε, h′). Then ε = gε, and h′ = gh. But, clearly this means that g = ε. Thus (ε, h) = (ε, h′).
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Consequently the number such orbits is equal to |G|. Therefore

dim(HomG(C[G],C[G])) = |G|.

Finally, if {Wi | i ∈ [l]} denotes a complete set of the distinct irreducible G−modules,
then by Corollary 1.4.3,

|G| = dim(HomG(C[G],C[G]) = m2
1 +m2

2 + ...+m2
l ,

where each mi is the multiplicity of the isotypic component in the decomposition of C[G]
associated to Wi.

Corollary 1.5.11. Let {Wi | i ∈ [l]} denote a complete set of the distinct irreducible
G−modules, where ni = dimWi for each i ∈ [l], and mi be the multiplicity of the isotypic
component in the decomposition of C[G] associated to Wi. Then mi = ni for each i ∈ [l], and

|G| = n2
1 + n2

2 + ...+ n2
l .

Proof. By Proposition 1.5.10, |G| = m2
1 + m2

2 + ... + m2
l , where each mi is the multiplicity

of the isotypic component in the decomposition of C[G] associated to Wi. However, using
Theorem 1.5.7, one sees that mi ≥ ni for each i ∈ [l]. Now if, for some i ∈ [l], mi > ni, then

|G| = m2
1 +m2

2 + ...+m2
l > m1n1 +m2n2 + ...+mlnl.

However, this is impossible since, as a direct sum of all the isotypic components,

|G| = m1n1 +m2n2 + ...+mlnl.

Therefore mi = ni for each i ∈ [l], and |G| = n2
1 + n2

2 + ...+ n2
l .

1.5.3 The number of distinct irreducible group modules

The chapter concludes with the property that the number of distinct irreducible G−modules
is just the number of conjugacy classes in G. Here, the justification to be given is modeled
from a method used by Sagan [3].

Recall that under Maschke’s theorem, any G-module is completely reducible. So, for each
l ≥ 1, let

Zl(C) = {D ∈Ml(C) | D = diag(d1, d2, ..., dl)},

and
Z(HomG(V, V )) = {φ ∈ HomG(V ) | ϕ ◦ φ = φ ◦ ϕ, ∀ϕ ∈ HomG(V, V )}.

Proposition 1.5.12. Let V be a G-module, and {Wi | i ∈ [l]} be a collection of pairwise
distinct irreducible G-modules such that

V = V1 ⊕ V2 ⊕ ...⊕ Vl,

where each i ∈ [l], Vi is the isotypic component associated to Wi, and has multiplicity mi.
Then
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(1) Z(HomG(V, V )) ∼= Zl(C),

(2) dim(Z(HomG(V, V ))) = l.

Proof. Let i ∈ [l]. Then from Corollary 1.4.2, is the following isomorphism of rings

HomG(Vi, Vi) ∼= HomC(Cmi ,Cmi) ∼= Mmi(C).

Now, it is well known that

Z(Mmi(C)) := {A ∈Mmi(C) | AB = BA, ∀B ∈Mmi(C)} = {λImi | λ ∈ C}.

(The notation Imi will be used to distinguish the identity matrix in different dimensions.)
Thus

Z(HomG(Vi)) ∼= {λImi | λ ∈ C} ∼= C

for each i ∈ l. Therefore if Cl, as a ring, is the lth direct product of C, then

Z(HomG(V, V )) ∼=
l⊕

i=1

Z(HomG(Vi)) ∼= Cl ∼= Zl(C),

and hence dim(Z(HomG(V, V ))) = l.

The following is a direct application of Proposition 1.5.12 to the context of C[G].

Corollary 1.5.13. Let C[G] carry the regular representation of G, and {Wi | i ∈ [l]} denote
a complete collection of distinct irreducible G-modules. Then

(1) Z(HomG(C[G],C[G])) ∼= Zl(C),

(2) dim(Z(HomG(C[G],C[G]))) = l.

This is useful since one can compute the total number distinct irreducible G−modules by
determining the dimension of the center of HomG(C[G],C[G]). However, it turns out that
one can further reduce the problem to the setting of C[G]. To be exact, it will be shown that

dim(Z(HomG(C[G],C[G]))) = dim(Z(C[G])).

Consider the G−isomorphism, Ξ : C[G × G] → HomC(C[G],C[G]), introduced earlier
along with the collection {χg ∈ C[G×G] | g ∈ G}, where, inspired by Lemma 1.5.9,

χg := χ(ε,g) =
∑
h∈G

(h, hg)

for each g ∈ G. Note that {χg ∈ C[G×G] | g ∈ G} is, in fact, a basis for the G−submodule
of functions in C[G × G] fixed under the action of G. Now, set Ξg := Ξχg for each g ∈ G.
Then {Ξg ∈ HomC(C[G],C[G]) | g ∈ G} is a basis for HomG(C[G],C[G]). For each f ∈ C[G],
set

Ξf =
∑
g∈G

agΞg,
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where f =
∑
g∈G

agg. Now consider the following proposition.

Proposition 1.5.14. The map ψ : C[G] → HomG(C[G],C[G]) defined by ψ(f) = Ξf is a
linear isomorphism such that

ψ(f1f2) = ψ(f1) ◦ ψ(f2)

for all f1, f2 ∈ C[G]. Furthermore, Z(C[G]) ∼= Z(HomG(C[G],C[G])) as rings. In particular,

dim(Z(HomG(C[G],C[G]))) = dim(Z(C[G])).

Proof. First, ψ is easily seen to be well defined and linear. So suppose that f ∈ kerψ. If
f =

∑
g∈G

agg, then

0 = ψ(f)

=
∑
g∈G

agΞg.

This means that, for all g ∈ G, ag = 0 since {Ξg ∈ HomC(C[G],C[G]) | g ∈ G} is a linearly
independent set. Thus f = 0. Therefore ψ is injective, and hence a linear isomorphism.

Now let g ∈ G,, and f =
∑
g∈G

agg be in C[G]. Note that, for all c, h ∈ G,

χg(c, h) =

{
1 if h = cg

0 if otherwise.

Indeed, (c, h) is in the orbit of (ε, g) in G×G if and only if c(ε, c−1h) = (c, h) with c−1h = g.
Using this result let c ∈ G. Then

(Ξgf)(c) =
∑
h∈G

χg(c, h)f(h)

= f(cg).

Let h ∈ G, and consider

(Ξghf)(c) = f(c(gh))

= f((cg)h)

= (Ξhf)(cg)

= (Ξg(Ξhf))(c)

= ((Ξg ◦ Ξh)f)(c).

Thus ψ(gh) = ψ(g) ◦ ψ(h) for all basis elements g, h ∈ C[G]. So, if f1 =
∑
g∈G

agg and
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f2 =
∑
g∈G

bgg, then

ψ(f1f2) = ψ(
∑

(g,h)∈G×G

agbhgh)

=
∑

(g,h)∈G×G

agbhψ(gh)

=
∑

(g,h)∈G×G

agbhψ(g) ◦ ψ(h)

= ψ(f1) ◦ ψ(f2).

Therefore ψ preserves multiplication as well. From this, C[G] ∼= HomG(C[G],C[G]) as rings
as well as vector spaces. Finally, this implies that

ψ(Z(C[G])) = Z(HomG(C[G],C[G])),

and thus dim(Z(HomG(C[G],C[G]))) = dim(Z(C[G])).

Lemma 1.5.15. Let f ∈ C[G]. Then f ∈ Z(C[G]) if and only if gfg−1 = f for all g ∈ G.
Furthermore, let s be the number of conjugacy classes in G. Then the following is a basis
for Z(C[G])

{χi ∈ C[G] | i ∈ [s]}

where, for each i ∈ [s], Ci denotes the ith conjugacy class, and

χi :=
∑
g∈Ci

g.

Proof. Let f ∈ C[G]. Clearly f ∈ Z(C[G]) implies that gfg−1 = f for all g ∈ G since each
g gives a basis element of C[G], and gfg−1 = g holds if and only if gf = fg.

So, suppose that gfg−1 = f for all g ∈ G, and let d =
∑
g∈G

agg be in C[G]. Since gf = fg

for each g ∈ G,

fd = f

(∑
g∈G

agg

)
=

∑
g∈G

agfg

=
∑
g∈G

aggf

=

(∑
g∈G

agg

)
f

= df.

Now considering Lemma 1.5.9, note that C[G] also carries the permutation representation
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corresponding to the action of conjugation by G on itself. Thus Z(C[G]) is the subspace of
functions fixed under this action . Furthermore, the conjugacy classes in G are, by definition,
the orbits under conjugation. Hence Z(C[G]) is also the subspace of functions constant on
conjugacy classes of G. Now, the collection {χi ∈ C[G] | i ∈ [s]} was defined so that it would
be a basis for such functions. Therefore it is a basis for Z(C[G]) as well.

Theorem 1.5.16. Let G be a finite group. Then the number of distinct irreducible G−modules
is the number of conjugacy classes is in G.

Proof. By Lemma 1.5.15, the dimension of Z(C[G]) is equal to the number of conjugacy
classes in G. Furthermore, considering Proposition 1.5.14, the dimension of

Z(HomG(C[G],C[G]))

is also equal to the number of conjugacy classes in G. Finally by Corollary 1.5.13, the
number of distinct irreducible G-modules is equal to the dimension of Z(HomG(C[G],C[G])).
Therefore the result follows
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Chapter 2

Representations of the symmetric
group

The objective of this chapter is to build each irreducible representation of the symmetric
group. The corresponding group modules will then be realized in the setting of C[Sn]. These
modules will be vital in the construction of the irreducible tensor representations of the
group of complex invertible matrices of specified degree. The treatment here follows mainly
the exposition given by Sagan [3].

For reference, the symmetric group Sn is the collection of all bijections from {1, 2, ..., n}
to itself, using function composition as the group product. Elements σ ∈ Sn are called
permutations, and for any two permutations σ and τ , juxtaposition will be used to denote
their product, i.e.

στ ≡ σ ◦ τ.

Furthermore, permutations will be displayed as products of disjoint m-cycles. See Chapter
3 in Rotman [2] for a thorough treatment of cycle notation.

2.1 Cycle type and integer partitions

As a finite group, Sn has the same number of distinct irreducible group representations as
conjugacy classes. Furthermore, two permutations in Sn are conjugate if and only if they
have the same structure known as cycle type, which can itself be uniquely characterized using
integer partitions. This section defines these terms and outlines the correspondence between
the conjugacy classes of Sn and the integer partitions of n. This is appropriate since each
integer partition will determine a unique irreducible Sn-module. Consequently, a complete
set of irreducible group representation of Sn will result.

The notion of cycle type characterizes a permutation solely in terms of the number of its
k-cycles. Each possible cycle type will be given using an integer partition.

Definition 2.1.1. Let n ∈ N. A partition of n, denoted as λ ` n, is a sequence of positive
integers

λ = (λ1, λ2, ..., λl)

such that, λ1 ≥ λ2 ≥ ... ≥ λl and
l∑

j=1

λj = n.
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Let 0 ≤ mk ≤ n be the number of k-cycles in a permutation σ ∈ Sn. Then

λσ := (n, n, ..., n︸ ︷︷ ︸,
mn times

n− 1, n− 1, ..., n− 1︸ ︷︷ ︸,
mn−1 times

..., 1, 1, ..., 1︸ ︷︷ ︸
m1 times

) (2.1.1)

is the partition of n corresponding to the cycle type of σ. Note that if there are no k-cycles of
a certain length k in σ, i.e. mk = 0, then the number k does not appear in the partition. For
example, the first entry in λσ will be the the length of the largest cycle in σ. Furthermore,
by the method of construction in 2.1.1, it should be clear that different cycle types define
distinct integer partitions.

Example 2.1.2. Let n = 4. Then λ1 = (4), λ2 = (1, 1, 1, 1), and λ3 = (2, 2) are the integer
partitions corresponding to σ1 = (1 2 3 4), σ2 = (1)(2)(3)(4), and σ3 = (1 2)(3 4), respectively.

To conclude this section, the following proposition summarizes the points just presented,
a proof of which can be found in Sagan [3].

Proposition 2.1.3. Let σ and τ be two permutations in Sn. Then σ and τ have the same
cycle type if and only if they are conjugates. In particular, the number of conjugacy classes,
cycle types, and partitions of n are equal to one another. Moreover, the number of permuta-
tions of a given cycle type is

n!

1m1m1!2m2m2!...nmnmn!
.

2.2 Tableaux, tabloids and permutation modules

The purpose of this section is to build a family of Sn-modules in connection with each integer
partition. The method is summarized by the following. First, assemble a collection of objects
for each partition. Afterward, define an action of Sn on this collection. Then finally, form
the associated permutation representation. These modules will, in general, be reducible;
however, within each one, exists the desired irreducible.

Definition 2.2.1. Let λ = (λ1, λ2, ..., λl) ` n. The Ferrers diagram, or shape, of λ is an
array of n boxes or cells having l left justified rows with the ith row having λi cells for
1 ≤ i ≤ l.

One can also characterize a particular shape of λ using entry variables (or indeterminates)
of an n× n matrix. If the entries are given by

{xi,j | (i, j) ∈ [n]× [n]},

then the shape of λ would by the subset

{xi,j | 1 ≤ i ≤ l, 1 ≤ j ≤ λi}.

Definition 2.2.2. Let λ = (λ1, λ2, ..., λl) ` n. A Young tableau of shape λ, is a bijective
assignment

t : {xi,j | 1 ≤ i ≤ l, 1 ≤ j ≤ λi} → [n].
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The set of all λ-tableaux is denoted
Tab(λ).

A Young tableau of shape λ is also called a λ-tableau. Note that there are n! different
tableaux of shape λ. Also, if t : xi,j → k, one writes ti,j = k. This appeals to the idea that
the integer k has been placed into the cell of position (i, j) in the Ferrers diagram.

Definition 2.2.3. Let t and u be two λ-tableaux. If

{ti,j | j ∈ [λi]} = {ui,j | j ∈ [λi]},

for all i ∈ [l], then t and u are considered row equivalent. This is an equivalence relation on
Tab(λ), so one writes t ∼ u whenever t and u are row equivalent. The equivalence class

{t} = {u ∈ Tab(λ) | u ∼ t},

is a tabloid of shape λ, or a λ-tabloid.

Proposition 2.2.4. Let λ = (λ1, λ2, ..., λl) ` n, and t be a λ-tableau. Then, |{t}| =
λ1!λ2!...λl!. Therefore, the number of all λ-tabloids is

n!

λ1!λ2!...λl!
.

For each σ ∈ Sn and t ∈ Tab(λ), define σt ∈ Tab(λ) by

(σt)i,j = σ(ti,j).

Theorem 2.2.5. Let λ = (λ1, λ2, ..., λl) ` n, and t, u be two λ-tableaux. Then for any
σ ∈ Sn,

σt ∼ σu

whenever t ∼ u.

Proof. Let σ ∈ Sn, and i ∈ [l]. Suppose t and u are row equivalent. Then

{ti,j | j ∈ [λi]} = {ui,j | j ∈ [λi]}.

Thus {σ(ti,j) | j ∈ [λi]} = {σ(ui,j) | j ∈ [λi]}. Note that (σt)i,j = σ(ti,j), and (σu)i,j =
σ(ui,j). Consequently

{(σt)i,j | j ∈ [λi]} = {(σu)i,j | j ∈ [λi]}.

Therefore σt ∼ σu.

Considering the previous theorem, the action of Sn on the set of λ-tableaux induces a well
defined action on the set of λ-tabloids by letting

σ{t} := {σt}.
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Definition 2.2.6. For λ ` n, let {t1, t2, ..., tk} be the collection of all λ-tabloids, where
k = n!

λ1!λ2!...λl!
. Then

Mλ = C{{t1}, {t2}, ..., {tk}}

is the permutation module associated with λ.

Let G be a group. A G-module is cyclic if it can be generated (as a module) by one
element.

Proposition 2.2.7. Let λ ` n. For any t ∈ Tab(λ), Mλ is a cyclic Sn-module, generated
by δ{t}.

Proof. The action of Sn is transitive on Tab(λ). In other words, for any pair t, u ∈ Tab(λ),
there exists a permutation σ such that u = σt. Consequently the induced action on the
set of λ-tabloids is also transitive. Therefore Mλ is a cyclic Sn−module, generated by any
δ{t}.

2.3 Specht modules

With the establishment of the permutation modules, each irreducible Sn-module can now be
constructed. For a partition λ, the corresponding irreducible will be generated inside of Mλ

by a family of elements created from the tableaux associated to λ.
Let λ = (λ1, λ2, ..., λl) ` n, and t be a λ-tableau. From t, one will need an element of

C[Sn] to act as an operator on Mλ. Note that there are λ1 columns in the shape of λ, and
that λ∗j is length of the jth column in the shape of λ. For each j ∈ [λ1] and i ∈ [l], set

λ∗j = max{k ∈ [l] | λk ≥ j},

and define
Ri := {ti,j | j ∈ [λi]} Cj := {ti,j | i ∈ [λ∗j ]}.

Definition 2.3.1. Let R1, R2, ..., Rl be the rows of t, and C1, C2, ..., Cλ1 be the corresponding
columns. Then

(1) Rt := SR1 × SR2 × ...× SRl

(2) Ct := SC1 × SC2 × ...× SCλ1
are the row-stabilizer and the column-stabilizer of t, respectively.

Considering Definition 2.3.1, for a subset H ⊆ Sn, set

(1) H+ :=
∑
σ∈H

σ

(2) H− :=
∑
σ∈H

sgn(σ)σ,

and define the following element of C[Sn],

κt := C−t .
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Definition 2.3.2. Let t be a λ-tableau. The polytabloid of type t is the element

et := κtδ{t}.

Furthermore, the Sn-submodule generated by all the polytabloids,

Sλ = 〈σet ∈Mλ|σ ∈ Sn, t ∈ Tab(λ)〉,

is the associated Specht module.

The claim is that the arrival of Specht modules ends the search for all the irreducible
group representations of Sn. With that said, the next lemma will be helpful in providing
justification to this claim.

Lemma 2.3.3. Let t be a tableau, and σ ∈ Sn. Then

(1) Rσt = σRtσ
−1,

(2) Cσt = σCtσ
−1,

(3) κσt = σκtσ
−1,

(4) eσt = σet.

Proof. For part 1, note τ ∈ Rt if and only if {τt} = {t}. Write {τt} = {τσ−1(σt)}. Then
{τσ−1(σt)} = {t}. Thus

{στσ−1(σt)} = σ{τσ−1σt} = σ{t} = {σt},

and hence στσ−1 ∈ Rσt. Therefore σRtσ
−1 ⊆ Rσt.

Conversely, replace t with σt, and σ with σ−1 to conclude σ−1Rσtσ ⊆ Rt, and equivalently,
Rσt ⊆ σRtσ

−1

The proof of part 2 is analogous to part 1, by considering the dual notion of column-
equivalence between λ-tableaux.

For part 3, note that, for any σ, τ ∈ Sn, sgn(στσ−1) = sgn(τ). Thus

σκtσ
−1 =

∑
τ∈Ct

sgn(τ)στσ−1 =
∑
τ∈Ct

sgn(στσ−1)στσ−1 = κσt.

Finally, part 4 follows from the observation,

σet = σκtδ{t} = (σκtσ
−1)σδ{t} = κσtδ{σt} = eσt.

An immediate consequence of part (4) of Lemma 2.3.3 is that the Specht module Sλ is
generated by any λ-tableau t, i.e. Sλ = 〈σet|σ ∈ Sn〉. In addition,

Sλ = span{et | t ∈ Tab(λ)},

and therefore Sλ has a basis consisting of some collection of polytabloids {eti | i ∈ [dimSλ]}.
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2.4 Orderings on shapes

The following partial order will be needed in showing that the Specht modules arising from
two different partitions of n are inequivalent.

Definition 2.4.1. Suppose λ = (λ1, λ2, ..., λl) ` n and µ = (µ1, µ2, ..., µk) ` n. Then λ
dominates µ ,written λ D µ, if

λ1 + λ2 + ...+ λi ≥ µ1 + µ2 + ...+ µi,

for all i ≥ 1. If i > l (respectively i > k), then λi (respectively µi) is taken to be zero.

Theorem 2.4.2. The relation D is a partial order on the set of partitions of n.

Proof. The relation D is reflexive and transitive since the standard order ≥ on Z is reflexive
and transitive.

Now suppose λ D µ and µ D λ for λ = (λ1, λ2, ..., λl) ` n and µ = (µ1, µ2, ..., µk) ` n.
Then λ1 +λ2 + ...+λi = µ1 +µ2 + ...+µi, for each i ≥ 1. Thus λ1 = µ1. Using induction, one
verifies λi = µi for each i ∈ [l] = [k]. Hence λ = µ, and therefore D is anti-symmetric.

The utility of this partial ordering will be from the application of the following lemma.

Lemma 2.4.3. Let λ = (λ1, λ2, ..., λl) ` n, µ = (µ1, µ2, ..., µk) ` n, and let t and u be
tableaux of shapes λ and µ, respectively. If, for all i ∈ [k], the entries of the ith row of u
appear in different columns of t, then λ D µ.

Proof. First note that if σ ∈ Sn preserves the columns of t, then the hypothesis still holds
for u and σt.

Now, by hypothesis, one can first permute the entries of each column of t so that the
elements of {u1,j | j ∈ [µ1]} all appear in the first row of t1, where t1 is the new tableau
obtained from the permutation. Thus λ1 ≥ µ1.

Again, the hypothesis holds for u and t1. So, permute the entries of each column of t1
not belonging to the first row of u so that each elements of {u2,j | j ∈ [µ2]} also appears in
the first and second row of t2, where t2 is the new tableau obtained from the permutation.
(To be exact, in t1, the entry u2,j will go to the first position of its residing column, or to
the second position of that column if the first position is already taken by an entry from the
first row of u.) Hence λ1 + λ2 ≥ µ1 + µ2.

Finally, one repeats this procedure up through the ith row of u so that the corresponding
entries appear in the first i rows of some tableau of shape λ. Thus

λ1 + λ2 + ...+ λi ≥ µ1 + µ2 + ...+ µi,

and therefore λ D µ.

This section concludes with another useful result. It doesn’t pertain to the partial order
D, but its placement is justified due to its similarity with the previous lemma.
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Lemma 2.4.4. Let λ = (λ1, λ2, ..., λl) ` n, and t, u be λ-tableaux. If, for each i ∈ [λ1], the
entries of the ith column of t appear in different rows of u, then for some σ ∈ Ct,

{u} = {σt}.

Proof. Like the proof of Lemma 2.4.3, by hypothesis, one can permute the entries in each
row of u to obtain a new tableau u1 such that, for each i, the ith column of u1 and t consist
of the same entries. In other words, for some σ ∈ Ct,

u1 = σt.

Therefore {u} = {σt} since u1 and u are row equivalent.

2.5 The submodule theorem

It will now be shown that the collection of all Specht modules Sλ forms a complete set of
distinct irreducible Sn-modules. Using the results established in Section 1.5, the number of
distinct irreducible Sn-modules equals the number of partitions of n. Therefore the objective
is to verify that each Specht module is irreducible, and that different partitions of n yield
inequivalent modules. Note that the bulk of this section is comprised of preliminary results
needed for this argument.

Lemma 2.5.1. Let H ≤ Sn, and σ ∈ Sn. If H contains an odd permutation, then half of
the permutations in σH are odd and half of the permutations are even.

Proof. First, for any σ ∈ Sn, sgn(σ) = 1 if and only if σ is even. Suppose now σ ∈ H is odd.
Then

sgn |H → {±1}

is a surjective group homomorphism. Therefore the result follows by the first isomorphism
theorem with Lagrange’s theorem for finite groups, i.e.

|H| = [H : ker(sgn |H)] · | ker(sgn |H)| = 2 · | ker(sgn |H)|.

Lemma 2.5.2. Suppose H ≤ Sn acts on a set X, and let x ∈ X. If Hx, the stabilizer of x,
contains an odd permutation, then

H−δx = 0.

Proof. Let σ, τ ∈ H. Note that if τ ∈ σHx, then τδx = σδx. Thus∑
τ∈σHx

sgn(τ)τδx =
∑
τ∈σHx

sgn(τ)σδx = sσδx

where s =
∑

τ∈σHx
sgn(τ). But by Lemma 2.5.1, σHx contains an equal number of even and
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odd permutations, since Hx contains an odd permutation. Thus s = 0, and hence∑
τ∈σHx

sgn(τ)τδx = 0.

Finally, let {σ1, σ2, ..., σk} be a transversal for Hx in H. Then

∑
τ∈H

sgn(τ)τδx =
k∑
i=1

∑
τ∈σiHx

sgn(τ)τδx.

Therefore H−δx = 0.

Proposition 2.5.3. Let λ = (λ1, λ2, ..., λl) and µ = (µ1, µ2, ..., µk) be partitions of n, and
let t and u be tableaux of shape λ and µ, respectively. If λ 4 µ, then

κtδ{u} = 0.

Proof. First, the contraposition of the implication in Lemma 2.4.3 states that if λ 4 µ, then,
for each t ∈ Tab(λ) and u ∈ Tab(µ), there is some row of u containing two entries i and
j, which both lie in some same column of t. Thus the stabilizer of {u} in Ct contains the
transposition (i, j). Therefore by Lemma 2.5.2,

κtδ{u} = C−t δ{u} = 0.

Note that an equivalent statement of this proposition is that if κt 6= 0 as a linear operator
on Mµ, then λ D µ.

Lemma 2.5.4. Let λ = (λ1, λ2, ..., λl) ` n, and t, u be tableaux of shape λ. Then

κtδ{u} =

{
sgn(σ)et if {u} = {σt} for some σ ∈ Ct
0 if {u} 6= {σt} for every σ ∈ Ct

.

In particular, κtf is a scalar multiple of et for all f ∈Mλ.

Proof. Suppose that {u} = {σt} for σ ∈ Ct. Then

κtδ{u} =
∑
τ∈Ct

sgn(τ)τδ{σt} =
∑
τ∈Ct

sgn(τ)(τσ)δ{t} = sgn(σ)et

since sgn(τ) = sgn(σ) sgn(τσ).
Now suppose {u} 6= {σt} for any σ ∈ Ct. Then by Lemma 2.4.4, there is some column of

t containing two entries i and j, which both lie in some same row of u. Thus the stabilizer
of {u} in Ct contains the transposition (i, j). Therefore by Lemma 2.5.2,

κtδ{u} = C−t δ{u} = 0.
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Recall from Section 1.5, Mλ has an invariant inner product 〈· | ·〉.

Lemma 2.5.5. Let H be a subgroup of Sn, and f, g ∈Mλ. Then

〈f | H−g〉 = 〈H−f | g〉,

In other words, H− is self-adjoint.

Proof. It will be enough to show that the lemma holds for the standard basis. Indeed, let t
and u be tableaux of shape λ. Then by Proposition 1.5.2, for any σ ∈ Sn,

〈δ{t} | σδ{u}〉 = 〈σ−1δ{t} | δ{u}〉.

Thus
〈δ{t} | sgn(σ)σδ{u}〉 = 〈sgn(σ−1)σ−1δ{t} | δ{u}〉

since sgn(σ−1) = sgn(σ).
Now notice that, since H is a subgroup,∑

σ∈H

sgn(σ−1)σ−1 =
∑
σ∈H

sgn(σ)σ = H−.

Thus ∑
σ∈H

〈δ{t} | sgn(σ)σδ{u}〉 =
∑
σ∈H

〈sgn(σ−1)σ−1δ{t} | δ{u}〉,

and therefore 〈δ{t} | H−δ{u}〉 = 〈H−δ{t} | δ{u}〉.

Theorem 2.5.6 (The Submodule Theorem). Suppose W is an Sn−submodule of Mλ. Then
Sλ ⊆ W , or Sλ ⊥ W. In particular, each Sλ is irreducible.

Proof. Let v ∈ W, f ∈ Sλ, and u ∈ Tab(λ). Suppose that, for every w ∈ W ,

〈w | eu〉 = 0.

First, since Sλ is generated by any tableau of shape λ, for some collection of complex
numbers {cσ},

f =
∑
σ∈Sn

cσσeu.

Set F =
∑
σ∈Sn

c∗σσ
−1 ∈ C[Sn], where c∗σ is complex conjugate of cσ, and note that, by Propo-

sition 1.5.2,
〈v | f〉 = 〈Fv | eu〉.

However, W is a submodule. Thus Fv ∈ W. But by the assumption, 〈Fv | eu〉 = 0. Therefore
〈v | f〉 = 0, and hence Sλ ⊆ W⊥.

Now suppose Sλ * W⊥. Then for u ∈ Tab(λ), there is some w ∈ W, such that

〈w | eu〉 6= 0.
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By Lemma 2.5.5, 〈w | eu〉 = 〈κuw | δ{u}〉. Thus κuw 6= 0. But κuw = aeu for some a ∈ C.
Hence, eu ∈ W since W is invariant. Therefore Sλ ⊆ W since Sλ is generated by eu, and W
is a submodule.

To see that Sλ is irreducible. Apply Maschke’s Theorem to Mλ, and note that Sλ cannot
be orthogonal to every irreducible submodule in the decomposition of Mλ.

Proposition 2.5.7. Let λ, µ ` n, and suppose there is some nonzero φ ∈ HomSn(Sλ,Mµ).
Then λ D µ, and if λ = µ, then φ is a scalar.

Proof. Suppose φ ∈ HomSn(Sλ,Mµ) is nonzero. Then there is some t ∈ Tab(λ), such that
φ(et) 6= 0, for basis vector et. Note that

κtφ(et) = φ(κtet),

since φ is a homomorphism of Sn-modules. Now

κtet =
∑
σ∈Ct

sgn(σ)σet =
∑
σ∈Ct

sgn(σ)eσt.

Also, eσt = sgn(σ)et whenever σ ∈ Ct. Thus κtet =| Ct | et, and consequently

κtφ(et) =| Ct | φ(et) 6= 0.

So κt is nonzero as a linear operator on Mµ. Therefore by Proposition 5.3.5, λ D µ.
In addition, suppose λ = µ. Then by Lemma 2.5.4, κtφ(et) = cet for some nonzero c ∈ C.

(c 6= 0, since κtφ(et) 6= 0) But it has just been shown that κtφ(et) =| Ct | φ(et). Thus

φ(et) =
c

| Ct |
et.

Finally, suppose eu is another basis vector of Sλ for u ∈ Tab(λ), and let σ ∈ Sn such that
u = σt. Then by Lemma 2.5.4, eu = σet. Thus

φ(eu) = φ(σet) = σφ(et) = σ(
c

| Ct |
et) =

c

| Ct |
σet =

c

| Ct |
eu.

Therefore φ is a scalar.

Theorem 2.5.8. The collection of all Specht modules

{Sλ | λ ` n}

forms a complete set of irreducible Sn−modules.

Proof. First, by Theorem 2.5.6, all the Specht modules are irreducible. All that remains
then is verifying that, for any λ, µ ` n,

Sλ ∼= Sµ

if and only if λ = µ.
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Suppose Sλ ∼= Sµ. Then by definition, there exists some invertible φ ∈ HomSn(Sλ,Sµ).
But, Sµ ⊆ Mµ. Thus φ ∈ HomSn(Sλ,Mµ). Therefore λ D µ by Proposition 2.5.7. On the
other hand, φ−1 ∈ HomSn(Sµ,Sλ). Thus µ D λ as well. Therefore λ = µ.

Finally, the set of distinct irreducible Sn−modules is in one to one correspondence with
the set of partitions of n. Therefore {Sλ | λ ` n} gives the full set of distinct irreducible
Sn−modules.

This section closes with a convenient computational rule to calculate the the dimension
of each Specht module of a given integer n ≥ 1. Unfortunately, the proof of the validity of
the formula will be omitted as justification is far from trivial. See Appendix C in [4] for
proof. Let λ ` n. The hook length of a position in the Ferrer’s diagram of λ is the number
the positions to its right plus the number of positions below it plus one.

Theorem 2.5.9. Let λ ` n, and define hλ to be the product of all hook lengths in λ. Then

dimSλ =
n!

hλ
.

2.6 General projection operators

To get full use out of Sn, a more tangible collection of irreducible modules will be utilized. To
explain, in the next chapter it will be shown that the modules carrying the irreducible tensor
product representation of GL(m,C) can be constructed as the images of specific operators
built from the integer partitions. It is the purpose of this section to define these elements, and
through the aid of the Specht modules, obtain these new versions of irreducible Sn-modules.

Let t be a tableau of shape λ. For the following definition, set

ιt := R+
t

Definition 2.6.1. Let t be a tableau of shape λ ` n. The general projection operator of type
t is

εt := κtιt

Note that εt is not a true projection since in general, ε2t 6= εt but rather, ε2t = Cεt for some
constant C.

Example 2.6.2. Recall Example 2.1.2. Let t be the tableau of shape λ1 = (4) ` 4 defined
by

t1,j := j

for j ∈ [4]. Then εt =
∑
σ∈S4

σ. Note that, εt1 only differs by a constant from the projection

operator of the subspace of symmetric tensors inside the 4th-fold tensor power of some
arbitrary finite-dimensional vectors space. Likewise, now let t be the tableau of shape λ3 =
(1, 1, 1, 1) ` 4 defined by

ti,1 := i
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for i ∈ [4]. Here, εt =
∑
σ∈S4

sgnσ, which itself only differs by constant from the projection

operator of the subspace of anti-symmetric rank-4 tensors. Finally, let t be the tableau of
shape λ2 = (2, 2) ` 4 given by

t1,1 = 1 t1,2 = 2

t2,1 = 3 t2,2 = 4.

Then Rt = S{1,2} × S{3,4}, Ct = S{1,3} × S{2,4}, and

εt = (( )− (1 3)− (2 4) + (1 3)(2 4)) (( ) + (1 2) + (3 4) + (1 2)(3 4)) ,

where for simplicity, ( ) denotes the identity permutation. After some calculation,

εt = ( ) + (1 2)− (1 3)− (2 4) + (3 4)− (1 2 3)− (1 3 4)− (1 4 2)...

...− (2 4 3) + (1 4)(2 3) + (1 3 2 4)− (1 3 4 2) + (1 4 2 3)− (1 4 3 2).

It too will define some subspace of rank-4 tensors. Thus this exercise shows the motivation
for the name general projection operator.

Definition 2.6.3. Let R be a ring and let a ∈ R. Then the principal left ideal generated by
a is

〈a〉L := {ra | r ∈ R}

Theorem 2.6.4. Let t be a tableau of shape λ ` n. Then

〈ιt〉L ∼= Mλ and 〈εt〉L ∼= Sλ

as Sn−modules. In particular, 〈εt〉L is irreducible.

Proof. First, Mλ is generated by δ{t}. So let φ : 〈ιt〉L → Mλ be the linear extension of the
following assignment:

φ(σιt) 7→ δ{σt},

for each σ ∈ Sn. In other words, if f =
∑
σ∈Sn

aσσ ∈ C[Sn], then

φ(fιt) =
∑
σ∈Sn

aσδ{σt}.

To verify that φ is well-defined, let σ, τ ∈ Sn, and suppose σιt = τιt. Then (τ−1σ)ιt = ιt,
and ∑

π∈Rt

(τ−1σ)π =
∑
π∈Rt

π

if and only if (τ−1σ) ∈ Rt. Consequently, the tableau τ−1σt is row equivalent to t. Hence
{τ−1σt} = {t}, and δ{τ−1σt} = δ{t}. Thus

τ−1σδ{t} = δ{t},
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and σδ{t} = τδ{t}. Therefore φ(σιt) = φ(τιt).
Furthermore, φ was constructed to be a Sn−homomorphism. To see this, let τ ∈ Sn.

Then
τf =

∑
σ∈Sm

aστσ

for f =
∑
σ∈Sm

aσσ ∈ C[Sm]. Thus

φ(τ(fιt)) = φ ((τf)(ιt))

=
∑
σ∈Sm

aσδ{τσt}

=
∑
σ∈Sm

aστδ{σt}

= τ(
∑
σ∈Sm

aσδ{σt})

= τ(φ(fιt)).

Finally, φ is a bijection. Indeed, let d ∈ Mλ. Now Mλ is cyclic. Thus d =
∑
σ∈Sn

aσσδ{t},

for some collection of constants {aσ}σ ⊆ C. With this, if f =
∑
σ∈Sm

aσσ ∈ C[Sm], then

φ(fιt) =
∑
σ∈Sm

aσδ{σt} =
∑
σ∈Sm

aσσδ{t} = d.

Therefore φ is onto. Now, suppose fιt ∈ kerφ. Then

0 = φ(fιt)

=
∑
σ∈Sn

aσδ{σt}.

But, {δ{σt} | σ ∈ Sn} is a basis for Mλ. Thus aσ = 0 for all σ ∈ Sn. Therefore fιt = 0, and

〈ιt〉L ∼= Mλ

as Sn− modules.
For the second assertion, note that 〈εt〉L ≤ 〈ιt〉L since εt = κtιt. Furthermore,

φ(〈εt〉L) = Sλ.
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Indeed, Sλ = 〈σet | σ ∈ Sn〉 and

φ(εt) = φ (κt(ιt))

= κt(φ(ιt))

= κtδ{t}

= et.

Thus φ(εt) generates Sλ since φ is a Sn-homomorphism. Therefore 〈εt〉L ∼= Sλ.
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Chapter 3

Irreducible tensor representations of
GL(n,C)

As an infinite group, the representation theory for GL(n,C) is more complicated than the
theory for finite groups. For example, Maschke’s Theorem and the classification methods
established in the Chapter 1 cannot be applied. Fortunately, the symmetric group can be
utilized to find the irreducible representations for GL(n,C), carried in the various tensor
powers of Cn. Yes, a simple connection between Sm and GL(n,C) allows for the association
of the irreducible tensor representations with integer partitions, along with the obtainment
of the corresponding irreducible GL(n,C)-modules as image spaces of the general projection
operators introduced in Section 2.6. Ultimately, these irreducible GL(n,C)-modules are the
source for all the irreducible representations of the special unitary group, SU(n).

The results needed from this chapter will be established in complete generality using the
general linear group of an arbitrary finite dimensional complex vector space, denoted as V ,
with n := dimV . These methods are modeled by the treatment offered by Sternberg [4].

For a non-negative integer m, let

V
⊗
m := V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸

m−times

denote the m−fold tensor product space of V . By convention, V
⊗

0 := C. However, this
case is of no interest here. Thus one assumes that m ≥ 1.

Note that tensors of the form v1 ⊗ v2 ⊗ ...⊗ vm are called monomials, and

V
⊗
m = span{v1 ⊗ v2 ⊗ ...⊗ vm | vi ∈ V i ∈ [m]}.

In fact, one has the following.

Proposition 3.0.1. Suppose B = {e1, e2, ..., em} is a basis for V. Then

Bm = {ei1 ⊗ ei2 ⊗ ....⊗ eim | (i1, i2, ..., im) ∈ [n]m}

is a basis for V
⊗
m.

Sometimes for convenience, ei1 ⊗ ei2 ⊗ .... ⊗ eim will be denoted as eI , where I =
(i1, i2, ..., im).
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3.1 V
⊗
m as a GL(V )-module and Sm−module.

The symmetric group acts on the set of monomials by setting

σ(v1 ⊗ v2 ⊗ ...⊗ vm) := vσ−1(1) ⊗ vσ−1(2) ⊗ ...⊗ vσ−1(m)

for all σ ∈ Sm. This is a group action. One can consider the monomial v1 ⊗ v2 ⊗ ...⊗ vm as
an assignment from [m] to V defined by

i 7→ vi.

So, if i 7→ vi, then the vector vi ∈ V is in the ith position of the monomial. Therefore Sm
acts on monomials as it would on functions from [m] to V , i.e. σf = f ◦ σ−1. The m-fold
tensor product space V

⊗
m becomes an Sm-module when this action extends by linearity

from monomials to all tensors.
In addition to this, GL(V ) also acts on monomials by setting

A⊗m(v1 ⊗ v2 ⊗ ...⊗ vm) := A(v1)⊗ A(v2)⊗ ...⊗ A(vm),

for all A ∈ GL(V ). This is also a group action since

A⊗mB = A⊗mB⊗m.

The space, V
⊗
m becomes a GL(V )-module when this action extends by linearity from

monomials to all tensors. From this point on, the GL(n,C)-representation will be denoted
as T⊗m, i.e.

T⊗m : A 7→ A⊗m.

3.2 The commuting action of GL(V ) and Sm on V
⊗
m.

Considering the defining actions of GL(V ) and Sm on V
⊗
m, one has

σ ◦ A⊗m = A⊗m ◦ σ,

for all σ ∈ Sm and A ∈ GL(V ). What will need to be shown is that

HomSm(V
⊗
m, V

⊗
m) = span{A⊗m | A ∈ GL(V )}.

Ultimately, the ability to obtain the desired irreducible representations of GL(V ) rests on
this result. Therefore the remainder of this section is set to justify this identity.

By fixing a basis B = {wi | i ∈ [n]} on V one can identify HomC(V, V ) with Cn2
, endowing

HomC(V, V ) with the metric space induced from the euclidean topology.

Lemma 3.2.1. Let V be a vector space. Then for any A ∈ HomC(V, V ), there exists a
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sequence (Bn)n∈N in GL(V ), such that

lim
n→∞

Bn = A.

In particular,
HomC(V, V ) = GL(V ).

Proof. It is sufficient to prove this using matrices. Let A ∈ Mn(C) \ GL(n,C). Since C is
algebraically closed, A is similar, via some P ∈ GL(n,C), to the block diagonal matrix

C =


J1

J2
. . .

Jl


for some l ≥ 1, where each Ji, is a Jordan block corresponding to an eigenvalue of A. So,
for each k ≥ 1, define C(k) by replacing every eigenvalue equal to zero with the number 1

k
.

Now, set Bk = P−1C(k)P. Then

lim
k→∞

Bk = P−1CP = A.

Therefore Mn(C) = GL(n,C).

Lemma 3.2.2. For each m ≥ 1, the assignment

ϕ : A1 ⊗ A2 ⊗ ...⊗ Am 7→ ϕ(A1 ⊗ A2 ⊗ ...⊗ Am)

defined by setting

ϕ(A1 ⊗ A2 ⊗ ...⊗ Am)(v1 ⊗ v2 ⊗ ...⊗ vm) := A1(v1)⊗ A2(v2)⊗ ...⊗ Am(vm),

for monomials, extends by linearity to an isomorphism

ϕ : HomC(V
⊗
m, V

⊗
m)

∼−→ HomC(V, V )
⊗
m.

Proof. Since
dim HomC(V

⊗
m, V

⊗
m) = n2m = dim

(
HomC(V, V )

⊗
m
)
,

the goal is to verify that the linear extension of ϕ (still denoted as ϕ) is a surjection.
Let

Bm = {ei1 ⊗ ei2 ⊗ ....⊗ eim | I = (i1, i2, ..., im) ∈ [n]m}

be a basis for V
⊗
m, induced by a basis B = {e1, e2, ..., em} of V . Let

B ∈ HomC(V
⊗
m, V

⊗
m).
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Then for each I =∈ [n]m,

B(ei1 ⊗ ei2 ⊗ ....⊗ eim) =
∑
J∈[n]m

BJIeJ .

Consider
A1 ⊗ A2 ⊗ ...⊗ Am ∈ HomC(V, V )

⊗
m.

If [Ak]B has entries a(k)jkik , then

ϕ(A1 ⊗ A2 ⊗ ...⊗ Am)(ei1 ⊗ ei2 ⊗ ....⊗ eim) = A1(ei1)⊗ A2(ei2)⊗ ....⊗ Am(eim)

=
∑
J∈[n]m

a(1)j1i1a(2)j2i2 ...a(m)jmimeJ .

Now, it is possible to define A1 ⊗ A2 ⊗ ...⊗ Am so that

a(1)j1i1a(2)j2i2 ...a(m)jmim := BJI

for all I, J ∈ [n]m. Therefore ϕ is surjective.

For the following, the abuse of notation

v ⊗ v ⊗ ...⊗ v ≡ v ⊗ v ⊗ ...⊗ v︸ ︷︷ ︸
m−times

will be implemented for simplicity. A tensor z ∈ V
⊗
m is symmetric if σz = z for all σ ∈ Sm.

Lemma 3.2.3. Let Sm(V ) denote the subspace of symmetric tensors in V
⊗
m. Then

Sm(V ) = span{v ⊗ v ⊗ ...⊗ v | v ∈ V }.

Proof. The method of proof is mirrored from Sternberg [4], Chapter 5. Let

Bm = {ei1 ⊗ ei2 ⊗ ....⊗ eim | I = (i1, i2, ..., im) ∈ [n]m}

be the basis for V
⊗
m, induced by a basis B = {e1, e2, ..., em} of V. Consider

ιm ∈ HomC(V
⊗
m, V

⊗
m)

given by

ιm :=
1

m!

∑
σ∈Sm

σ

Note that ιm is a projection operator from V
⊗
m onto Sm(V ). Indeed, let z ∈ Sm(V ). Then
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ιm(z) = z. Conversely, if ιm(z) = z, then, for each σ ∈ Sm,

σz = σ(ιm(z))

= (σιm)(z)

= ιm(z)

= z.

Now, the collection
{ιm(ei1 ⊗ ei2 ⊗ ....⊗ eim) | I ∈ [n]m}

is a spanning set of Sm(V ). Consequently

{ιm(ei1 ⊗ ei2 ⊗ ....⊗ eim) | 1 ≤ i1 ≤ i2 ≤ ... ≤ im ≤ n}.

is a basis for Sm(V ).
Consider the monomial v ⊗ v ⊗ ...⊗ v, where v =

∑n
ik=1 ckek. First,

v ⊗ v ⊗ ...⊗ v =
∑
I∈[n]m

ciici2 ...cimei1 ⊗ ei2 ⊗ ....⊗ eim .

By applying the operator ιm, one has

ιm(v ⊗ v ⊗ ...⊗ v) =
∑
I∈[n]m

ciici2 ...cimιm(ei1 ⊗ ei2 ⊗ ....⊗ eim). (3.2.1)

However,
ιm(ei1 ⊗ ei2 ⊗ ....⊗ eim) = ιm(σ(ei1 ⊗ ei2 ⊗ ....⊗ eim)),

for all σ ∈ Sm and I ∈ [n]m. Consider now

{J ∈ [n]m | 1 ≤ j1 ≤ j2 ≤ ... ≤ jm ≤ n},

and set k(J)i to be the number of times i ∈ [n] appears in the m−tuple J. Using this, the
right hand side of 3.2.1 reduces to∑

J

(
m!

k(J)1!k(J)2!...k(J)n!
c
k(J)1
1 c

k(J)2
2 ...ck(J)nn

)
ιm(eJ).

But, ιm(v ⊗ v ⊗ ...⊗ v) = m!v ⊗ v ⊗ ...⊗ v. Therefore

v ⊗ v ⊗ ...⊗ v =
∑
J

(
c
k(J)1
1 c

k(J)2
2 ...c

k(J)n
n

k(J)1!k(J)2!...k(J)n!

)
ιm(eJ).

Now, consider the coefficients ci, i ∈ [n] to be complex variables so that one may apply
the differential operator

∂m

(∂c1)k(J)1(∂c2)k(J)2 ...(∂cn)k(J)n
(3.2.2)

44



to v ⊗ v ⊗ ...⊗ v, and find

∂m(v ⊗ v ⊗ ...⊗ v)

(∂c1)k(J)1(∂c2)k(J)2 ...(∂cn)k(J)n
= ιm(eJ).

The action of 3.2.2 on v ⊗ v ⊗ ... ⊗ v is, by definition, built from a composition of limits.
Thus

ιm(eJ) ∈ span{v ⊗ v ⊗ ...⊗ v | v ∈ V }

since subspaces in V
⊗
m are closed topologically. Therefore

span{v ⊗ v ⊗ ...⊗ v | v ∈ V } = Sm(V ).

Corollary 3.2.4. For all positive integers m,

Sm(HomC(V, V )) = span{A⊗ A⊗ ...⊗ A | A ∈ GL(V )}.

Proof. Apply Lemma 3.2.3 in the setting of HomC(V, V ) to find

Sm(HomC(V, V )) = span{A⊗ A⊗ ...⊗ A | A ∈ HomC(V, V )}.

But by Lemma 3.2.1, HomC(V, V ) = GL(V ). Furthermore, the subspace

span{A⊗ A⊗ ...⊗ A | A ∈ GL(V )

is closed, and thus contains the limits of all the sequences of its elements. Therefore, for all
B ∈ HomC(V, V ),

B ⊗B ⊗ ...⊗B ∈ span{A⊗ A⊗ ...⊗ A | A ∈ GL(V )}.

Theorem 3.2.5. For each positive integer m ≥ 1,

HomSm(V
⊗
m, V

⊗
m) = span{A⊗m | A ∈ GL(V )}.

Proof. Let ϕ be the linear isomorphism from Lemma 3.2.2. Then for all A ∈ GL(V ),

ϕ(A⊗ A⊗ ...⊗ A) = A⊗m.

Hence,
span{A⊗m | A ∈ GL(V )} = ϕ(span{A⊗ A⊗ ...⊗ A | A ∈ GL(V )}).

Note that ϕ is an Sm− isomorphism between HomC(V
⊗
m, V

⊗
m) and HomC(V, V )

⊗
m, where

HomC(V
⊗
m, V

⊗
m) is considered an Sm−module under the action

(σ, T )→ σ ◦ T ◦ σ−1.
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Indeed, let v1 ⊗ ...⊗ vm ∈ V
⊗
m, A1 ⊗ ...⊗ Am ∈ HomC(V, V )

⊗
m, and σ ∈ Sm. Then

(σ(ϕ(A1 ⊗ ...⊗ Am))) (v1 ⊗ ...⊗ vm) = (σ ◦ ϕ(A1 ⊗ ...⊗ Am) ◦ σ−1)(v1 ⊗ ...⊗ vm)

= (σ ◦ ϕ(A1 ⊗ ...⊗ Am))(vσ(1) ⊗ ...⊗ vσ(m))

= σ
(
(A1(vσ(1))⊗ ...⊗ Am(vσ(m))

)
= Aσ−1(1)(v1)⊗ ...⊗ Aσ−1(m)(vm).

On the other hand,

ϕ(σ(A1 ⊗ ...⊗ Am))(v1 ⊗ ...⊗ vm) = ϕ(Aσ−1(1) ⊗ ...⊗ Aσ−1(m))(v1 ⊗ ...⊗ vm)

= Aσ−1(1)(v1)⊗ ...⊗ Aσ−1(m)(vm).

Therefore ϕ is a Sm−isomorphism. as claimed.
With this in mind, HomSm(V

⊗
m, V

⊗
m) and Sm(HomC(V, V )) are the isotypic compo-

nents of the trivial Sm−module in

HomC(V
⊗
m, V

⊗
m) and HomC(V, V )

⊗
m,

respectively. Hence

HomSm(V
⊗
m, V

⊗
m) = ϕ(Sm(HomC(V, V ))).

Therefore by Lemma 3.2.3,

HomSm(V
⊗
m, V

⊗
m) = ϕ(Sm(HomC(V, V ))) = span{A⊗m | A ∈ GL(V )}.

3.3 HomSm(Sλ, V
⊗
m): An irreducible GL(V )-module

By Maschke’s Theorem, V
⊗
m is completely reducible as an Sm−module. In addition, all the

distinct irreducible Sm−modules are given by the Specht modules Sλ, one for each λ ` m.
Using this, one can write the decomposition of V

⊗
m as

V
⊗
m =

⊕
λ`m

W λ

where, for each λ ` m, W λ is the isotypic component corresponding to the Specht module
Sλ of multiplicity mλ ≥ 0.

Moreover, each W λ is a GL(V )−module as well. Indeed, for any A ∈ GL(V ) and λ ` m,

A⊗m(W λ) = W λ

since A⊗m ∈ HomSm(V
⊗
m, V

⊗
m). Now the objective is to obtain an irreducible GL(V )-
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module from W λ using the identity

HomSm(V
⊗
m, V

⊗
m) = span{A⊗m | A ∈ GL(V )}.

This is necessary since one cannot appeal to Maschke’s Theorem to decompose W λ into
irreducible GL(V )-submodules, as GL(V ) is not a finite group.

So, suppose that W λ 6= {0}, i.e. mλ > 0. Then by Proposition 1.4.1 and Corollary 1.4.4
respectively,

W λ ∼= Cmλ ⊗ Sλ

as Sm-modules, and
HomSm(W λ,W λ) ∼= HomC(Cmi ,Cmi)

as rings. With this in mind, it will be beneficial to illustrate the second isomorphism by ana-
lyzing how HomSm(W λ,W λ) interacts with HomSm(Sλ, V

⊗
m). Consider the decomposition

of W λ into irreducible Sm−modules

W λ = W λ
1 ⊕W λ

2 ⊕ ...⊕W λ
mλ
,

and let
{φi | i ∈ [mλ]} (3.3.1)

be a collection of Sm− isomorphisms such that φi : Sλ → W λ
i . In addition, for each i, j ∈

[mλ], let Ψij ∈ HomSm(W λ,W λ) be an Sm− isomorphism such that

Ψij(W
λ
j ) = W λ

i ,

and Ψij(W
λ
k ) = {0} for all k 6= j. This collection does exist: One can start with Ψij ∈

HomSm(W λ
j ,W

λ
i ). Then afterward, lift Ψij to all of HomSm(W λ,W λ) by declaring that

Ψij(W
λ
k ) = {0} for all k 6= j.

Now by construction, {Ψij | (i, j) ∈ [mλ]
2} forms a basis for HomSm(W λ,W λ) since this

collection is linearly independent, and dim(HomSm(W λ,W λ)) = m2
λ. Furthermore, using a

similar argument, {φi | i ∈ [mλ]} is a basis for HomSm(Sλ, V
⊗
m), where each φi spans the

one dimensional HomSm(Sλ,W λ
i ).

Note that Ψij ◦ φj ∈ HomSm(Sλ,W λ
i ) since the composition

Ψij ◦ φj : Sλ → W λ
i

defines another isomorphism. However, Ψij ◦ φj = cijφi, for some constant cij ∈ C. So, set
Θij = 1

cij
Ψij for each i, j. Then

Θij ◦ φl = δjlφi.

The collection
{Θij | (i, j) ∈ [mλ]

2} (3.3.2)
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is another basis for HomSm(W λ,W λ). Thus if Ξ =
∑

i,j aijΘij and ϕ =
∑

i biφi, then

Ξ ◦ ϕ =

(
mλ∑
i,j=1

aijΘij

)
◦

(
mλ∑
i=1

biφi

)

=

mλ∑
i,j,l=1

aijbl (Θij ◦ φl)

=

mλ∑
i,j,l=1

aijblδjlφi

=

mλ∑
i=1

(
mλ∑
l=1

ailbl

)
φi.

Therefore, if ei denotes the ith standard basis element, and Êij denotes the (i, j)th
transformation unit, i.e.

Êij(el) = δjlei,

then HomSm(Sλ, V
⊗
m) ∼= Cmi and HomSm(W λ,W λ) ∼= HomC(Cmi) using the identification,

φi ↔ ei and Θij ↔ Êij.

Motivated by this is the following definition.

Definition 3.3.1. Let λ ` n, and let W λ be the isotypic component associated to Sλ. The
set

Uλ := HomSm(Sλ, V
⊗
m)

is the multiplicity space associated to W λ.

It will be shown that Uλ is an irreducible GL(V )-module. But first, it needs to be
established that Uλ is indeed a GL(V )−module. Let A ∈ GL(V ) and ϕ ∈ Uλ Then

A⊗m ◦ ϕ ∈ Uλ

since the domain of
A⊗m ◦ ϕ

is Sλ, and since the composition of two functions that commute with Sm also commutes with
Sm.

In addition to this, A⊗m is complex linear. Thus, for all a, b ∈ C and ϕ, ψ ∈ Uλ,

A⊗m ◦ (aϕ+ bψ) = a(A⊗m ◦ ϕ) + b(A⊗m ◦ ψ).

Therefore, post-composition by A⊗m is also complex linear.
Furthermore, post-composition defines a group action. Indeed. first,

TmI ◦ ϕ = (idV
⊗
m) ◦ ϕ = ϕ.
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And second, let A,B ∈ GL(V ), let ϕ ∈ Uλ \ {0}, and suppose that f ∈ Sλ. Then

((A⊗mB) ◦ ϕ)(f) = (A⊗mB)(ϕ(f))

= A⊗m(B⊗m(ϕ(f))),

where

(A⊗m ◦ (B⊗m ◦ ϕ))(f) = A⊗m((B⊗m ◦ ϕ)(f))

= A⊗m(B⊗m(ϕ(f))).

By Schur’s lemma, ϕ is injective since it is not equal to 0, and Sλ is irreducible. Thus
(A⊗mB) ◦ ϕ and A⊗m ◦ (B⊗m ◦ ϕ) are also injective. Hence

(A⊗m ◦ (B⊗m ◦ ϕ))(f) = ((A⊗mB) ◦ ϕ)(f),

and therefore
(A⊗mB) ◦ ϕ) = A⊗m ◦ (B⊗m ◦ ϕ).

Now that Uλ is a GL(V )−module, the next lemma will be useful to show that Uλ is also
irreducible.

Lemma 3.3.2. Let V be a G−module, and ρ : G → GL(V ) denote the representation that
V carries as a G−module. If

{ρ(g) ∈ GL(V ) | g ∈ G}

spans all of HomC(V, V ), then V is irreducible.

Proof. Suppose that W ≤ V is a nonzero G−submodule, and let w ∈ W. First, lift w to a
basis {w, b1, ..., bn−1} of V . Now, for each j ∈ [n− 1], define Êj ∈ HomC(V, V ) by

Êj(w) := bj,

with Êj(bi) := 0 for each i ∈ [n− 1].
By the hypothesis that {ρ(g) ∈ GL(V ) | g ∈ G} spans HomC(V, V ), there exists Nj ≥ 1

and collections {gij} ⊆ G and {aij} ⊆ C such that

Êj =

Nj∑
i=1

ajiρ(gji)

for each j. However, this implies that

bj = Êj(w) =

 Nj∑
i=1

ajiρ(gji)

w =

Nj∑
i=1

(ajiρ(gji)w) .

Thus bj ∈ W since w ∈ W , and W is a G−submodule. Therefore W = V .

Theorem 3.3.3. Let λ ` m, and suppose W λ, the isotypic component associated to Sλ, is
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nonzero in V
⊗
m. Then the corresponding multiplicity space Uλ is an irreducible GL(V )-

module.

Proof. Since mλ > 0, let {φi | i ∈ [mλ]} be the collection of Sm− isomorphisms introduced
in 3.3.1, and recall from 3.3.2, the basis for HomSm(W λ,W λ), {Θij | (i, j) ∈ [mλ]

2}, such
that

Θij ◦ φl = δjlφi.

Now, {φi | i ∈ [mλ]} is a basis for Uλ since by definition, Uλ = HomSm(Sλ, V
⊗
m). With

this in mind, note that
HomSm(W λ,W λ) ∼= HomC(Uλ, Uλ),

which is established by use of the action of {Θij | (i, j) ∈ [mλ]
2} on {φi | i ∈ [mλ]} stated

above. Furthermore, by Theorem 3.2.5,

HomSm(V
⊗
m, V

⊗
m) = span{A⊗m | A ∈ GL(V )}.

Thus for each Θij, there exists an Nij ≥ 1 with collections {Alij} ⊆ GL(V ) and {alij} ⊆ C
such that

Θij =

Nij∑
l=1

alijA
⊗m
lij .

In other words, if ρ : GL(V ) → GL(Uλ) is the equivalent representation that Uλ carries
under the action

(A,ϕ)→ A⊗m ◦ ϕ,

then {ρ(A) ∈ GL(Uλ) | A ∈ GL(V )} spans all of HomC(Uλ, Uλ). Therefore Uλ is an irre-
ducible GL(V )−module by use of Lemma 3.3.2.

3.4 Realizations using the general projection operators

For each λ ` m, one will be able to construct an irreducible tensor representation of GL(V )
using the multiplicity space Uλ whenever the isotypic component W λ associated to Sλ is
nonzero. Considering Section 1.4, if W λ = 0, then naturally Uλ = 0. In this situation, no
corresponding irreducible tensor representation of GL(V ) appears. There is a necessary and
sufficient condition to determine whether or not Uλ = 0; however, this will be addressed in
Chapter 6. (See Corollary 6.3.3.)

Let λ = (λ1, λ2, ..., λl) ` m. The standard tableau of type λ, denoted tλ, is the tableau
such that

(tλ)1,j = j,

for all j ∈ [λ1], with
(tλ)i,j = (λ1 + λ2 + ...+ λi−1) + j,

for all 2 ≤ i ≤ l, and all j ∈ [λi]. Intuitively, tλ is obtained by listing the integers of
[m] in their natural order successively in the rows of the Ferrers diagram of the partition
λ. Considering Section 2.6, the general projection operator of type tλ naturally defines an

50



element of HomGL(V )(V
⊗
m, V

⊗
m) via the assignment

v→ εtλ(v),

for all v ∈ V
⊗
m. (More generally, any F ∈ C[Sm] defines one such element.) Consequently,

εtλ(V
⊗
m),

the image of V
⊗
m under εtλ , is a GL(V )-submodule in V

⊗
m.

For the following lemma, note the following isomorphism of GL(V )-modules

Uλ ∼= HomSm(〈εtλ〉L, V
⊗
m),

where the action of GL(V ) on HomSm(〈εtλ〉L, V
⊗
m) is given by post-composition. (For proof,

consider Sλ ∼= 〈εtλ〉L, as Sm-modules.)

Lemma 3.4.1. Let v ∈ V
⊗
m. Then the assignment,

evalv(F ) := F (v)

for F ∈ 〈εtλ〉L, defines an Sm-homomorphism from 〈εtλ〉L to V
⊗
m.

Moreover, the assignment
v 7→ evalv

is a GL(V )-homomorphism from V
⊗
m to HomSm(〈εtλ〉L, V

⊗
m) for each v ∈ V

⊗
m.

Proof. It is straightforward to see that evaluations of linear maps are themselves linear. So
let v ∈ V

⊗
m, and F ∈ 〈εtλ〉L. Then, for σ ∈ Sm,

evalv(σF ) = (σF )(v) = σ(F (v)) = σ(evalv(F )).

Thus evalv ∈ HomSm(〈εtλ〉L, V
⊗
m).

Now, define
E : V

⊗
m → HomSm(〈εtλ〉L, V

⊗
m)

by
E(v) := evalv.

Again, it is easy to verify that this map is linear. So, still considering the elements declared
above, let A ∈ GL(V ). Then

evalA⊗m(v)(F ) = F (A⊗m(v)) = A⊗m(F (v)) = A⊗m(evalv(F )).

Therefore,
E(A⊗m(v)) = evalA⊗m(v) = A⊗m ◦ evalv = A⊗m ◦ E(v).

Theorem 3.4.2. Let λ ` m. Suppose that W λ, the isotypic component associated to Sλ, is
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nonzero in V
⊗
m. Then, as GL(V )-modules,

Uλ ∼= εtλ(V
⊗
m).

Proof. First, the GL(V )-homomorphism defined in Lemma 3.4.1,

v 7→ evalv,

is surjective. Indeed, HomSm(〈εtλ〉L, V
⊗
m) is irreducible since W λ 6= 0. Thus by Corollary

1.3.4, the result follows.
Consequently, for some collection {vi ∈ V

⊗
m | i ∈ [dimUλ]},

{evalvi | i ∈ [dimUλ]}

is a basis for HomSm(〈εtλ〉L, V
⊗
m). Let φ ∈ HomSm(〈εtλ〉L, V

⊗
m). Considering Lemma 3.4.1,

evalεtλ (φ) := φ(εtλ)

is a GL(V )-homomorphism from HomSm(〈εtλ〉L, V
⊗
m) to V

⊗
m. In fact, this assignment is

nonzero since HomSm(〈εtλ〉L, V
⊗
m) 6= 0. Thus by Schur’s Lemma, it’s a GL(V )-isomorphism

as well.

With these last two points, note that

εtλ(v) = evalv(εtλ) = evalεtλ (evalv)

for any v ∈ V
⊗
m. Thus

evalεtλ (HomSm(〈εtλ〉L, V
⊗
m)) = εtλ(V

⊗
m).

Therefore, since evalεtλ is a GL(V )-isomorphism,

Uλ ∼= HomSm(〈εtλ〉L, V
⊗
m) ∼= εtλ(V

⊗
m)

as GL(V )-modules.

3.5 (Cn)
⊗
m as a GL(n,C)-module

With the standard basis, and the use of matrix multiplication on column vectors in Cn, one
sees (Cn)

⊗
m as a GL(n,C)-module in a completely equivalent fashion as a GL(Cn)-module.

In fact, all the theory established in this chapter will be applied to the setting of (Cn)
⊗
m as

a group module for GL(n,C), since the irreducible tensor representations of GL(n,C) carried
there provide all the irreducible representations for the subgroup SU(n).

52



Chapter 4

Finite-dimensional representations of
SL(n,C), and SU(n)

It has been claimed that all finite dimensional irreducible representations of SU(n) can be
realized on the various tensor powers of Cn. Two questions must be addressed if this is to
be true: how can it be guaranteed that restricting the irreducible tensor representations of
GL(n,C) to SU(n) also yields irreducible representations for the subgroup? And, how can it
be assured that this method captures all the finite dimensional irreducible representations for
SU(n)? The answers are mediated by a third matrix group, the special linear group SL(n,C).
In addition, it will be necessary to employ the analytical structure that these matrix groups
possess as Lie groups. This must occur, as the irreducible tensor representations are examples
of Lie group representations, carrying more structure such as continuity and various degrees
of differentiability. This chapter will establish relevant representation theory for matrix
Lie groups, and that the finite-dimensional irreducible continuous representations of SU(n)
are in one to one correspondence with complex analytic representations of SL(n,C). The
importance of this result will reveal itself in Chapters 5 and 6, where it will be established that
the complex analytic representations of SL(n,C) are themselves in complete correspondence
with integer partitions characterizing the irreducible tensor representations of GL(n,C). The
following presentation on matrix Lie group is modeled after the treatment provided by B.
Hall [1].

The vector spaces are assumed complex and finite-dimensional, “finite representation”
of a matrix group will mean “finite-dimensional,” and furthermore, topological concepts
concerning Mn(C) will be relative to the euclidean topology on Mn(C) induced by norm ||·||,
where

||X|| :=

(
n∑

k,l=1

|xkl|2
) 1

2

for all X ∈Mn(C).

53



4.1 Elementary matrix Lie group theory

4.1.1 The special linear group and the special unitary group

Let n be a positive integer. The (complex) special linear group of degree n, SL(n,C), is the
set of complex n×n matrices with determinant one. It is known that matrices with nonzero
determinant are invertible. Therefore SL(n,C) forms a subgroup of GL(n,C).

Consider 〈· | ·〉, the standard inner product on Cn. The group of unitary matrices of
degree n, denoted U(n), is the set of matrices that preserve the inner product, 〈· | ·〉, i.e.

〈Av, | Aw〉 = 〈v | w〉,

for each A ∈ U(n) and all v, w ∈ Cn. The group of special unitary matrices of degree n,
SU(n), consists of all unitary matrices with determinant equal to 1. In other words,

SU(n) = U(n) ∩ SL(n,C)

and in particular, SU(n) ⊆ SL(n,C). An alternative description of SU(n) is

SU(n) = {A ∈Mn(C) | AA† = I, detA = 1},

where A† denotes the conjugate transpose of A ∈Mn(C).

4.1.2 GL(n,C), SL(n,C), and SU(n) as matrix Lie groups

Pleasantly enough, matrix Lie groups have simple origins. It might not apparent, but they
are, in fact, smooth manifolds (some being complex manifolds). The following definition
avoids the language of manifolds; however, this connection will be established later in Section
4.4.

For the following, consider the subspace topology on GL(n,C), inherited from the eu-
clidean topology on Mn(C).

Definition 4.1.1. A matrix Lie group is a closed subgroup of GL(n,C).

By the definition, GL(n,C) is clearly a matrix Lie group. In addition, SL(n,C) and SU(n)
are also matrix Lie groups. For starters, being a polynomial map in the matrix entries,

det : Mn(C)→ C

defines a continuous function. By the definition of SL(n,C),

SL(n,C) = det−1{1}.

Thus, as the inverse image of a closed set under a continuous function, SL(n,C) is a closed
subset of Mn(C). However SL(n,C) is already contained in GL(n,C). Therefore SL(n,C) a
matrix Lie group.
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On the other hand, The assignment

A 7→ AA†

is continuous. Thus U(n) = {A ∈ Mn(C) | AA† = In} is closed subset of Mn(C). Con-
sequently, being the intersection of two closed subsets, SU(n) is closed as well. Therefore
SU(n) is a matrix Lie group since it a subgroup of GL(n,C) that is closed in Mn(C).

Matrix Lie groups form a subset of Lie groups in general. For reference, here is the
definition of an arbitrary Lie group.

Definition 4.1.2. A (complex) Lie group G is a group that is also a (complex) smooth
manifold such that

G×G → G

(x, y) 7→ x−1y

is a (complex analytic) smooth map between (complex) smooth manifolds.

4.1.3 The matrix exponential and logarithm

Interestingly enough, one can extend the definition of the real/complex exponential to the
setting of Mn(C). This construct will be vital in the developments of theory matrix Lie
groups. For example, due to the fact that the Lie groups of consideration are all matrix
Lie groups, one will define the Lie algebra in terms of one parameter subgroups using the
exponential map.

Definition 4.1.3. The exponential map, or matrix exponential of X ∈Mn(C) is defined by

eX := I +X +
X2

2
+ ...+

Xk

k!
+ ... .

Remark. It was assumed that Mn(C) is a valid domain for the matrix exponential. This is
indeed true. Since ∣∣∣∣∣∣∣∣ K∑

k=1

Xk

k!

∣∣∣∣∣∣∣∣ ≤ K∑
k=1

||X||k

k!
≤ e||X||

for each K ≥ 1, eX is convergent for all X ∈ Mn(C). Furthermore, note that the matrix
exponential is continuous on Mn(C) (See the proof of Proposition 4.1.5).

Having a significantly more restricted domain, is the related matrix logarithm.

Definition 4.1.4. Let A ∈Mn(C). Then whenever convergence occurs, the matrix logarithm
of A is defined by

log(A) :=
∞∑
k=1

(−1)m+1 (A− I)k

k
.

The following proposition shows that the matrix logarithm provides a continuous local
inverse to the exponential map.
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Proposition 4.1.5. Let A ∈Mn(C). Then the function

A 7→ log(A)

exists, is continuous, and
elog(A) = A

whenever ||A− I|| < 1. Moreover, if ||A|| < ln 2, then ||eA−I|| < 1 and

log(eA) = A.

Proof. See the proof found in [1]. However, the basic idea is to establish the proposition for
diagonalizable matrices. Then use the fact that these matrices are dense in Mn(C) since the
matrix exponential and logarithm are continuous operations. To see continuity, note that
uniform convergence of continuous partial sums is occurring for each operation on the sets
{X ∈ Mn(C) | ||X|| ≤ R} of appropriate R > 0. This shows continuity on these 0 for each
series

In addition to continuity, the exponential map and matrix logarithm are smooth (where
appropriate). Consider the following definition concerning differentiability of curves.

Definition 4.1.6. Let I be an open interval, γ : I → Mn(C) be a matrix valued function,
and suppose t ∈ I. If the limit exists, then the derivative of γ at t is defined by

dγ(t)

dt
:= lim

h→0

γ(t+ h)− γ(t)

h
.

Note that γ is differentiable at t if and only if, for all 1 ≤ i, j ≤ n, γij is differentiable at t.
Furthermore, if γ is differentiable on all of its domain, then γ is smooth whenever each γij
is smooth.

Proposition 4.1.7. For each X ∈Mn(C),

t→ etX

defines a smooth curve on R, with

d

dt
etX = X etX .

Proof. The entries of etX are given by convergent power series in the variable t. Indeed, for
each i, j ∈ [n],

(etX)i,j =
∞∑
k=0

tk(Xk)i,j
k!

.

Thus etX defines a smooth function from R into Mn(C). Now one is able to differentiate
convergent power series term-by-term. Therefore the result follows. For more detail see
[1].
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Definition 4.1.8. A continuous map γ : R → GL(n,C) is a one parameter subgroup of
GL(n,C) if

(1) γ(0) = I, and

(2) γ(t+ s) = γ(t)γ(s), for all t, s ∈ R.

In other words, one parameter subgroups are continuous group homomorphisms from R into
GL(n,C). Importantly, these objects are well behaved in the sense that they must take the
form of a smooth curve outlined in Proposition 4.1.7.

Proposition 4.1.9. Let γ : R→ GL(n,C) be a one parameter subgroup of GL(n,C). Then
there exists a unique X ∈Mn(C) such that

γ(t) = etX

for all t.

Proof. Uniqueness is immediate by considering Proposition 4.1.7. Indeed, if there is an
X ∈Mn(C) such that γ(t) = etX for all t, then

X =
d

dt
(γ(t))|t=0

To see existence, let ε < ln 2, define

N ε
2

:=
{
X ∈Mn(C)

∣∣∣ ||X|| < ε

2

}
,

and set NI := {eX | X ∈ N ε
2
}. If γ is a one parameter subgroup of GL(n,C), then by

continuity of γ, there exists a δ > 0 such that

γ(t) ∈ NI

for all |t| ≤ δ. As a result, log γ(t) will be defined for such values of t.
Consider the element

X =
1

δ
log γ(δ).

First, γ(δ) = eδX since δX = log γ(δ). Furthermore, γ( δ
2
) ∈ NI , and thus

log γ

(
δ

2

)
∈ N ε

2
.

Consequently 2 log γ( δ
2
) ∈ Nε since

∣∣∣∣2 log γ

(
δ

2

) ∣∣∣∣ < 2
ε

2
= ε.
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Now, as a one parameter subgroup, γ(t)2 = γ(2t) for any t. Thus

e2 log γ(
δ
2) = γ

(
δ

2

)2

= γ

(
2
δ

2

)
= γ(δ) = eδX .

However, since e |Nε is injective, 2 log γ( δ
2
) = δX. Hence log γ( δ

2
) = δX

2
, and γ( δ

2
) = e

δ
2
X .

By repeating this argument with γ( δ
4
), one will find that log γ( δ

4
) = δX

4
, and consequently

γ( δ
4
) = e

δ
4
X . Continuing,

γ

(
δ

2k

)
= e(

δ

2k
)X

for all positive integers k. Thus for any integer m,

γ

(
m
δ

2k

)
= γ

(
δ

2k

)m
= e(m

δ

2k
)X .

Finally, D = {m δ
2k
| m ∈ Z, k ∈ N} is dense in R, and

γ(t) = etX

for all t ∈ D. Therefore γ(t) = etX for all t ∈ R since they agree on a dense subset.

4.1.4 The matrix Lie algebra

The Lie algebras of SU(n) and SL(n,C) will prove to be an invaluable tool in connecting
properties between the Lie group representations of the two matrix Lie groups. In addition
to this, by appealing to the Lie algebra, one will be able to establish the smoothness and
analyticity of Lie group representations for SU(n) and SL(n,C), respectively. In the language
of manifolds, the Lie algebra is the tangent space at the identity element of the Lie group. In
this treatment however, considering Proposition 4.1.9, the matrix Lie algebra will be defined
equivalently in terms of one parameter subgroups.

Definition 4.1.10. Let G be a matrix Lie group. Its Lie algebra, denoted g, is defined by
the following set

g := {X ∈Mn(C) | etX ∈ G, ∀t ∈ R}.

For a simple illustration, consider GL(n,C) itself. Its Lie algebra is denoted gl(n,C). For
any X ∈Mn(C), eX is invertible with (

eX
)−1

= e−X .

Therefore
gl(n,C) = Mn(C).

Theorem 4.1.11. Let G be a matrix Lie group, and X, Y be in g. Then

(1) rX + sY ∈ g, for all real numbers r and s, and
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(2) [X, Y ] ∈ g

Proof. This proof will make use of Lie’s product formula:

eX+Y = lim
m→∞

(
e
X
m e

Y
m

)m
.

Let r, s ∈ R. If X, Y ∈ g, then clearly rX and sY are as well. In particular, if m is a
positive integer, then tX

m
and tY

m
are in g for any real t. Therefore(

e
tX
m e

tY
m

)m
∈ G

since, by definition of g, both e
tX
m and e

tY
m are in G. Now, matrix Lie groups are closed

subgroups of GL(n,C), and etX+tY is invertible. Thus

et(X+Y ) = etX+tY = lim
m→∞

(
e
tX
m e

tY
m

)m
∈ G.

Therefore
X + Y ∈ g.

Finally, suppose that A ∈ G, for each real t,

et(AXA
−1) = A etX A−1.

Thus AXA−1 ∈ g. Using this with the identity

[X, Y ] =
d

dt

(
etX Y e−tX

)∣∣
t=0

,

shows that [X, Y ] ∈ g. Indeed, g is a closed subset of Mn(C).

By Theorem 4.1.11, matrix Lie algebras equipped with the matrix commutator are real
Lie algebras in the abstract sense, i.e. a real vector space endowed with an anti-symmetric
bilinear product satisfying Jacobi’s identity. However for GL(n,C), gl(n,C) is clearly a
complex vector space. In other words, gl(n,C) is a complex Lie algebra, a Lie algebra that
is also a complex-linear subspace of gl(n,C). Moreover, SL(n,C) too has a complex Lie
algebra, seen by the following theorem.

Theorem 4.1.12. Let sl(n,C) denote the Lie algebra to the matrix Lie group SL(n,C).
Then

sl(n,C) = {X ∈Mn(C) | tr(X) = 0}.

Furthermore, sl(n,C) is a complex Lie algebra.

Proof. This proof will be centered on the following identity. For any X ∈Mn(C),

det(eX) = etr(X) .
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Thus if X satisfies tr(X) = 0, then

det(etX) = etr(tX) = 1

for all real t. Therefore X ∈ sl(n,C).
Conversely, suppose X ∈ sl(n,C). Then

det(etX) = 1

for all real t. Thus

0 =
d

dt

(
det(etX)

)∣∣
t=0

=
d

dt

(
etr(X)t

)∣∣
t=0

= tr(X).

Therefore
sl(n,C) = {X ∈Mn(C) | tr(X) = 0}.

Finally, sl(n,C) is a complex Lie algebra since the trace of a matrix is a complex-linear op-
eration, and the kernel of a C-linear map from gl(n,C) to Cr equivalently defines a complex-
linear subspace of gl(n,C).

Like GL(n,C) and SL(n,C), matrix Lie groups having complex Lie algebras are called com-
plex matrix Lie groups.

Theorem 4.1.13. Let su(n) denote the Lie algebra of the matrix Lie group SU(n). Then

su(n) = {X ∈Mn(C) | X† = −X, tr(X) = 0}.

Proof. By definition,

su(n) = {X ∈Mn(C) | etX ∈ SU(n), ∀t ∈ R}.

Since SU(n) is a subgroup of SL(n,C), tr(X) = 0 whenever X ∈ su(n). Two more useful
identities will be used,

eX
†

= (eX)†,

and secondly,
eX+Y = eX eY

whenever XY = Y X. Suppose X† = −X. Then XX† = X†X. Thus for each real t,

etX(etX)† = etX etX
†

= et(X+X†)

= et(X−X)

= I.
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Therefore X ∈ U(n).
Conversely, suppose etX ∈ U(n) for each real t, and define γ(t) = etX(etX)†. Then, for

each t, γ(t) = I. Thus

0 =
d

dt
γ(t)|t=0

=

(
d

dt
etX
∣∣
t=0

)
(e0X)† + e0X

(
d

dt
(etX)†

∣∣
t=0

)
= X +X†.

Consequently X† = −X. Therefore,

su(n) = {X ∈Mn(C) | X† = −X, tr(X) = 0}.

Remark. If X† = −X, then X is called a skew-hermitian matrix.

It is relevant to point out that while gl(n,C) and sl(n,C) are complex Lie algebras, su(n)
is strictly real. To see this, suppose X ∈ su(n). Then

(iX)† = (−i)(−X) = iX.

As a consequence, iX ∈ su(n) if and only if X = 0. Therefore su(n) is not a complex Lie
algebra, and SU(n) is not a complex matrix Lie group.

4.2 Representations of matrix Lie groups and Lie algebras

Considering the analytic structure that Lie groups possess, a natural question arises. What
is an appropriate definition of a Lie group representation? Well, in order to see interesting
results by use of the Lie algebra, it definitely should incorporate continuity. But is continuity
enough? That is, should differentiability also be assumed in the definition? Remarkably,
it turns out that that assuming differentiability is unnecessary, as smoothness of Lie group
representations results just from the assumption of continuity. However, a representation
being complex analytic is a special case. There are simple examples of continuous representa-
tions failing to be complex analytic maps. This section defines these objects and introduces
representations of Lie algebras with the modules that carry them.

Note that finite-dimensional representation will be assumed in the following definitions
concerning Lie groups and Lie algebras since these representations will be the only ones of
interest to the work here.

Definition 4.2.1. A representation of a matrix Lie group ρ : G→ GL(V ) is a representation
of G as an abstract group that is also a continuous map. A representation of a complex
Lie group ρ : G → GL(V ) is complex analytic if the entries of ρ(A) depend analytically
on the matrix entries of A ∈ G ⊆ GL(n,C), In addition, a matrix representation for G
is a continuous group homomorphism ρ : G → GL(m,C). A complex analytic matrix
representation is defined similarly.
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Recall that GL(V ) can be identified with GL(n,C). So, let gl(V ) denote the Lie algebra
to GL(V ). A real or complex Lie algebra homomorphism is a real or complex linear map
that preserves the Lie bracket.

Definition 4.2.2. Let g be a complex Lie algebra, and V be a complex vector space. A
complex-linear Lie algebra representation is a complex Lie algebra homomorphism

p : g→ gl(V ).

Furthermore, the vector space V is a (left) g-module whenever there is an binary operation
from g× V to V

(X, v) 7→ Xv

such that, for all v, w ∈ V ; X, Y ∈ g; and complex numbers a, b ∈ C,

(1) X(av + bw) = a(Xv) + b(Xw),

(2) (aX + bY )v = a(Xv) + b(Y v), and

(3) [X, Y ]v = X(Y v)− Y (Xv).

If g is a real Lie algebra, then one defines a g-module by restricting the scalars from C to
R in condition (2) of Definition 4.2.2. Similarly, one obtains a (general) complex Lie algebra
representation for the real Lie algebra g by requiring

p : g→ gl(V )

to be a real Lie algebra homomorphism. From this point on “Lie algebra representation”
will mean “(general) complex Lie algebra representation.”

Like the case with groups, there is a bijective correspondence between (complex-linear)
Lie algebra representations of g and g−modules. Indeed, if p : g → gl(V ) is a (complex-
linear) Lie algebra representation, then V becomes a g−module by the assignment

(X, v) 7→ p(X)v.

Conversely, conditions (1) and (2) for the binary operation in Definition 4.2.2 define a
(complex-linear) Lie algebra homomorphism from g to gl(V ) whenever V is a g−module.

Some proofs can be simplified by just considering matrices, which warrants the following
definition.

Definition 4.2.3. Let g be a complex or real Lie algebra. A (complex-linear) Lie algebra
matrix representation is a (complex) real Lie algebra homomorphism

p : g→ gl(n,C).

Remark. Note that terms like irreducible, invariant, g-isomorphic, and g-submodule are anal-
ogously defined for representations and matrix representations of Lie algebras. Even Schur’s
Lemma is valid as well.
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Proposition 4.2.4. Let G be a matrix Lie group, and let ρ : G→ GL(V ) be a representation
for G. Then there exists a unique Lie algebra representation

·
ρ : g→ gl(V )

such that
ρ(eX) = e

·
ρ(X)

for all X ∈ g. Moreover, the representation
·
ρ is explicitly given by

·
ρ(X) =

d

dt

(
ρ(etX)

)∣∣
t=0

.

Proof. Since V can be identified with Cn, and likewise, GL(V ) with GL(n,C), it will suffice
to assume that one is dealing with a matrix representation.

Let X ∈ g, and define γX : R→ GL(n,C) by

γX(t) = ρ(etX).

Clearly, γX is continuous and γX(0) = I. Furthermore, γX(t+s) = γX(t)γX(s) for all s, t ∈ R.
To see this, ρ is a group homomorphism, and e(s+t)X = esX etX . As a result, γX is a one
parameter subgroup of GL(n,C). Thus by Proposition 4.1.9, there exists a unique matrix Y
such that γX(t) = etY for all t.

Now, the claim is that
·
ρ : g→ gl(n,C), defined by

·
ρ(X) := Y such that ρ(etX) = etY ,

is the unique Lie algebra matrix representation in mind.

First,
·
ρ is well-defined by Proposition 4.1.9. Next, γX(1) = ρ(eX). Thus by the definition

of
·
ρ(X),

ρ(eX) = e
·
ρ(X) .

Furthermore,
·
ρ(X) =

d

dt

(
et
·
ρ(X)

)
|t=0 =

d

dt

(
ρ(etX)

)∣∣
t=0

.

Now one just needs to confirm that
·
ρ is a Lie algebra matrix representation of g. To start,

·
ρ is linear. Indeed, let b ∈ R, then γX(tb) = etb

·
ρ(X) . By comparing this to γX(t) = et

·
ρ(X),

·
ρ(bX) = b

·
ρ(X).
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Now let Z ∈ g. Then, by use of Lie’s Product Formula and the continuity of ρ,

ρ(et(X+Z)) = ρ(etX+tZ)

= ρ
(

lim
m→∞

(
e
tX
m e

tZ
m

)m)
= lim

m→∞

(
ρ(e

tX
m )ρ(e

tZ
m )
)m

= lim
m→∞

(
e
t
·
ρ(X)
m e

t
·
ρ(Z)
m

)m
= et

·
ρ(X)+t

·
ρ(Z) .

Thus ρ(et(X+Z)) = et(
·
ρ(X)+

·
ρ(Z)) . But

·
ρ(X+Z) is uniquely determined from X+Z. Therefore

·
ρ(X + Z) =

·
ρ(X) +

·
ρ(Z).

Finally,
·
ρ(XZ − ZX) =

·
ρ(X)

·
ρ(Z) − ·

ρ(Z)
·
ρ(X). This is shown by the following. Let

A ∈ G. Then,

et
·
ρ(AZA−1) = ρ(etAZA

−1

) = ρ(A etZ A−1) = ρ(A)ρ(etZ)ρ(A)−1.

However,

ρ(A)ρ(etZ)ρ(A)−1 = ρ(A) et
·
ρ(Z) ρ(A)−1 = etρ(A)

·
ρ(Z)ρ(A)−1

.

Hence,
·
ρ(AZA−1) = ρ(A)

·
ρ(Z)ρ(A)−1, by uniqueness. Now using the identity

d

dt

(
etX Y e−tX

)∣∣
t=0

= XY − Y X = [X, Y ],

one has

[
·
ρ(X)

·
ρ(Z)] =

d

dt

(
et
·
ρ(X) ·ρ(Z) e−t

·
ρ(X)

)∣∣∣
t=0

=
d

dt

(
ρ(etX)

·
ρ(Z)ρ(e−tX)

)∣∣∣
t=0

=
d

dt

(
·
ρ(etX Z e−tX)

)∣∣∣
t=0

= lim
t→0

·
ρ(etX Z e−tX)− ·

ρ(Z)

t

=
·
ρ

(
lim
t→0

etX Z e−tX −Z
t

)
=

·
ρ([X,Z]).
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Corollary 4.2.5. Let
·
ρ : g→ gl(V ) be induced by ρ : G→ GL(V ). Then

·
ρ(AXA−1) = ρ(A)

·
ρ(X)ρ(A−1)

for all X ∈ g, and A ∈ G.

Remark. At this point, one can’t appeal to
·
ρ being the differential of a smooth map between

manifolds, since it has yet to be established that ρ, being a Lie group representation, is a
smooth map. (See Corollary 4.4.4)

Complex analytic representations of SL(n,C) are to be put into one to one correspondence
with representations of SU(n). Therefore when considering matrix Lie groups GL(n,C) and
SL(n,C), only complex analytic representations will be of interest.

4.3 The complexification of su(n).

Complexification is the first step towards connecting complex analytic representations of
SL(n,C) with representations of SU(n). This correspondence ultimately rests on the fact
that the complexification of the real Lie algebra su(n) is isomorphic, as a complex Lie algebra,
to sl(n,C).

Definition 4.3.1. Let g be a real Lie algebra. Then the complexification of g, denoted gC,
is the complex Lie algebra

g⊗C C.

Scalar multiplication by i is obtained by setting

i(X + iY ) := −Y + iX,

and the Lie bracket is obtained through the assignment

[X1 + iY1, X2 + iY2] := [X1X2]− [Y1Y2] + i ([X1Y2] + [Y1X2]) .

Remark. The notation X ⊗ (u + iv) is replaced by uX + viX due to the more natural
appearance of the latter.

To show that the complexification of su(n) is isomorphic to sl(n,C), the following basis
for sl(n,C) will be utilized.

For i, j ∈ [n], let Eij denote the matrix such that there is a 1 in the (i, j)th position and
a 0 elsewhere. For i ∈ [n− 1], set Hi := Eii − Ei+1i+1. Then the basis of consideration is

E = {Eij | 1 ≤ i 6= j ≤ n} ∪ {Hi | i ∈ [n− 1]}. (4.3.1)

Theorem 4.3.2. As complex Lie algebras,

su(n)C ∼= sl(n,C).
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Proof. First, one will need a basis of su(n) in which to work. Suppose X ∈ SU(n). Then
X† = −X, which implies that

X =


ih1 x12 · · · x1n
−x12 ih2 · · · x2n

...
...

. . .
...

−x1n −x2n · · · ihn

 ,
for some collection xi,j ∈ C, and collection hl ∈ R such that h1 + h2 + ... + hn = 0. This
motivates the following selection. For each 1 ≤ l < k ≤ n, set

Xlk := − i
2

(Ekl + Elk) and Ylk :=
1

2
(Ekl − Elk).

In addition, for each l∈ [n− 1] define

Tl := − i
2

(Ell − El+1l+1) .

By considering the basis of sl(n,C) defined in 4.3.1, for each l < k,

Elk = −Ylk + iXlk and Ekl = Ylk + iXlk,

and, for each l ∈ [n− 1],
Hl = 2iTl.

Thus the linearly independent set,

{Elk | 1 ≤ l 6= k ≤ n} ∪ {Hl | l ∈ [n− 1}

is contained in the subspace

〈zX | X ∈ su(n), z ∈ C〉 ⊆Mn(C).

Finally,
dim〈zX | X ∈ su(n), z ∈ C〉 = n2 − 1 = dim sl(n,C).

Therefore
su(n)C ∼= 〈zX | X ∈ su(n), z ∈ C〉 = sl(n,C),

The true utility of complexification comes from the application of following theorem.

Theorem 4.3.3. Let g be a real Lie algebra. For every Lie algebra representation p : g →
gl(n,C), there exists a unique complex-linear Lie algebra representation q : gC → gl(n,C)
such that q|g = p, and

q(X + iY ) = p(X) + ip(Y )

for all X, Y ∈ g.
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Furthermore, q is irreducible if and only if p is irreducible; and moreover, two Lie algebra
representations p1 and p2 are equivalent if and only if their complex extensions q1 and q2 are
equivalent.

Proof. Define q : gC → gl(n,C) by setting

q(X + iY ) := p(X) + ip(Y )

for X, Y ∈ g. It is quick to verify that q is a real linear map, so consider

q(i (X + iY )) = q(−Y + iX)

= p(−Y ) + ip(X)

= −p(Y ) + ip(X)

= i (p(X) + ip(Y )) .

= iq(X + iY ).

Consequently, q is a complex linear transformation.
Now let X1, X2, Y1, Y2 ∈ g. Then,

q([X1 + iY1, X2 + iY2]) = q ([X1, X2]− [Y1, Y2] + i ([X1, Y2] + [Y1, X2])) .

= p ([X1, X2]− [Y1, Y2]) + ip ([X1, Y2] + [Y1, X2])

= [p(X1), p(X2)]− [p(Y1), p(Y2)] + i ([p(X1), p(Y2)] + [p(Y1), p(X2)])

= [p(X1) + ip(Y1), p(X2) + ip(Y2)]

= [q(X1 + iY1), q(X2 + iY2)].

Therefore, q is a complex linear Lie algebra homomorphism.
By computing q(X + iY ) with Y = 0, it’s clear that q|g = p. To see that q is unique,

consider the following. Suppose r : gC → gl(n,C) is another Lie algebra homomorphism
such that r|g = p. Then r(X) = p(X) for all X ∈ g. Furthermore, r is complex linear. Thus

r(X + iY ) = r(X) + ir(Y ) = p(X) + ip(Y )

for X, Y ∈ g. Therefore r = q.
Suppose p is irreducible, and W is a gC−submodule of V. But q|g = p. Thus W is a

g−submodule. As a result, W must be trivial. Therefore q is irreducible.
Conversely, suppose that q is irreducible, and W is a g−submodule. Let w ∈ W, and

X, Y ∈ g. Then
q(X)w = (p(X) + ip(Y ))w = p(X)w + ip(Y )w.

By hypothesis, p(X)w ∈ W and ip(Y )w ∈ W . Thus

q(X)w = p(X)w + ip(Y )w ∈ W.

Consequently W is gC−submodule of V. Hence W is trivial, and therefore p is irreducible.
Finally, suppose p1 and p2 are two equivalent Lie algebra representations for g, and let
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φ : Cn → Cn be a corresponding g− isomorphism. Let X, Y ∈ g, and v ∈ Cn. Then

q1(X + iY )(φ(v)) = (p1(X) + ip1(Y )) (φ(v))

= p1(X)(φ(v)) + i (p1(Y )(φ(v)))

= φ(p2(X)(v)) + i (φ(p2(Y )(v)))

= φ(p2(X)(v)) + φ(ip2(Y )(v))

= φ (p2(X)(v) + ip2(Y )(v))

= φ (q2(X + iY )(v)) .

Thus q1 and q2 are equivalent as well. The reverse implication is trival, and therefore the
proof is complete.

Theorem 4.3.3 will have profound influences in Section 4.4.

4.4 The correspondence between SL(n,C) and SU(n).

Two main goals are present for this concluding section. The first is to establish that matrix
Lie groups are smooth manifolds, with the additional property that complex matrix Lie
groups are complex manifolds. This establishment will allow for justification that Lie group
representations, as currently defined, are already smooth, and that complex analytic Lie
group representations give rise to, and result from the existence of a complex linear Lie
algebra representations. The second is to finalize the one to one correspondence between the
complex analytic Lie group representations of SL(n,C) and the Lie group representations of
SU(n).

Lemma 4.4.1. Let G be a matrix Lie group. Suppose there exists a sequence (Ak)k∈N in
G \ {I}, such that logAk is defined for all k, and

lim
k→∞

Ak = I.

If, for some X ∈Mn(C),

lim
k→∞

logAk
|| logAk||

= X,

then X ∈ g.

Proof. First note that if (ak)k∈N is a sequence of positive real numbers converging to zero,
then, for all t ∈ R, one can choose integers mk such that

lim
k→∞

mkak = t.

Now, Amkk ∈ G for all k, and

Amkk = emk logAk

= e
(mk|| logAk||)

logAk
|| logAk|| .
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Thus

lim
k→∞

(
(mk|| logAk||)

logAk
|| logAk||

)
= tX.

Consequently

etX = lim
k→∞

e
(mk|| logAk||)

logAk
|| logAk||

= lim
k→∞

Amkk .

As a result, etX ∈ G since G is closed. Therefore X ∈ g.

The following theorem shows that, for each matrix Lie Group G, the matrix exponential
maps an open neighborhood about 0 ∈ g, homeomorphically onto an open neighborhood
about I ∈ G.

Theorem 4.4.2. For all 0 < ε < ln2, let

Nε = {X ∈Mn(C) | ||X|| < ε}

denote the ε−ball about the zero matrix. The

e(Nε) ⊆ GL(n,C),

is an open neighborhood about I ∈ GL(n,C) homeomorphic to Nε, via e |Nε .
Furthermore, for each matrix Lie group G, there exists an 0 < ε < ln 2 such that

e(Nε ∩ g) = e(Nε) ∩G,

where e |Nε∩g is a homeomorphism.

Proof. The first assertion of theorem is immediate from Proposition 4.1.5. So, consider a
matrix Lie group G with its Lie algebra g. By the definition of g,

e(Nε ∩ g) ⊆ e(Nε) ∩G,

whenever 0 < ε < ln 2. What needs to be shown is that, there exists an ε ∈ (0, ln 2), such
that, for each A ∈ e(Nε),

logA ∈ g

whenever A ∈ G. The argument proceeds using contradiction.
Suppose not. Then there exists a sequence (Ak)k∈N in G \ {I} such that

lim
k→∞

Ak = I,

yet, for each k, logAk /∈ g. Now consider Mn(C) as Cn2
with the standard inner product,

〈·, ·〉. Then logAk /∈ g implies there exists an Xk ∈ g, and Yk ∈ g⊥ \ {0} such that

Ak = eXk eYk
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with both Xk and Yk tending to 0 as k goes to ∞. Indeed,

Mn(C) = g⊕ g⊥.

So define ϕ : Mn(C)→ GL(n,C) by

ϕ(B) := eX eY ,

where X ∈ g, and Y ∈ g⊥ such that B = X + Y . Note that ϕ is well defined, and has a
derivative equal to the identity at 0. Consequently, by the inverse function theorem, ϕ has a
continuous local inverse, defined in some neighborhood of I.

For Ak = eXk eYk , Yk 6= 0. Otherwise, Ak = eXk , and hence logAk = Xk ∈ g. Now, set

Bk = e−Xk Ak = eYk .

Then
lim
k→∞

Bk = I.

Furthermore, since {Y ∈ g⊥ | ||Y || = 1} is compact, find a subsequence (Ykj)j∈N such that,
for some YL ∈ g⊥ with ||YL|| = 1,

lim
j→∞

(
Ykj
||Ykj ||

)
= YL.

By Lemma 4.4.1,
YL ∈ g.

However, this means YL = 0 since YL ∈ g ∩ g⊥. This contradicts the fact that ||YL|| = 1.
Therefore there exists an ε ∈ (0, ln 2), such that

e(Nε) ∩G ⊆ e(Nε ∩ g).

Finally, considering Proposition 4.1.5,

e |Nε∩g : Nε ∩ g→ e(Nε) ∩G

is a continuous bijection with continuous inverse

log |e(Nε)∩G : e(Nε) ∩G→ Nε ∩ g.

Therefore e |Nε∩g is a homeomorphism, and the neighborhoods Nε ∩ g and e(Nε) ∩ G are
homeomorphic.

This has far reaching consequences. The first is that matrix Lie groups are smooth
manifolds with complex matrix Lie groups being complex manifolds. The following corollary
addresses the case for SU(n) and SL(n,C).

Corollary 4.4.3. SU(n) is a smooth manifold of (real) dimension n2 − 1. SL(n,C) is a
complex manifold with complex dimension n2 − 1.
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Proof. Pick 0 < ε < ln 2 such that

e(Nε ∩ su(n)) = e(Nε) ∩ SU(n)

with e |Nε∩su(n) being the homeomorphism. Set N0 = Nε ∩ su(n), and NI = e(Nε) ∩ SU(n).
Since they are defined in terms of power series, e |N0 : N0 → NI is an analytic map, and its
local inverse log |NI : NI → N0 is analytic as well. Also recall, for each A ∈ SU(n), the map

LA : B → AB,

is smooth on Mn(C).Set NA = ANI , and define ϕA : NA → N0 by

ϕA(B) = log(A−1B).

Then the following collection forms a smooth atlas for SU(n)

{(NA, ϕA) | A ∈ SU(n)}.

Therefore SU(n) is a smooth manifold of (real) dimension dim su(n) = n2 − 1.
Note: Technically, one should have chosen a basis of su(n) to identify su(n) with Rn2−1

and N0 with some open subset of Rn2−1. Then one would have a legitimate smooth atlas
of SU(n). However, implementing this into the previous argument would further complicate
things through a more cumbersome system notation.

Consider SL(n,C). Its Lie algebra, sl(n,C), is complex. Thus the same argument used in
the case for SU(n) shows that SL(n,C) is a smooth manifold of (real) dimension 2(n2 − 1).
However, consider the smooth atlas

{(NA, ϕA) | A ∈ SL(n,C)},

with the transition functions

{ϕA ◦ ϕ−1B |ϕB(NA∩NB) : ϕB(NA ∩NB)→ ϕA(NA ∩NB) | NA ∩NB 6= ∅}.

First, ϕB(NA ∩NB) and ϕA(NA ∩NB) are open subsets of Cn2−1. Second,

LA : Mn(C)→Mn(C)

is complex analytic for each A ∈Mn(C). Thus

ϕA ◦ ϕ−1B |ϕB(NA∩NB) = log ◦ LA−1B ◦ e |ϕB(NA∩NB)

is a complex analytic map for all A,B ∈ SL(n,C) such that NA ∩NB 6= ∅. Hence

{(NA, ϕA) | A ∈ SL(n,C)}

is smooth atlas for SL(n,C) with complex analytic transition functions. Therefore SL(n,C)
is a complex manifold of (complex) dimension n2 − 1.
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Remark. This proof can be adapted to show that any matrix Lie group is a smooth manifold,
and additionally, a complex manifold whenever its Lie algebra is complex. In particular,
GL(n,C) is a complex manifold.

A second consequence of Theorem 4.4.2 is the following anticipated result concerning Lie
group representations and complex analytic Lie group representations.

Corollary 4.4.4. If ρ : G→ GL(V ) is a representation for G, then ρ is smooth.

Moreover, if G is a complex matrix Lie group, then
·
ρ : g→ g(V ) is a complex linear Lie

algebra representation if and only if ρ is complex analytic.

Proof. Like before, the proof appeals to matrix representations of G.
Let A ∈ G, (ϕA, NA) be a local chart for A, and (φρ(A), N

′
ρ(A)) be a local chart for ρ(A)

in GL(n,C), as outlined in Corollary 4.4.3, Suppose, B ∈ NA ∩ ρ−1(N ′ρ(A)), then B = A eX

for some X ∈ ϕA(NA ∩ ρ−1(N ′ρ(A))). Now,

ρ(B) = ρ(A eX) = ρ(A) e
·
ρ(X) .

Thus locally,

φρ(A) ◦ ρ ◦ ϕ−1A |W =
·
ρ|W ,

where W = ϕA(NA∩ρ−1(N ′ρ(A))). A real linear map sending W into Cn2
is smooth. Therefore,

ρ is smooth on G.
For the second assertion of the corollary, note that if G is a complex matrix Lie group,

and
·
ρ : g→ g(n,C)

is a complex linear Lie algebra representation, then ρ must be complex analytic. Indeed,
from earlier, one has the local expression

φρ(A) ◦ ρ ◦ ϕ−1A |W =
·
ρ|W

on
W = ϕA(NA ∩ ρ−1(N ′ρ(A))).

But now W is open in Cdim g, and

φρ(A) ◦ ρ ◦ ϕ−1A |W

is now given by the complex linear map
·
ρ|W . Thus φρ(A) ◦ ρ ◦ ϕ−1A |W is a complex analytic

map from W to Cdim g. Since this is true for every A ∈ G, ρ must be complex analytic.
Now, let (ϕI , NI) be a local chart for I ∈ G, and let (φI , N

′
I) be a corresponding local

chart for I in GL(n,C). Suppose that ρ is complex analytic. Let {Xl | l ∈ [m]}, with
m = dim g, be a basis for g, and let {Elk | 1 ≤ l, k ≤ n} be the standard (matrix) basis for
g(n,C). Using these bases, one can get honest coordinates for NI ⊆ G and N ′I ⊆ GL(n,C)
respectively. To be exact, if

A = ϕ−1I (z1X1 + ...+ zmXm) = ez1X1+...+zmXm ,

72



then (z1, ..., zm) ∈ Cm are the local coordinates for A ∈ NI . Likewise, (zlk)lk ∈ Cn
2

are local
coordinates for B ∈ N ′I , if B = φ−1I (Z) = eZ , where

Z =
n∑

l,k=1

zlkElk =


z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...
zn1 zn2 · · · znn

 .
Now, let f : U → C be smooth on U ⊆ NI such that I ∈ U , and denote xl = Re(zl) with
yl = Im(zl). Recall that in the complex setting, one defines the 2m partial derivatives relative
to {Xl | l ∈ [m]} on NI by the ’pull back’ of f to ϕI(U). To be exact, let f̂ = f ◦ ϕ−1I |ϕI(U),
then, for each l

∂

∂xl
f(Y )|Y=A =

d

dt
f̂ [ϕI(A) + tXl]

∣∣∣
t=0

,

and
∂

∂yl
f(Y )|Y=A =

d

dt
f̂ [ϕI(A) + t(iXl)]

∣∣∣
t=0

.

For each l ∈ [m], recall that
∂

∂z̄l
:=

1

2
(
∂

∂xl
+ i

∂

∂yl
).

With this in mind, f is also complex analytic (complex manifold sense) on U, whenever f̂ is
complex analytic (standard sense) on ϕI(U). If so, then for all A ∈ U and l ∈ [m],

∂

∂z̄l
f(Y )|Y=A = 0.

Furthermore, let W = ϕI(NI ∩ ρ−1(N ′I)). Let U = NI ∩ ρ−1(N ′I), and let Φ : U → φI(N
′
I)

be given by Φ = φI ◦ ρ|U . Also, for each l, k ∈ [n], let Φlk denote the coordinate of Φ relative
to Elk. In other words, Φlk is just the (l, k)th matrix entry of Φ. By definiton of ρ being
complex analytic on G, one has that

Φ̂lk : W → C,

is complex analytic, for each l, k ∈ [n]. Thus,

∂

∂z̄j
Φlk(Y )|Y=I = 0,

for all j ∈ [m] and l, k ∈ [n]. Consequently,

∂

∂xj
Φlk(Y )|Y=I = (−i) ∂

∂yj
Φlk(Y )|Y=I .
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Now, since ϕI(I) = log(I) = 0, then

∂

∂xj
Φlk(Y )|Y=I =

d

dt
Φ̂lk [tXj]

∣∣∣
t=0

=
d

dt

(
log(ρ(etXj))

)
lk

∣∣
t=0

=
d

dt

(
log(et

·
ρ(Xj))

)
lk

∣∣∣
t=0

=
d

dt

(
t
·
ρ(Xj)

)
lk

∣∣∣
t=0

= (
·
ρ(Xj))lk.

Likewise,

∂

∂yj
Φlk(Y )|Y=I =

d

dt
Φ̂lk [t(iXj)]

∣∣∣
t=0

=
d

dt

(
t
·
ρ(iXj)

)
lk

∣∣∣
t=0

= (
·
ρ(iXj))lk.

Thus, for all j ∈ [m] and l, k ∈ [n], (
·
ρ(Xj))lk = (−i)( ·ρ(iXj))lk and hence

(
·
ρ(iXj))lk = i(

·
ρ(Xj))lk = (i

·
ρ(Xj))lk.

Therefore,
·
ρ : g→ g(n,C) is a complex linear Lie algebra representation, since

·
ρ(iXj) = i

·
ρ(Xj),

for all j ∈ [m], and {Xj | j ∈ [m]} is a basis for g.

Next is a verification that Lie algebras of matrix Lie groups are in fact tangent spaces of
manifold theory.

Corollary 4.4.5. Let G be a matrix Lie group. Then, g is the tangent space to G at the
identity.

Proof. There are more than one equivalent characterizations of the tangent space at point
on a smooth manifold. This proof defines the tangent space at I ∈ G to be ’the set of
equivalence classes of smooth curves passing through I ’ To be exact, two smooth curves at
I ∈ G are equivalent, denoted

γ ∼ Γ,

if γ(0) = Γ(0) = I, and
d

dt
(γ(t))|t=0 =

d

dt
(Γ(t))|t=0 .

Naturally, one denotes the equivalence class [γ] by the common derivative of the curves.
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To start, if X ∈ g, then the map expX(t) = etX clearly represents an equivalence class,
i.e. γ ∼ expX , whenever γ(0) = I, and d

dt
(γ(t))|t=0 = X. So X itself denotes this equivalence

class.
Conversely, suppose that γ is a smooth curve defined on some interval about zero such

that γ(0) = I and d
dt

(γ(t))|t=0 = X. Then, from Theorem 4.4.2, let N0 ⊆ g and NI ⊆ G be
two homeomorphic open neighborhoods about 0 and I respectively. Now by continuity, find
a positive ε such that γ((−ε, ε)) ⊆ NI . Then log γ(t) ∈ N0, for all t ∈ (−ε, ε). From here,
note that if a smooth curve Γ in G satisfies

Γ(0) = I,

then
d

dt
(log Γ(t))|t=0 =

d

dt
(Γ(t))|t=0 .

So for this case, one has d
dt

(log γ(t))|t=0 = X. Thus,

lim
t→0

log γ(t)− 0

t
= X.

In other words, X is the limit of matrices in g. Hence, X ∈ g. Therefore, the equivalence
class containing γ is given by an element of g. With this the proof is complete.

Now, the following two results, Corollary 4.4.6 and Lemma 4.4.7, are appropriate since
connectedness is crucial in passing properties, like irreducibility of a Lie group representation
down to the induced Lie algebra representation. In fact, this will soon be addressed in
Theorem 4.4.8.

Corollary 4.4.6. Let G be a connected matrix Lie group, then there exist some open neigh-
borhood N ⊆ g about 0, such that

G = 〈eX | X ∈ N〉.

In other words, for all A ∈ G, there exists a collection {Xi | i ∈ [m]} ⊆ g, such that

A = eX1 eX2 ... eXm .

Proof. Connect A and I with a continuous path γ : [0, 1]→ G, where γ(0) = I and γ(1) = A.
Then, find an partition of the path

{Ak | k ∈ {0, ...K}}

so fine, one has that
Al(Al−1)

−1 ∈ e(N)

for all l ∈ [K]. As a result, one can pick a Xl ∈ N, such that

eXl = Al(Al−1)
−1.
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Therefore,
A = AK(AK−1)

−1AK−1....(A1)
−1A1A0 = eXK eXK−1 ... eX1 ,

where A0 = I and A = AK .

Lemma 4.4.7. Let ρ : G→ GL(V ) be a Lie group representation, and
·
ρ : g→ gl(V ) be the

induced Lie algebra representation. If the matrix Lie group G is connected, then a subspace
W ≤ V is a G- submodule if and only if W is a g−submodule.

Proof. Let w ∈ W , suppose W is a G−submodule and let X ∈ g. Then, by Proposition
4.2.4,

·
ρ(X)w = lim

t→0

ρ(etX)w − w
t

.

For each t ∈ R,
ρ(etX)w − w

t
∈ W

since is W is assumed to be a G−submodule. However, subspaces are closed. Therefore
·
ρ(X)w ∈ W.

Conversely, suppose that W is a g−submodule, and let A ∈ G. G is connected, so using
Corollary 4.4.6, find {Xl | l ∈ [K]} such that

A = eXK eXK−1 ... eX1 .

By Proposition 4.2.4, ρ(eXl) = e
·
ρ(Xl) for each l. Thus

ρ(A)w = e
·
ρ(XK) e

·
ρ(XK−1) ... e

·
ρ(X1)w.

Once it is shown that
e
·
ρ(X)w ∈ W

for any X ∈ g, the proof will be complete.
Using the definition of the matrix exponetial, write

e
·
ρ(X)w = lim

m→∞

(
m∑
k=0

·
ρ(X)

k!
w

)
.

Under the assumption that W is a g-submodule,

m∑
k=0

·
ρ(X)

k!
w ∈ W

for each m ∈ N. Therefore since W is closed,

e
·
ρ(X)w ∈ W.
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Theorem 4.4.8. Let ρ : G → GL(V ) be a Lie group representation, and
·
ρ : g → gl(V ) be

the induced Lie algebra representation. Suppose G is a connected matrix Lie group. Then ρ

is irreducible if and only if
·
ρ is irreducible.

Furthermore, two Lie group representations ρ and % for G are equivalent if and only if

their induced Lie algebra representations
·
ρ and

·
% are equivalent.

Proof. Suppose ρ is irreducible. Then the only G−submodules are the trivial ones. Therefore

since G is connected, by Lemma 4.4.7, the only g−submodules are trivial. Consequently,
·
ρ

is irreducible. The converse is shown by the same argument.
Let ρ : G→ GL(V ), and % : G→ GL(W ) be representations for G. Suppose there exists

an invertible linear transformation φ : V → W such that φ(ρ(A)v) = %(A)φ(v) for all A ∈ G
and v ∈ V. Then for X ∈ g

φ

(
ρ(etX)− I

t
v

)
=
φ(ρ(etX)v)− φ(v)

t
=
%(etX)φ(v)− φ(v)

t
=

(
%(etX)− I

t

)
φ(v),

for all t ∈ R. Hence, by the continuity of the constant linear transformation φ,

φ ◦
(
d

dt

(
ρ(etX)

)∣∣
t=0

)
=

(
d

dt

(
%(etX)

)∣∣
t=0

)
◦ φ.

Therefore,
·
ρ and

·
% are equivalent.

Conversely, suppose that
·
ρ and

·
% are equivalent via φ : V → W. Then, φ(

·
ρ(X)v) =

·
%(X)φ(v), for all X ∈ g and v ∈ V . This implies that, for each m ∈ N,

φ

(
m∑
k=0

·
ρ(X)kv

k!

)
=

m∑
k=0

φ(
·
ρ(X)kv)

k!
=

m∑
k=0

·
%(X)kφ(v)

k!
.

Indeed,

φ(
·
ρ(X)kv) =

·
%(X)kφ(v)

for each k ∈ N. (Use induction to see this.) Thus

φ(e
·
ρ(X) v) = e

·
%(X) φ(v).

Induction will also show that

φ(e
·
ρ(X1) e

·
ρ(X2) ... e

·
ρ(Xk) v) = e

·
%(X1) e

·
%(X2) ... e

·
%(Xk) φ(v)

77



for all k ∈ N. Since G is connected,

φ ◦ ρ(A) = φ ◦ ρ
(
eXK eXK−1 ... eX1

)
= φ ◦

(
e
·
ρ(X1) e

·
ρ(X2) ... e

·
ρ(Xk)

)
=

(
e
·
%(X1) e

·
%(X2) ... e

·
%(Xk)

)
◦ φ

= %
(
eX1 eX2 ... eXk

)
◦ φ

= % (A) ◦ φ,

where the collection {Xl ∈ g | l ∈ [K]} was chosen, such that A = eXK eXK−1 ... eX1 .
Therefore ρ and % are equivalent.

The last remaining technicality concerns lifting a Lie algebra representation from the Lie
algebra to a unique Lie group representation on the matrix Lie group. When the matrix Lie
group is simply connected, in addition to being connected, the following theorem, in a sense,
serves as a converse to Theorem 4.4.8.

Theorem 4.4.9. Let G be a connected matrix Lie group, and p : g→ gl(n,C) be a Lie algebra
representation. If G is simply-connected, then there exists a unique Lie group representation
ρ : G→ GL(n,C) such that ρ(eX) = ep(X) for all X ∈ g.

In [1], pg 76-79, is a nice proof of Theorem 4.4.9 using the Baker-Campbell-Hausdorff
formula. Unfortunately, the proof is quite involved. It will be more practical (and productive)
to just provide an outline of the proof. Use of the Baker-Campbell-Hausdorff formula plays a
key part in the proof. Therefore it will be beneficial to present the statement of the formula
before the outline of Theorem 4.4.9.

Recall that HomC(V, V ) can be identified with Mn(C) through the choice of an arbitrary
basis B. Thus, if T ∈ HomC(V, V ), then define the norm

||T || := ||[T ]B||,

where [T ]B is the matrix of T relative to B.

Lemma 4.4.10. The complex function

g(z) =
log(z)

1− 1
z

,

is defined, and is analytic on the open disk {z | |z − 1| < 1}. Hence, for some collection of
coefficients {am},

g(w) =
∞∑
k=0

ak(w − 1)k

for all w ∈ {z | |z − 1| < 1}.
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Furthermore, using the same collection of coefficients {am}, the operator function

g(T ) :=
∞∑
k=0

ak(T − I)k

is defined for all T ∈ HomC(V, V ) such that ||T − I|| < 1, where I denotes idV .

Define adX(Y ) := [X, Y ] for X, Y ∈Mn(C). Then

eadX (Y ) = Y + [X, Y ] +
1

2
[X, [X, Y ]] +

1

6
[X, [X, [XY ]]] + ...

With this is the statement of the Baker-Campbell-Hausdorff formula.

Theorem 4.4.11. For all X, Y ∈ Mn(C) with ||X|| and ||Y || sufficiently small so that
|| eadX etadY −I|| < 1 for all t ∈ [0, 1],

log(eX eY ) = X +

ˆ 1

0

g
(
eadX etadY

)
(Y )dt.

Remark. Here are the first few terms of the Baker-Campbell-Hausdorff formula

log(eX eY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + higher order terms,

where the higher order terms only involve X, Y, Lie brackets of X and Y , Lie brackets of
Lie brackets of X and Y, etc. What is important about this formula is that log(eX eY ) can
be expressed completely in terms of brackets. Consequently one has the following result.

Corollary 4.4.12. Let G be a matrix Lie group. Suppose p : g → gl(V ) is a Lie algebra
representation. Then for all X, Y ∈ g with ||X|| and ||Y || sufficiently small,

log(eX eY ) ∈ g,

and
p
(
log(eX eY )

)
= log(ep(X) ep(Y )).

Proof. Let X, Y ∈ g, and t ∈ R. First,

g
(
eadX etadY

)
(Y ) ∈ g

since (
eadX etadY −I

)l
(Y ) ∈ g

for all l ∈ N. Therefore whenever the Baker-Campbell-Hausdorff formula holds for X and
Y ,

log(eX eY ) ∈ g.

By induction,
p
(
(adX)l(Y )

)
= (adp(X))

l(p(Y ))
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holds for all l ∈ N, where

p(adX(Y )) = p([X, Y ]) = [p(X), p(Y )] = adp(X)(p(Y ))

illustrates the base step. Thus

p(etadX (Y )) = p

(
Y + t[X, Y ] +

t2

2
[X, [X, Y ]] +

t3

6
[X, [X, [X, Y ]]] + ...

)
= p(Y ) + t[p(X), p(Y )] +

t2

2
[p(X), [p(X), p(Y )]] +

t3

6
[p(X), [p(X), [p(X), p(Y )]]] + ...

= etadp(X)(p(Y )).

Similarly,
p
(
(eadX etadY −I)l(Y )

)
= (eadp(X) etadp(Y ) −I)l(p(Y ))

for all l ∈ N. Therefore

p
(
g
(
eadX etadY

)
(Y )
)

=
∞∑
l=0

akp
(
(eadX etadY −I)l(Y )

)
=

∞∑
l=0

ak(e
adp(X) etadp(Y ) −I)l(p(Y ))

= g
(
eadp(X) etadp(Y )

)
(p(Y )).

With this in mind, if the Baker-Campbell-Hausdorff formula holds for X and Y and for p(X)
and p(Y ), then

p
(
log(eX eY )

)
= p(X) +

ˆ 1

0

p
(
g
(
eadX etadY

)
(Y )
)
dt

= p(X) +

ˆ 1

0

g
(
eadp(X) etadp(Y )

)
(p(Y ))dt

= log(ep(X) ep(Y )).

This corollary illustrates why the Baker-Campbell-Hausdorff Formula will come into use.
With that said, the outline for Theorem 4.4.9 goes as follows.

(1) Find NI ⊆ G, an open neighborhood about I, and N0 ⊆ g, an open neighborhood
about 0, such that the matrix exponential maps N0 homeomorphically onto NI . Note
that log |NI : NI → N0 provides a local inverse. Furthermore, make sure that N0 and
NI are small enough so that the Baker-Campbell-Hausdorff formula applies to logA,
for all A ∈ NI .

(2) Starting with the Lie algebra representation p : g → gl(n,C) for g, define ρ on the
neighborhood NI by setting

ρ(A) := ep(logA) .
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(3) For any A ∈ G, define ρ(A) along a path connecting I to A. Let γ : [0, 1]→ G such that
γ(0) = I and γ(1) = A. Then, by compactness of [0, 1], there is an interval partition
of [0, 1]

0 = t0 < t1 < t2... < tk−1 < tk = 1,

such that, for all l ∈ [k], and tl−1 ≤ s ≤ t ≤ tl, one has

At(As)
−1 = γ(t)(γ(s))−1 ∈ NI ,

where the notation ’At’ will replace ’γ(t)’ for simplcity. Like in Corollary 4.4.6, write

A = (AkA
−1
k−1)(Ak−1A

−1
k−2)....(A2A

−1
1 )(A1A0),

where Ak = A and A0 = I. Using this, set

ρ(A) := ρ(AkA
−1
k−1)ρ(Ak−1A

−1
k−2)....ρ(A2A

−1
1 )ρ(A1A0),

where, by step two, ρ(AlA
−1
l−1) = ep(log(AlA

−1
l−1)), for each l ∈ [k].

(4) Show the assignment ρ(A) is independent of partition. So start by showing that ρ(A)
remains unchanged when one refines the partition

0 = t0 < t1 < t2... < tk−1 < tk = 1.

To do this suppose that a point s is added to the original partition between tl−1 and
tl, for some l. Then, AlA

−1
s and AsA

−1
l−1 are in NI as well. Thus ρ(AlA

−1
s )ρ(AsA

−1
l−1)

replaces the odd term ρ(AlA
−1
l−1). Now set B = AlA

−1
s and C = AsA

−1
l−1. Then by

Corollary 4.4.12,

log
(
ρ(AlA

−1
s )ρ(AsA

−1
l−1)
)

= log
(
ep(logB) ep(logC)

)
= p

(
log
(
elogB elogC

))
= p(logBC)

= p(log(AlA
−1
l−1)).

Indeed, NI was chosen such that the Baker-Campbell-Hausdorff formula would apply
to all A ∈ NI . Finally,

ρ(AlA
−1
s )ρ(AsA

−1
l−1) = elog(ρ(AlA

−1
s )ρ(AsA

−1
l−1))

= ep(log(AlA
−1
l−1)) .

Thus,

ep(log(AlA
−1
s )) ep(log(AsA

−1
l−1)) = ep(log(AlA

−1
l−1)) .

Therefore, ρ(A) remains unchanged when one refines the partition. In addition to this,
any two partitions have a common refinement. Consequently, ρ(A) is independent of
the partition chosen.
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(5) Show the assignment ρ(A) is independent of path. G is simply connected, thus any
two paths connecting I to A are homotopic. Thus, if γ and Γ denote the two paths,
then there exists a continuous map

h : [0, 1]× [0, 1]→ G,

such that, for all t ∈ [0, 1], h(0, t) = γ(t) and h(1, t) = Γ(t), where h(s, 0) = I and
h(s, 1) = A for all s ∈ [0, 1]. Using the compactness of [0, 1]× [0, 1], find an integer m
such that

h(s, t)h(s′, t′)−1 ∈ NI ,

whenever |t− t′| ≤ 2
m

and |s− s′| ≤ 2
m
. Now define a sequence of paths

{ζk,l : [0, 1]→ G | 0 ≤ k ≤ m− 1, 0 ≤ l ≤ m} ∪ {ζm,0}

by setting ζm,0(t) = Γ(t), and for k < m

ζk,l(t) =


h(k+1

m
, t) if 0 ≤ t ≤ l−1

m

h(k+l
m
− t, t) if l−1

m
≤ t ≤ l

m

h( k
m
, t) if l

m
≤ t ≤ 1

.

This sequence of paths should be interpreted as successively deforming γ into Γ step
by step. To be exact, starting with k, l = 0, one deforms ζk,l into ζk,l+1 for each
0 ≤ l ≤ m − 1, then one deforms ζk,m into ζk+1,0, and so on until one deforms ζm−1,m
into ζm,0 = Γ. With this, the value of ρ(A) will be shown to be the same regardless
of which path, γ or Γ, is used to compute it. This is done by showing that, for each
0 ≤ k ≤ m − 1, and all 0 ≤ l ≤ m − 1, the value of ρ(A) computed along ζk,l is the
same as its value computed along ζk,l+1, and that the value of ρ(A) computed along
ζk,m is the same as its value computed along ζk+1,0, for 0 ≤ k ≤ m − 2. To see this,
notice that, for all 0 ≤ k, l < m, if t ∈ [0, l−1

m
]∪ [ l+1

m
, 1] then ζk,l(t) = ζk,l+1(t). So chose

a common partition of [0, 1] to be

0 <
1

m
< ... <

l − 1

m
<
l + 1

m
<
l + 2

m
< ... < 1,

for paths ζk,l and ζk,l+1. Then, ζk,l(ti)ζk,l(ti−1)
−1 = ζk,l+1(ti)ζk,l+1(ti−1)

−1 ∈ NI , for all
partition point ti ∈ { 1

m
, ..., l−1

m
, l+1
m
, l+2
m
, ..., 1}, since |ti − ti−1| ≤ 2

m
, and |s − s′| ≤ 1

m

for all applicable s, s′. Thus, the value of ρ(A) is the same for paths ζk,l and ζk,l+1.
A similar argument proves this for paths ζk,m and ζk+1,0, for each 0 ≤ k ≤ m − 1.
Therefore, ρ(A) is independent of path.

(6) Show that ρ is a Lie group representation. By the way ρ was defined, its clear that
ρ(AB) = ρ(A)ρ(B), and that ρ is smooth.

(7) Show that ρ induces p, i.e.
·
ρ = p. Let X ∈ g. Then, for t sufficiently small, etX ∈ NI .

Thus
ρ(etX) = ep(log e

tX) = etp(X) .
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Therefore,

·
ρ(X) =

d

dt

(
ρ(etX)

)∣∣
t=0

=
d

dt

(
etp(X)

)∣∣
t=0

= p(X),

since d
dt

(
ρ(etX)

)∣∣
t=0

= X, for any X ∈Mn(C).

Again, if n = dimV, then GL(V ) can be identified with GL(n,C) and g(V ) can be identified
with g(n,C). Thus, Theorem 4.4.9 is true for any p : g → g(V )), whenever G is simply
connected.

Corollary 4.4.13. Let G be a connected and simply connected (complex) matrix Lie group.
Then, there is a one to one correspondence between distinct (complex analytic) Lie group
representations ρ for G and distinct (complex linear) Lie algebra representations p for g.
This correspondence is given by the property that

ρ(eX) = ep(X)

for all X ∈ g.
Furthermore, ρ is irreducible if and only if p is irreducible.

Now, the reason for Corollary 4.4.13 is that both SL(n,C) and SU(n) are simply con-
nected, for all positive integers n. With this in mind, the chapter is finally ready to conclude
with the following two main theorems.

Theorem 4.4.14. Let ρ : SL(n,C)→ GL(V ) be a complex analytic Lie group representation
for SL(n,C). Then the restriction, ρ|SU(n) : SU(n) → GL(V ) is an irreducible Lie group
representation for SU(n) if and only if ρ : SL(n,C)→ GL(V ) is irreducible.

Furthermore, two complex analytic Lie group representation for SL(n,C), ρ and %, are
equivalent if and only if ρ|SU(n) and %|SU(n) are equivalent.

Proof. Its clear that if the restriction, ρ|SU(n) : SU(n) → GL(V ) is an irreducible Lie group
representation for SU(n), then ρ is irreducible for SL(n,C). True! Any SL(n,C)−submodule
is also a SU(n)−submodule.

Conversely, suppose that ρ is irreducible for SL(n,C). Then, by Theorem 4.4.8, the

induced Lie Algebra representation
·
ρ is irreducible, since SL(n,C) is connected. Now by

Corallary 4.4.4,
·
ρ is also complex linear, since ρ is complex analytic. Furthermore, it was

established that
su(n)C ∼= sl(n,C).

With this in mind, note that
·
ρ|su(n) is equal to the induced Lie algebra representation cor-

responding to the restriction ρ|SU(n). Thus,
·
ρ is the unique complex extension of induced

Lie algebra representation corresponding to the restriction ρ|SU(n). Hence,
·
ρ|su(n) is also ir-

reducible, by Theorem 4.3.3. Finally, using Theorem 4.4.8 a second time, one sees that the
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restriction ρ|SU(n) is an irreducible Lie group representation for the connected matrix Lie
group SU(n).

Now, let ρ and % be two complex analytic Lie group representation for SL(n,C). If ρ and
% are equivalent, then clearly ρ|SU(n) and %|SU(n) are equivalent.

So suppose the converse. By Theorem 4.4.8,
·
ρ|SU(n) and

·
%|SU(n) are equivalent. Also, by

Theorem 4.3.3, their complex extensions to sl(n,C) are equivalent as well. But these clearly

co-inside with
·
ρ and

·
%, respectively. Thus,

·
ρ and

·
% are equivalent for sl(n,C). Finally, a

second use of Theorem 4.4.8 shows that ρ and % are equivalent as complex analytic Lie
group representation for SL(n,C).

Theorem 4.4.15. Let ρ : SU(n) → GL(V ) be an irreducible Lie group representation for
SU(n). Then there exists a unique complex analytic Lie group representation % : SL(n,C)→
GL(V ) such that

%|SU(n) = ρ.

Moreover, let q be the unique complex extension of
·
ρ for sl(n,C) ∼= su(n)C. Then the

representation % is determined by the property that

%(eX) = eq(X)

for all X ∈ sl(n,C). In particular, if A ∈ SL(n,C), then

%(A) = eq(X1) eq(X2) ... eq(Xk)

for any collection of {Xl} ⊆ sl(n,C) such that A = eX1 eX2 ... eXk .

Proof. Suppose ρ is irreducible. Then
·
ρ : su(n)→ gl(V ) irreducible by Theorem 4.4.8, since

SU(n) is connected. Now let q : sl(n,C) → gl(V ) be the unique complex extension of
·
ρ.

Then by Theorem 4.3.3, q is also irreducible. Now, SL(n,C) is simply connected. Thus by
Corollary 4.4.13, there exists a unique Lie group representation

% : SL(n,C)→ GL(V )

of SL(n,C) such that
%(etX) = etq(X)

for all X ∈ sl(n,C). Also, it is clear that %|SU(n) = ρ

Finally by Corollary 4.4.4, % is a complex analytic Lie group representation, since
·
% = q

is a complex linear Lie algebra representation.

Arriving at Theorem 4.4.14 and Theorem 4.4.15 the overall goal for this section has been
fulfilled. That is, it has been established that distinct, irreducible Lie group representations
of SU(n) are in one to one correspondence with distinct, irreducible complex analytic Lie
group representations of SL(n,C).

With this result fully justified, the next chapter specifically investigates complex analytic
representations for GL(n,C) and SL(n,C). To briefly explain, it will shown that these
complex analytic representations are uniquely identified by their highest weights, which are
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particular analytic homomorphisms that appear as a consequence of the representations.
This is important since these highest weights are in a one to one correspondence with the
integer partitions that characterize the irreducible tensor representations defined in Chapter
3.
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Chapter 5

Highest weight description of analytic
representations

Last chapter, the finite dimensional Lie group representations of SU(n) were placed in one to
one correspondence with the finite dimensional complex analytic representations of SL(n,C).
What remains is linking such representations of SL(n,C) to integer partitions, and estab-
lishing the setting of the irreducible tensor representations of GL(n,C) as the source for the
realizations of the desired irreducibles of SU(n). Now, what leads to these connections is the
unique structure of the complex matrix Lie groups, GL(n,C) and SL(n,C), in combination
with the essential features of their complex analytic representations. Produced from the
complex analytic nature of such representations of GL(n,C) and SL(n,C), necessary objects
called weights and weight spaces will be shown to be directly determined by n-tuples of
integers. Most crucial is that the irreducibles are identifiable by highest weights, which are
themselves given by some appropriate weakly increasing sequence of integers. Ultimately
these relationships will allow SL(n,C) to provide the final tie between the irreducible tensor
representations of GL(n,C) and the all the finite dimensional irreducible Lie group repre-
sentations of SU(n). Therefore the overall aim of this chapter will be to provide an adequate
description of such complex analytic representations to the Matrix Lie groups, GL(n,C) and
SL(n,C).

The methods that follow in this chapter have been adapted from a combination of tech-
niques provided by the treatment given by Sternberg [4]. Furthermore, the phrase ‘finite
dimensional’ will be an understood quality of the complex analytic representations, and
therefore, will be omitted.

5.1 Lie’s theorem

In short, weight spaces are essentially simultaneous eigenspaces relative to the subgroup of
diagonal matrices of either GL(n,C) or SL(n,C) that appear in modules carrying complex
analytic representations belonging to the two complex Matrix Lie groups. Lie’s Theorem
now provides a key observation in defining and finding weights and weight spaces for such
representations of GL(n,C) and SL(n,C).
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Let G be a group. The derived series (G(k))k is defined by

G(0) := G

G(k) := [G(k−1), G(k−1)] k ≥ 1.

If G(l) = {ε} for some l, then G is solvable. The smallest such l is the solvable length of G.

Theorem 5.1.1 (Lie’s Theorem). Let G be a connected, solvable Lie group, and suppose
ρ : G → GL(V ) is an irreducible representation for G. If V is finite-dimensional, then
dimV = 1.

Before the proof consider the following.

Definition 5.1.2. Let ρ : G→ GL(V ) be a representation for G. A simultaneous eigenvalue
and the corresponding simultaneous eigenspace for the representation is a pair (µ, Vµ) such
that

(1) µ : G→ C∗ is a continuous homomorphism, and

(2) Vµ = {v ∈ V | ρ(g)v = µ(g)v ∀g ∈ G} is a non-trivial subspace in V.

Furthermore, a simultaneous eigenvector v is a non-zero element of a simultaneous eigenspace.

Lemma 5.1.3. Let k be a positive integer. Then, for any set of k distinct simultaneous
eigenvalues of a representation ρ : G→ GL(V ), the corresponding simultaneous eigenspaces
are linearly independent. In particular, the number of distinct simultaneous eigenvalues for
a representation cannot exceed the dimension of V.

Proof. This will be shown through induction on the size of distinct simultaneous eigenvalues.
The lemma is clearly true for k = 1. So suppose, for some l ≥ 1, the lemma is true for any set
of l distinct simultaneous eigenvalues of ρ, and let {µi}i∈[l+1] be a set of distinct simultaneous
eigenvalues with their corresponding simultaneous eigenspaces being {Vi}i∈[l+1]. For each
i ∈ [l + 1], choose any element vi ∈ Vi \ {0V }, and suppose that, for some set of complex
numbers {ai}i∈[l+1],

a1v1 + a2v2 + ...+ al+1vl+1 = 0V .

Now, consider the map
χ : G→ HomC(V, V )

defined by
χ(g) = ρ(g)− µl+1(g).

Realize that, for all i ∈ [l+1], and g ∈ G, it is true that ρ(g)vi = µi(g)vi. Thus χ(g)vl+1 = 0V ,
and

χ(g)(a1v1 + a2v2 + ...+ al+1vl+1) =
l∑

i=1

ai(µi(g)− µl+1(g))vi = 0V .

By the linear independence of the first l simultaneous eigenvectors (the inductive hypothesis),
one has

ai(µi(g)− µl+1(g)) = 0
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for all i ∈ [l] and g ∈ G.
On the other hand, it was assumed that all the simultaneous eigenvalues are distinct.

Consequently, for each i < l + 1, there is some gi ∈ G such that

µi(gi) 6= µl+1(gi).

Thus,
a1 = a2 = ... = al = 0.

Finally considering above, al+1 = 0V as well. Therefore {Vi}i∈[l+1] are linearly independent
as claimed.

With the previous lemma given, here is the proof of Lie’s Theorem.

Proof. The method will be induction on the solvable length of G. Throughout the proof G
is assumed to be a connected Lie group. If the solvable length of G is 1, then G is abelian.
Suppose ρ : G → GL(V ) is a finite irreducible representation for G. Let g ∈ G, and note
that ρ(g) ∈ HomG(V, V ) since G is abelian. By Schur’s Lemma, ρ(g) = λg · idV for some
λg ∈ C. Thus, any one dimensional subspace is invariant, and is therefore equal to V .

Suppose the theorem is true for all connected Lie groups with a solvable length k ≥ 1,
and suppose that G has a solvable length k + 1. Then the solvable length of G(1) is k.
Furthermore, G(1) is connected. Indeed, let h ∈ G(1). Then, for some m ∈ N and collection
{gi}i∈[m] ⊆ G,

h = g1g2...gm g
−1
1 g−12 ...g−1m .

But G is connected. Thus for each i ∈ [m], there is a continuous function

γi : [0, 1]→ G

such that γi(0) = ε and γi(1) = gi. As a result, the function γ : [0, 1]→ G1 defined by

t 7→ γ1(t)γ2(t)...γm(t)γ1(t)
−1γ2(t)

−1...γm(t)−1

is a continuous path connecting ε to h.
Now ρ |G(1) : G(1) → GL(V ), in general, won’t be irreducible. However, V will contain

some invariant subspace for G(1), which by the inductive hypothesis, will be one dimensional.
Thus there is some simultaneous eigenvalue µ and eigenspace Vµ for ρ |G(1) .

Let g ∈ G, h ∈ G(1), and vµ ∈ Vµ. Recall that G(1) is normal. Thus

ρ(h)(ρ(g)vµ) = ρ(g)(ρ(g−1)ρ(h)ρ(g)vµ)

= ρ(g)(ρ(g−1hg)vµ)

= µ(g−1hg)ρ(g)vµ.

Define µg : G1 → C∗ by
µg(h) = µ(g−1hg).

Because conjugation by g is an automorphism of G(1), µg is another weight. As a result,
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(µg, Vµg) is a simultaneous eigenvalue/eigenspace pair for ρ |G(1) with the property that

Vµg = ρ(g).Vµ.

Still considering the original µ, apply Lemma 5.1.3 to the collection

Ω := {µg : G(1) → C∗ | g ∈ G},

to conclude |Ω| ≤ dimV. In particular, Ω must be finite. Fix an h ∈ G(1), and consider the
map ϕh : G → C∗ given by ϕh(g) = µg(h). Note that ϕh(G) is discrete since Ω is finite.
Importantly, the assumed continuity of the representation ρ implies the continuity of µ.
Therefore the map ϕh is continuous, and by the connectedness of G, ϕh(G) = {z} for some
z ∈ C∗. In fact, more is true! Note that ϕh(e) = µ(h). Thus z = µ(h), and consequently,

µg(h) = µ(h)

for all g ∈ G and all h ∈ G(1). Thus for any g ∈ G and h ∈ G1,

ρ(h)(ρ(g)vµ) = µ(h)ρ(g)vµ

for all vµ ∈ Vµ. From this, Vµ = V, and since Vµ is invariant, Vµ = V. Therefore

ρ(h) = µ(h) · idV

for each h ∈ G(1).
Now, note two facts:

(1) For all g1, g2 ∈ G, there is some h ∈ G(1) such that hg2g1 = g1g2, and

(2) The isomorphism ρ(g1) has an eigenvalue(nonzero)/eigenvector pair (λ,w).

Point (1) is easily seen by [g1, g2] ∈ G1, and point (2) follows since C is algebraically closed.
One now has

ρ(g1)(ρ(g2)w) = ρ(h)ρ(g2)ρ(g1)w

= λµ(h)(ρ(g2)w).

Thus ρ(g2)w is also an eigenvector of ρ(g1) with eigenvalue λµ(h), and h = [g1, g2]. Let
ζ : G→ C∗ be defined by

ζ(g) = λµ([g1, g2]).

Like the map ϕh described above, ζ is continuous. However, ρ(g1) can have only finitely
many distinct eigenvalues. Therefore since G is connected, ζ(G) = {z} for some complex z.

Finally, ζ(g1) = λµ([g1, g1]) = λ. Thus for all g ∈ G, ζ(g) = λ. Consequently

ρ(g1)(ρ(g)w) = λρ(g)w

= ρ(g)(ρ(g1)w)

= λρ(g)w
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for all g ∈ G. By Schur’s Lemma,

ρ(g1) = λ · idV .

Hence, for every g ∈ G, there would be some λg ∈ C∗ such that

ρ(g) = λg · idV .

Therefore dimV = 1 since any one dimensional subspace would be invariant under G.

5.2 Gauss decomposition of SL(n,C) and GL(n,C)

Before the application Lie’s Theorem to complex analytic representations of GL(n,C) and
SL(n,C), this section provides a description of the unique structure of the two matrix Lie
groups. Both groups contain dense (relatively) open subsets of matrices that are decom-
posable into products of triangular unipotent matrices with diagonal matrices. A matrix is
upper (lower) triangular unipotent if it has all ones down the diagonal and is upper (lower)
triangular. Lie’s Theorem, combined with this factorization, will facilitate the highest weight
identification of irreducible complex analytic representations of GL(n,C) and SL(n,C). In
this process, four other matrix Lie groups will be participating:

Z = {D ∈ GL(n,C) | D = diag(δ1, δ2, ..., δn)}
D = Z ∩ SL(n,C)

U = {U ∈ GL(n,C) | U is upper triangular unipotent}
L = {L ∈ GL(n,C) | L is lower triangular unipotent}.

Now, it is straightforward to verify that U and L are subgroups of SL(n,C). Furthermore,
by appealing to the sequential characterization of closed sets, one can quickly establish that
these four are additionally closed subsets of GL(n,C), making them matrix Lie groups.

Proposition 5.2.1. All the matrix Lie groups mentioned thus far are (path) connected.

Proof. First, Z is homeomorphic to (C∗)n. Thus Z is (path) connected. In the same manner,
D is homeomorphic to (C∗)n−1. Thus the result is true for D. Furthermore, as topological
spaces,

U ∼= L ∼= C
n(n−1)

2 .

This establishes the claim for these two as well.
Let A ∈ GL(n,C). Then A is similar to some upper triangular matrix

T =


t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 .
since the characteristic polynomial of A is in C[t], and thus factors completely. Note that the
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set of upper triangular complex matrices is homeomorphic to the product (C∗)n × C
n(n−1)

2 .
Thus one can find a continuous path γ : [0, 1] → GL(n,C) that connects I to T. Now,
A = P−1TP for some fixed P ∈ GL(n,C). Consequently

t→ P−1γ(t)P

defines a path connecting I to A. Therefore GL(n,C) is path connected since every matrix
is connected, by some path, to the identity matrix.

Proving that SL(n,C) is path connected follows analogously to the case for GL(n,C).
However, one references

(C∗)n−1 × C
n(n−1)

2

instead of (C∗)n × C
n(n−1)

2 .

Here is the formal introduction of the needed factorization.

Definition 5.2.2. A Gauss decomposition of a matrix A ∈ GL(n,C) is a factorization of A
of either of the following forms

A = LDU or A = UDL

for some L ∈ L, D ∈ Z, and U ∈ U .

Proposition 5.2.3. Let A ∈ GL(n,C). If A has a Gauss decomposition of either form, then
the decomposition is unique.

Proof. Let Li ∈ L, Di ∈ Z, and Ui ∈ U , for i = 1, 2. Suppose that A ∈ GL(n,C) can be
factored into A = LiDiUi for each i = 1, 2. Then

L1D1U1 = L2D2U2.

Thus

D−12 L−12 L1D1 = U2U
−1
1 .

However, U2U
−1
1 = I since it would be both upper and lower triangular unipotent. Hence

U1 = U2, and as a result,

L1 = L2 and D1 = D2.

The uniqueness of the factorization of A into UDL follows analogously.

Necessary and sufficient conditions for a Gauss decomposition of a matrix will be pre-
sented in the following lemma. First, it will be convenient to define, for each k ∈ [n],

∆k(A) = det


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk
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along with

∆̂k(A) = det


a(n−k+1)(n−k+1) · · · a(n−k+1)(n−1) a(n−k+1)n

...
. . .

...
...

a(n−1)(n−k+1) · · · a(n−1)(n−1) a(n−1)n
an(n−k+1) · · · an(n−1) ann


For reference, call ∆k(A) the kth leading principal minor of A, and ∆̂k(A) the kth trailing
principal minor of A. Also, observe that UD and DU are both upper triangular with the
same diagonal as D. Likewise, LD and DL are both lower triangular with the same diagonal
as D.

Lemma 5.2.4. Let A ∈ GL(n,C). Then A has a Gauss decomposition of the form LDU if
and only if all the leading principal minors of A are non-vanishing.

Furthermore, A has a Gauss decomposition of the form UDL if and only if all the trailing
principal minors of A are non-vanishing.

Proof. Suppose that A = LDU, and let C = (LD)−1 be given by

C =


c11 0 · · · 0
c21 c22 · · · 0
...

...
. . .

...
cn1 cn2 · · · cnn


Now, CA = U. So, by computing the matrix multiplication and observing the equality
assumed per entry of

c11 0 · · · 0
c21 c22 · · · 0
...

...
. . .

...
cn1 cn2 · · · cnn



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 =


1 b12 · · · b1n
0 1 · · · b2n
...

...
. . .

...
0 0 · · · 1

 ,
one generates n systems of linear equations. Notice that the kth linear equation is

a11 a21 · · · ak1
a12 a22 · · · ak2
...

...
. . .

...
a1k a2k · · · akk



ck1
ck2
...
ckk

 =


0
0
...
1


(For clarification, there are all zeros above the 1 in the column vector on the right hand side
of the equation.)

Each ∆k(A) was constructed to compute the kth leading principal minor of A. Fur-
thermore, uniqueness of such a decomposition for A was just verified in Proposition 5.2.3.
Consequently, each ∆k(A) 6= 0. Otherwise, there would be more than one solution, contra-
dicting the uniqueness property.
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Conversely, if all the principal minors are non-vanishing, i.e. ∆k(A) 6= 0, for all k ∈ [n],
then (not assuming the decomposition exists) each of the n systems

a11 a21 · · · ak1
a12 a22 · · · ak2
...

...
. . .

...
a1k a2k · · · akk



ck1
ck2
...
ckk

 =


0
0
...
1


will have a unique solution. Thus allowing one to first construct the lower triangular matrix
C. Afterward, the creation of U, the upper triangular unipotent matrix, would follow, and
would be equal to the product CA.

Lastly, let D be diagonal matrix formed by using the diagonal of C−1. Then L = C−1D−1

would be lower triangular unipotent. Thus A = LDU . Therefore A would have a Gauss
decomposition.

To finish the proof, one needs to establish equivalence of the factorization of A into UDL
with the property that all the trailing principal minors are non-vanishing. To do this, one
simply repeats the first part of the proof with each of the ∆̂k(A)s instead of the ∆k(A)s, and
consults a new collection of n systems of linear equations using a matrix B = (UD)−1.

The results from Lemma 5.2.4 will soon be expanded on in Theorems 5.2.7 and 5.2.8.
Before doing so however, the following additional declaration of matrix groups will be needed:

A+ := ZU (5.2.1)

A− := LZ (5.2.2)

B+ := DU (5.2.3)

B− := LD (5.2.4)

Note that these are connected matrix Lie groups. Indeed, one can easily verify that A+

and B+ are subgroups of upper triangular matrices in GL(n,C) and SL(n,C), respectively.
Similarly, A− and B− are easily seen to be the corresponding subgroups of lower triangular
matrices in GL(n,C) and SL(n,C), respectively. Each is closed topologically, using the
sequential characterization of closed sets. Path connectedness results considering Proposition
5.2.1.

Finally, since both the set of upper triangular matrices and the set of lower triangular
matrices are subgroups in the respective settings of GL(n,C) and SL(n,C),

ZU = UZ
LZ = ZL
DU = UD
LD = DL.

Indeed, from group theory, one has the property that the set product of two subgroups is
again a subgroup if and only if the corresponding set product commutes.

Now, the importance of the matrix Lie groups Z, D and the groups listed in lines 5.2.1
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through 5.2.4 is that Lie’s Theorem applies to each. Ultimately, from this application, comes
the definitions of weights and the corresponding weight spaces. Therefore the next lemma
verifies that the matrix Lie groups previously stated are all solvable.

Lemma 5.2.5. The commutator subgroup of both A+ and B+ is equal to U . Likewise, the
commutator subgroup of both A−and B− is equal to L.

Proof. For this proof, one needs to show that

[A+,A+] = [B+,B+] = U and [A−,A−] = [B−,B−] = L.

Now it suffices to just demonstrate that [A+,A+] = U since the result does not depend on on
the value of the determinant. Additionally, the case for A− and L is completely analogous
to the case for A+ and U in that the former is just the ’transposed’ setting of the latter.

Let A and T be in A+, with

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 and T =


t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

 .
It is easy to verify that each of the diagonal entries of A−1 and T−1 are just the multiplicative
inverses of the corresponding diagonal entry in A and T , respectively. Furthermore, due to
being upper triangular, for some collection of constants {rij} and {sij},

AT =


a11t11 s12 · · · s1n

0 a22t22 · · · s2n
...

...
. . .

...
0 0 · · · anntnn

 and A−1T−1 =


a−111 t

−1
11 r12 · · · r1n

0 a−122 t
−1
22 · · · r2n

...
...

. . .
...

0 0 · · · a−1nnt
−1
nn


To be exact, the diagonal entries of the product of two upper triangular matrices are just
the product of their respective diagonal entries. Thus, for some collection of constants {uij},

ATA−1T−1 =


1 u12 · · · u1n
0 1 · · · u2n
...

...
. . .

...
0 0 · · · 1

 .
Therefore

[A+,A+] ≤ U

since U contains all the generators of [A+,A+].
To see the reverse inclusion

[A+,A+] ≥ U ,
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appeal to generators as well. Now, U has generators consisting of upper transvections

{Tij(a) | a ∈ C, 1 ≤ i < j ≤ n}.

The transvection Tij(a) is commonly defined to be

Tij(a) = I + aEij.

(Recall that Eij is the matrix with a 1 in the (i, j)th entry and zeros elsewhere.) In other
words, Tij(a) has all 1s down the diagonal, the constant a in the (i, j)th entry, and zeros
elsewhere. The following formula for the various commutators of the Tij(a)s is given by

[Tij(a), Tlk(b)] = I + ab(δljEik − δikElj),

where i < j and l < k with a, b ∈ C. Consequently since the upper transvections are also in
A+, for each 1 ≤ i < i+ 1 < j ≤ n, and a ∈ C,

Tij(a) = [Tii+1(a), Ti+1j(1)] ∈ [A+,A+].

For the case when 2 ≤ l + 1 ≤ n, let D ∈ A+ be the diagonal matrix with i in the lth
diagonal entry, a −i in the l+ 1th diagonal entry, and with 1s elsewhere along the diagonal.
Then

[Tll+1

(a
2

)
, D] = Tll+1(a).

As a result, for each l ∈ [n− 1], and a ∈ C,

Tll+1(a) ∈ [A+,A+].

Therefore
[A+,A+] ≥ U ,

since [A+,A+] contains all the generators of U .
All the other cases follow analogously to this one. Also, note that D, the diagonal matrix

introduced in later part of the proof had a determinant equal to one, making it acceptable
in the case of B+ and B−.

Proposition 5.2.6. The matrix Lie groups U and L are solvable. In particular, A+,A−, B+,
and B− are all solvable.

Proof. By Lemma 5.2.5, if U and L are solvable, then A+, A−, B+, and B− are all solvable
as well. Indeed, their solvable lengths would be one unit more than the solvable lengths of
U and L, respectively.

So, for each k ∈ [n− 1], define
Nk ≤ U

to be the set of matrices with all zeros in the k diagonals above their main diagonal. For
reference, note that Nn−1 = {I}. Let U and C be in U . Then each entry of the diagonal
just above the main diagonal of their product UC is equal to the sum of the corresponding
entries of U and C. Furthermore, each entry of the diagonal just above the main diagonal of
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their inverses U−1 and C−1 is the multiplicative inverse of the corresponding entry in U and
C, respectively. With this observation,

UCU−1C−1 ∈ N1.

Thus
[U ,U ] ≤ N1.

From here, induction, with a similar argument used just previously, shows that

UCU−1C−1 ∈ Nk+1

whenever U,C ∈ Nk. Consequently U (k), the kth derived subgroup, is contained in Nk.
Therefore U is solvable with a solvable length no larger than n− 1.

Finally, L is solvable, shown by repeating the previous argument with

Nk ≤ L,

defined now to be all the matrices with only zeros in the k diagonals below their main
diagonal.

This section concludes with establishing the topological claims concerning the set of
matrices having Gauss decompositions. The true utility of these properties will be in verifying
the invaluable result presented in Lemma 5.3.5, and Theorem 5.3.8 in Section 5.3.

Theorem 5.2.7. Both LZU and UZL are dense in GL(n,C).

Proof. For each ∆k, set Uk = {A ∈ Mn(C) | ∆k(A) 6= 0}. Then, as the compliment of the
zero set of a polynomial operation

∆k : Mn(C)→ C,

Uk is an open dense subset in Mn(C). Indeed, the corresponding zero set is closed and
nowhere dense in Mn(C). Therefore, since the finite intersection of open dense sets is still
open and dense,

LZU =
n⋂
k=1

Uk

is open and dense in Mn(C).
If A ∈ GL(n,C), and V is an open neighborhood of A in GL(n,C), then V is also open

in Mn(C). True, GL(n,C) = Un is open as well. By this, V has a non empty intersection
with

⋂n
k=1 Uk. Thus V contains an element of the form LDU ∈ LZU . Therefore LZU is

dense in GL(n,C).
Finally, the density of UZL in GL(n,C) follows in a similar fashion by repeating the

previous argument with the ∆̂ks.

Theorem 5.2.8. Both LDU and UDL are dense in SL(n,C).
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Proof. This case is a little more problematic since SL(n,C) is not open in Mn(C) like
GL(n,C). One will need to appeal to SL(n,C) as complex manifold.

Consider the operations ∆k and ∆̂k for k ∈ [n − 1]. By Lemma 5.2.4, a matrix A ∈
SL(n,C) is in LDU if and only if ∆k(A) 6= 0 for each k ∈ [n− 1]. By taking the product

P :=
n−1∏
k=1

∆k,

one has A /∈ LDU if and only if P (A) = 0. Furthermore, P is polynomial in the entries of
A. Thus P a global complex analytic function on SL(n,C).

With that said, suppose that LDU is not dense in SL(n,C). Then, for some A ∈ SL(n,C),
there exists an open neighborhood N ′ ⊆ SL(n,C) about A such that N ′ ∩ LDU = ∅.
Consequently P vanishes completely on the open set N ′.

Now consider the atlas for SL(n,C) introduced in Corollary 4.4.3

{(NA, ϕA) | A ∈ SL(n,C)}.

Since SL(n,C) is path connected, one can use the compactness of the interval [0, 1] to find
a finite collection {Ai | i ∈ [K]}, such that A0 = I, AK = A and NAi−1

∩ NAi 6= ∅ for each
i ∈ [K]. With this mind, P vanishes on the open neighborhood NA since it vanishes on the
open set N ′∩NA ⊆ N ′. Indeed, a complex analytic function that vanishes on an open subset
of its domain must also vanish completely on the connected component containing that open
subset. So applying this fact to the pullback

P ◦ ϕ−1A : ϕA(NA)→ C,

one finds that P ◦ϕ−1A vanishes on connected open set ϕA(NA) since it vanishes on the open
subset ϕA(NA ∩N ′). Therefore P must be identically zero on NA.

Continuing, apply this argument to the open subset NAK−1
∩NA to see that P vanishes

on NAK−1
as well. So inductively, one establishes that P is zero on all of NA0 = NI . However,

this is impossible since P (I) = 1. With this contradiction, LDU is dense in SL(n,C).
Finally, by repeating the previous argument with the use of the collection ∆̂k, k ∈ [n−1],

one establishes that UDL is dense in SL(n,C) as well.

5.3 Highest weight identification of irreducible representations

Consider a complex analytic representation of GL(n,C) or SL(n,C). By the results of Section
5.2, one could potentially apply Lie’s Theorem to the restricted representation of Z or D,
respectively, to obtain a one dimension invariant subspace. With that in mind, the section
begins with the following easily overlooked technical difficulty.

Lemma 5.3.1. Let G be any group. Then there exists an irreducible invariant subspace

W ≤ V

for every finite-dimensional representation ρ : G→ GL(V ).
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Proof. If V is not already irreducible, then find an G-submodule W ≤ V. Repeat this
argument with W to find another submodule W1 ≤ W. Finally, V is finite dimensional.
Therefore inductively, one can find the desired irreducible.

For Definitions 5.3.2 and 5.3.4, and Theorem 5.3.3, letG be equal to GL(n,C) or SL(n,C),
and let H equal Z or D, respectively. Finally, set C± to A± or B±, respectively.

Definition 5.3.2. A weight and its corresponding weight space for a complex analytic rep-
resentation ρ : G → GL(V ) is a pair (µ, Vµ) is a simultaneous eigenvalue/space pair of the
representation ρ|H : H → GL(V ) of H.

Furthermore, a weight vector v is any non-zero element of a weight space.

For the following, consider a representation ρ : G → GL(V ), and apply Lie’s theorem
and Lemma 5.3.1 to the restriction ρ|C+ to get a simultaneous eigenvalue/eigenvector pair
(µ, v) for C+.

Theorem 5.3.3. Let ρ : G→ GL(V ) be a representation of G. Then v ∈ V is a simultaneous
eigenvector of the restriction ρ|C+ if and only if v is a weight vector of ρ invariant under the
action of U , i.e.

ρ(U)v = v

for all U ∈ U .

Proof. First, if v ∈ V is simultaneous eigenvector of the restriction ρ|C+ , then clearly v is
weight vector of ρ since H is a subgroup of C+

Conversely, suppose v ∈ V is a weight vector of ρ invariant under the action of U . Let µ
denote the corresponding weight. Now, take C ∈ C+. Then, for some D ∈ H and U ∈ U ,

C = DU.

Thus,

ρ(C)v = (ρ(D)ρ(U))v

= ρ(D)v

= µ(D)v.

Therefore, v ∈ V is simultaneous eigenvector of the restriction ρ|C+ .

Definition 5.3.4. Any such v ∈ V satisfying Theorem 5.3.3 is a highest (maximal) weight
vector, and its defining weight µ is a highest (maximal) weight. Furthermore, considering
Theorem 5.3.3 in the case of C−, one defines a lowest (minimal) weight vector and a corre-
sponding lowest (minimal) weight.

For simplicity, the remaining results of this section will be established using just complex
analytic representations of SL(n,C). However, know that these results will apply analogously
to complex analytic representations of GL(n,C). For clarification purposes, the section will
close on a remark concerning the case of GL(n,C).

Now that weights of a complex analytic representation of SL(n,C) have been introduced,
what remains is identifying irreducibles by their highest weights. Up until now it has just
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been stated as fact, but how exactly is it possible that an irreducible is identifiable by a
highest weight? In theory, it could be that there exists multiple highest weights to one irre-
ducible, and as consequence, would be the compromise of the utility of unique identification
using highest weights. Fortunately, the reality is each irreducible representation has only one
highest weight space, which is also one dimensional. With that said, this section justifies this
claim and will conclude by showing that if two irreducible representations share a common
highest weight, then they must be equivalent.

To begin, recall the definition of dual module from Section 1.5. Let C(SL(n,C)) de-
note the set of continuous complex-valued functions on SL(n,C). Additionally, for V an
irreducible SL(n,C)-module, let

fα : V → C(SL(n,C))

be the function from Lemma 1.5.5 adapted to the case of C(SL(n,C)). For a fixed α ∈ V ∗,
by Lemma 1.5.5,

〈fα(v) | v ∈ V 〉

is irreducible. Thus, it is generated, as an SL(n,C)-module, by any nonzero v ∈ V. Therefore,
a natural choice is to use any highest weight vector as generator.

Proposition 5.3.5. Let v be a highest weight vector to the SL(n,C)−module V , and α be a
lowest weight vector to the dual SL(n,C)−module V ∗. Then the map

fα(v) : G→ C

has a nonzero restriction to both LDU and UDL.

Proof. To begin, note the following needed observation. Let v ∈ V , and T ∈ HomC(V, V ).
Since dimV is finite, the euclidean norm and the operator norm are equivalent on T ∈
HomC(V, V ). Thus one can verify that the assignment,

T → T (v),

defines a continuous map from HomC(V, V ) into V . Therefore fα(v) is continuous on
SL(n,C).

With that said, the function fα(v) is also nonzero on SL(n,C). Indeed, by Lemma 1.5.5,
it is true that fα(v) 6= 0 since, as a highest weight vector, v 6= 0. Furthermore, by The-
orem 5.2.8, LDU and UDL are both dense in SL(n,C). So by continuity, if the respective
restrictions of fα(v) were zero, then fα(v) itself would be zero. Therefore, the statement is
valid.

Remarkably, it turns out that if fα(v) is created out of a minimal α ∈ V ∗ and a max-
imal v ∈ V , then one gets the following proposition, which illustrates a close relationship
between the corresponding highest weight and lowest weight, with the injective SL(n,C)-
homomorphism, fα(v). Ultimately, this result is why there is exactly one highest weight
space, and furthermore, why its dimensional can be no more than one.

Proposition 5.3.6. Suppose (v, µ) is maximal in the SL(n,C)−module V , and suppose
(α, ν) is minimal in the dual SL(n,C)−module V ∗. Then, for any UDL ∈ UDL,
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(1) fα(v)(UDL) = µ(D)−1α(v), alternatively

(2) fα(v)(UDL) = ν(D)α(v), and

(3) α(v) 6= 0

In particular,
ν(D) = µ(D)−1

for all D ∈ D.

Proof. First, let ρ and ρ∗ denote the representations carried by V and V ∗, respectively. By
hypothesis,

ρ∗(DL)α = ν(D)α,

and
ρ(UD)−1v = µ(D)−1v.

Thus

fα(v)(UDL) = α(ρ(L)−1ρ(UD)−1v) = ρ∗(L)(α)(µ(D)−1v) = µ(D)−1α(v).

Alternatively,

fα(v)(UDL) = α(ρ(DL)−1ρ(U)−1v) = ρ∗(DL)(α)(v) = ρ∗(D)(α)(v) = ν(D)α(v).

Now suppose α(v) = 0. Then

fα(v)(UDL) = µ(D−1)α(v) = 0.

Therefore fα(v) is the zero map on UDL, contradicting Proposition 5.3.5.

From Proposition 5.3.6, one may find a highest weight vector in V such that α(v) = 1.
As a result,

fα(v)(UDL) = µ(D−1)

for any UDL ∈ UDL. This observation will come into play in the following theorem.

Theorem 5.3.7. There is a unique one dimensional highest weight space of the irreducible
SL(n,C)−module V.

Proof. Suppose (v, µ) and (w, η) are both maximal in V , and suppose (α, ν) is minimal in
V ∗ such that α(v) = 1. First, fα(w) = α(w)fα(v) as functions on SL(n,C). Indeed, by
Proposition 5.3.6,for any UDL ∈ UDL,

fα(v)(UDL) = ν(D) =
fα(w)(UDL)

α(w)
.

Thus, the two continuous functions fα(w) and α(w)fα(v) agree on the dense subset UDL.
Therefore, they must agree on all of SL(n,C).
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Now by Lemma 1.5.5, fα : V → C(SL(n,C)) is an injective SL(n,C)−homomorphism.
Thus α(w)fα(v) = fα(α(w)v), and hence,

w = α(w)v.

Therefore, by Lemma 5.1.3,
µ = η.

This section concludes by justifying the claim that an irreducible SL(n,C)−module is
uniquely determined by its highest weight.

Theorem 5.3.8. Suppose V and W are irreducible SL(n,C)−modules, and let µ and η be
their respective highest weights. Then, V and W are isomorphic if and only if µ = η.

Proof. Let ρ and % be the respective representations carried by the SL(n,C)-modules, V and
W .

First µ = η, whenever V ∼= W. Indeed, let φ : V → W provide the isomorphism, and
suppose v is a maximal weight vector in V. Then, for B = DU ∈ B+,

%(B)φ(v) = φ(ρ(B)v) = φ(µ(D)v) = µ(D)φ(v).

Hence, (φ(v), µ) is maximal in W. Therefore, by Theorem 5.3.7, µ = η.
Conversely, suppose that (v, µ) and (w, η) are maximal in V and W , respectively, and

let (α, ν) and (β, υ) be minimal in V ∗ and W ∗, respectively. Furthermore, assume that
α(v) = β(w) = 1. Now, by Proposition 5.3.6, for UDL ∈ UDL,

(1) fα(v)(UDL) = µ(D)−1, and

(2) fβ(w)(UDL) = η(D)−1.

So, if µ = η, then fα(v) and fβ(w) agree when restricted to UDL, and as a result, fα(v) =
fβ(w). Therefore, by Lemma 1.5.5,

V ∼= 〈fα(v)〉 ∼= 〈fβ(w)〉 ∼= W.

Remark. By making the following substitutions,

D → Z
B+ → A+

B− → A−.

one sees the same results out of this section for the case of GL(n,C). Most importantly,
one has that the irreducible GL(n,C)-modules are also uniquely determined by their highest
weights. Ultimately, this is a consequence of the fact that Lie’s Theorem applies to Z,A+,
and A−; and in addition, since GL(n,C) possess the dense subsets, LZU and UZL.

101



5.4 Description of weights

The final goal of this chapter is to show that if µ is a highest weight for an irreducible module
of GL(n,C) or SL(n,C), then µ is determined by a sequence of weakly increasing integers,

(m1,m2, ...,mn).

However, for the case of SL(n,C), the integers in sequence have the additional property of
being nonnegative. In other words, highest weight for an irreducible module of SL(n,C) are
determined always by some integer partition of some appropriate positive integer!

5.4.1 Weights as analytic homomorphisms

To begin, the following lemma is extremely important. Indeed, it shows how the complex
analytic nature of the representations result in the fact that weights, in general, must be
determined by a sequence of integers.

Lemma 5.4.1. Let n ≥ 1, and let µ : (C∗)n → C∗ be an analytic homomorphism, then µ is
determined by a sequence of integers

(m1,m2, ...,mn).

That is, for all z = (z1, z2, ..., zn),

µ(z) = zm1
1 zm2

2 ...zmnn .

Proof. First, it will be shown that the analytic homomorphism µ : C∗ → C∗ must have the
form

µ(z) = zm

for some integer m. From there, the result will extended to the nth direct product, (C∗)n.
By doing so, the proof will be complete.

To begin, recall that exponentiation by the complex number c on C∗ can be defined by

wc := ecLogw

where Logw := ln |w| + iArgw is the function defined using the principal value of the
complex logarithm and the principal value of the complex argument. Now for nonzero
complex numbers w1and w2 the following holds

(w1w2)
c = ecLog(w1w2)

= ec(ln |w1w2|+iArg(w1w2))

= ec(Logw1+Logw2+i2πN)

where N ∈ {−1, 0, 1} is defined such that Argw1w2 = Argw1 + Argw2 + i2πN holds. Now,
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using the fact that ez+w = ez ew, one has that

(w1w2)
c = wc1w

c
2 eci2πN .

Furthermore, eci2πN = 1 if and only if c ∈ Z. Consequently, the assignment w → wc is a
homomorphism if and only if c is an integer.

Now, let w ∈ C∗ and notice that if µ is an analytic homomorphism on C∗, then

µ′(w) = µ′(1)
µ(w)

w
.

Indeed, if w 6= 0, then for any z ∈ C∗,

µ(z) = µ
( z
w

)
µ(w).

Therefore,

µ′(w) = lim
z→w

µ(z)− µ(w)

z − w

= lim
z→w

µ( z
w

)− µ(1)
z
w
− 1

· µ(w)

w

= µ′(1)
µ(w)

w
.

Realize that this result restricts the possibility for µ by condition that it must be the
unique solution to the complex initial value problem

µ′(w) = c
µ(w)

w
µ(1) = 1

on the open set C∗. Indeed, from complex analysis is the following: If U ⊆ C is a connected
open set such that the function g : U → C has an anti-derivative, then the anti derivative
for g is unique up to constant. Moreover, that constant will be determined by the provided
initial condition.

With this consider,

g(w) = wc

= ecLogw,

for some non-integer c ∈ C. Now, f(w) = Logw is differentiable everywhere except the on
non-positive reals, since it satisfies the polar form of Cauchy-Riemann equations there. With
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this, one sees that the same is true for g. So, by the chain rule, one has

g′(w) = c ecLogw f ′(w)

= c
ecLogw

w

= c
g(w)

w
,

valid on the open connected set U = C \ R≤0. And, since g(1) = 1, one has g′(1) = c.

Consequently, the only function h satisfying the complex differential equation h′(w) = ch(w)
w

with the initial condition h(1) = 1 on U is

h(w) = wc,

where c can now be any complex number. Therefore, the analytic homomorphism µ : C∗ →
C∗ must be of the form

µ(w) = wc,

for some complex number c. However, it was already shown that for a function like this to
be a homomorphism it must be true that c ∈ Z.

Now, let n ≥ 1, and suppose µ : (C∗)n → C∗ is an analytic homomorphism. First, for
j ∈ [n], define the function

µj : C∗ → C∗

: z→ µ((z)j),

where (z)j ∈ (C∗)n is defined to be the the n-tuple with the jth component equal to the
complex number z and every other component equal to 1. It is not too hard to see that µj
is an analytic homomorphism on C∗. As a result, for all j ∈ [n], there is some mj ∈ Z such
that

µ((z)j) = zmj

for all elements of this form. So let z ∈ (C∗)n, and realize z decomposes as

z = (z1)1(z2)2...(zn)n

for some set of complex numbers {z1, z2, ...zn}. Finally, since µ is an analytic homomorphism,

µ(z) = µ((z1)1(z2)2...(zn)n)

= µ((z1)1)µ((z2)2)...µ((zn)n)

= zm1
1 zm2

2 ...zmnn .

Therefore, every analytic homomorphism µ : (C∗)n → C∗ is given by

µ(z) = zm1
1 zm2

2 ...zmnn

for some sequence of integers, (m1,m2, ...,mn).
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Theorem 5.4.2. Let V carry the representation ρ : GL(n,C) → GL(V ), and let µ be a
weight. Then, for each D = diag(d1, d2, ..., dn) ∈ Z,

µ(D) = dm1
1 dm2

2 ...dmnn

for some sequence of integers, (m1,m2, ...,mn).

Proof. First note that the restriction ρ|Z inherits the complex analyticity from ρ. Indeed,
the Lie algebra for Z is the set of diagonal matrices with complex entries. Hence, Z is a
complex Matrix Lie group. So to see that ρ|Z is complex analytic, apply Corollary 4.4.4
to the induced Lie algebra representation of ρ|Z . Furthermore, with a little more analysis
using coordinate projections with some weight vector, one can quickly establish that µ itself
complex analytic as well. Finally, Z clearly has global coordinates given by

D → (d1, d2, ..., dn) ∈ (C∗)n.

Therefore, to complete the verification of the claim, one may apply Lemma 5.4.1 to the
weight, µ.

Theorem 5.4.3. Let V carry the representation ρ : SL(n,C) → GL(V ), and let µ be a
weight. Then, for each D = diag(d1, d2, ..., dn−1, dn) ∈ D,

µ(D) = dm1
1 dm2

2 ...d
mn−1

n−1

for some sequence of integers, (m1,m2, ...,mn−1).

Proof. The proof follows analogously to the proof of Theorem 5.4.2. However, D has global
coordinates given by

D → (d1, d2, ..., dn−1) ∈ (C∗)n−1

as a result of the condition that detD = 1. Therefore, by Lemma 5.4.1, the weight µ will
instead be determined by some sequence of integers (m1,m2, ...,mn−1).

Remark. Now in some cases, it will be beneficial not single out the last diagonal entry for
D ∈ D when considering

µ(D).

The main reason is that it will be convenient later to identify the weight, µ, with an n-tuple
of integers. As a consequence µ will determined some family of integer sequences

{(m1,m2, ...,mn−1, 0) + (a, a..., a) | a ∈ Z}.

To explain, let ρ : SL(n,C)→ GL(V ) be a representation and let µ be a weight, with

(m1,m2, ...,mn) ∈ Zn.
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Suppose

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 ∈ D.
Then, dn = (d1d2...dn−1)

−1 since detD = 1. With this in mind, one has

dm1
1 dm2

2 ...d
mn−1

n−1 (d1d2...dn−1)
−mn = d

(m1−mn)
1 d

(m2−mn)
2 ...d

(mn−1−mn)
n−1 .

Therefore, considering Theorem 5.4.3, µ would be determined by

(m1 −mn,m2 −mn, ...,mn−1 −mn)

given (m1,m2, ...,mn).
However, consider a fixed a ∈ Z. Then,

d
(m1+a)
1 d

(m2+a)
2 ...d(mn+a)n = dm1

1 dm2
2 ...dmnn (d1d2...dn)a = dm1

1 dm2
2 ...dmnn .

Therefore, µ can be associated to (m1 + a,m2 + a, ...,mn + a) for all a ∈ Z.
Finally, for both cases concerning weights of complex analytic representations of GL(n,C)

and SL(n,C), the notation
µ ≡ (m1,m2, ...,mn)

will be used to signify that µ is determined by the integer sequence, (m1,m2, ...,mn). The
only difference will be whether or not the correspondence is unique.

5.4.2 Weights and weight spaces for gl(n,C) and sl(n,C)

One will need assistance from the Lie algebras gl(n,C) and sl(n,C) in order to show that if
a particular weight is given by a weakly increasing sequence of integers, then it must be the
highest weight.

Definition 5.4.4. Let G be equal to GL(n,C) or SL(n,C). The adjoint representation,

Ad : G→ GL(g)

is defined by setting, for each X ∈ g and A ∈ G,

Ad(A)X := AXA−1.

Proposition 5.4.5. Let G be equal to GL(n,C) or SL(n,C). Then, the adjoint representa-
tion induces a Lie algebra representation of g on itself

ad : g→ gl(g)

Explicitly, for each X, Y ∈ g,
ad(Y )X = [Y,X].
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Proof. Let Y,X ∈ g. Then,

[Y,X] =
d

dt

(
etY X e−tY

)∣∣
t=0

.

Therefore, by Proposition 4.2.4, the result follows.

At this point and until the close of this section, results and definitions will be presented
and established using just the setting of SL(n,C) and sl(n,C). Again, the motivation is to
promote simplicity since, like before, the results extend easily and analogously to the setting
of GL(n,C) and gl(n,C). Finally, a closing remark will be given concerning GL(n,C) for
clarification purposes.

Now, the following Lie sub-algebras in sl(n,C) are of interest and will be needed.

h = {H ∈ sl(n,C) | H = diag(h1, h2, ..., hn)}
u = {X ∈ sl(n,C) | X is strictly upper triangular}
l = {Y ∈ sl(n,C) | Y is strictly lower triangular}

Recall the basis for sl(n,C) introduced in Chapter 4,

E = {Eij | 1 ≤ i 6= j ≤ n} ∪ {Hi | i ∈ [n− 1]}.

Using this basis, one can utilize the following convenient formula for the matrix commutator,

[Eij, Elk] = δjlEik − δkiElj.

Lastly, note the following decomposition

sl(n,C) = h⊕ u⊕ l.

Here is the notion of weight and weight space seen from the Lie algebra.

Definition 5.4.6. A weight and its corresponding weight space for the Lie algebra repre-
sentation p : sl(n,C)→ gl(V ) is a pair (α, Vα) such that

(1) α ∈ h∗, and

(2) Vα = {v ∈ V | p(H)v = α(H)v ∀H ∈ h} is a non-trivial subspace in V .

Furthermore, a weight vector is any non-zero element of a weight space.

Example 5.4.7. Consider Ad : SL(n,C) → GL(sl(n,C)), and the induced lie algebra rep-
resentation ad : sl(n,C)→ gl(sl(n,C)). Let 1 ≤ l, k ≤ n, and

H =


h1 0 · · · 0
0 h2 . . . 0
...

...
. . .

...
0 0 · · · hn

 ∈ h.
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Then, one obtains
[H,Elk] = (hl − hk)Elk.

Indeed, write H =
n∑
i=1

hiEii. Thus,

[H,Elk] =
n∑
i=1

hi[Eii, Elk] =
n∑
i=1

hi(δilEik − δkiEli) = (hl − hk)Elk.

Therefore, for each l 6= k, one has that Elk is weight vector of corresponding weight αlk ∈ h∗

given by
αlk(H) = hl − hk.

Finally, Hi is also weight vector for each i ∈ [n− 1] with the zero functional as weight.

The weight vectors of the adjoint representation play an important role in the general
theory of Lie algebra representations. Therefore, weight vectors that do not belong to h are
called root vectors, and their corresponding weights are called roots. Consider the following.

Theorem 5.4.8. Let p : sl(n,C) → gl(V ) be a representation, and suppose (v, α) is a
weight/weight vector pair for p. Then, for each 1 ≤ l 6= k ≤ n,

(1) p(Elk)v is another weight with corresponding weight α + αlk, or

(2) p(Elk)v = 0.

Proof. Let H ∈ h. Recall that

p([H,Elk])v = p(H)(p(Elk)v)− p(Elk)(p(H)v).

Thus,

p(H)(p(Elk)v) = p([H,Elk])v + p(Elk)(p(H)v)

= (αlk(H) + α(H))p(Elk)v.

Therefore, if p(Elk)v 6= 0, then p(Elk)v is another weight vector with weight α + αlk.

Proposition 5.4.9. Let ρ : SL(n,C) → GL(V ) be a representation for SL(n,C), and let
·
ρ : sl(n,C) → gl(V ) be the induced Lie algebra representation for sl(n,C). Then, v is a

weight vector for ρ|D if and only if v is a weight vector for
·
ρ.

Furthermore, suppose µ and α are the corresponding respective weights for ρ|D and
·
ρ such

that
µ ≡ (m1,m2, ...,mn) ∈ Zn.

Then, for all H ∈ h,
α(H) = m1h1 +m2h2 + ...+mnhn.
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Proof. Suppose v ∈ V is a weight vector for ρ|D with weight µ ≡ (m1,m2, ...,mn), and let

H =


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hn

 ∈ h.

Using Proposition 4.2.4,

·
ρ(H)v =

(
lim
t→0

ρ(etH)− idV
t

)
v

= lim
t→0

µ(etH)v − v
t

=

(
lim
t→0

µ(etH)− 1

t

)
v

=

(
d

dt
(µ(etH))

∣∣
t=0

)
v.

Now,

etH =


eh1t 0 · · · 0
0 eh2t · · · 0
...

...
. . .

...
0 0 · · · ehnt

 .
Thus,

µ(etH) = (eh1t)m1(eh2t)m2 ...(ehnt)mn

= e(m1h1+m2h2+...+mnhn)t .

With this,
d

dt
(µ(etH))

∣∣
t=0

= m1h1 +m2h2 + ...+mnhn.

Therefore, since
·
ρ(H)v = (m1h1 +m2h2 + ...+mnhn)v,

v is a weight vector for
·
ρ with weight α, given by

α(H) = m1h1 +m2h2 + ...+mnhn.

Conversely, suppose that v is a weight vector for
·
ρ with weight α, and let

D =


δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...
0 0 · · · δn

 ∈ D.
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First, for each i ∈ [n − 1], pick a zi ∈ C such that δi = ezi , since δi 6= 0. Realizing that
δn = (δ1δ2...δn−1)

−1, set zn = −(z1 + z2 + ...+ zn−1). With this in mind, define

H =


z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zn

 .
As a result, one has H ∈ h, and eH = D. Now using Proposition 4.2.4, one can show

ρ(D)v = e
·
ρ(H) v

= eα(H) v,

since (
lim
k→∞

k∑
i=1

·
ρ(H)k

k!

)
v = lim

k→∞

(
k∑
i=1

α(H)k

k!
v

)
=

(
lim
k→∞

k∑
i=1

α(H)k

k!

)
v.

Therefore, v is weight vector for ρ|D for some weight µ given by

µ(D) = eα(H)

such that H ∈ h satisfies eH = D.

Remark. Considering 5.4.9, (m1,m2, ...,mn) can represent both weights µ and α. Also, one

can simply use the term ’weight vector’ or ’weight’ without having to specify ρ or
·
ρ.

5.4.3 The lexicographic order on weights and permutation matri-
ces

Now, the final step is showing that if a weight is a highest weight, then it is given by an
increasing sequence of integers. This will be accomplished by the use of the lexicographic
order, and by the additional aid of permutation matrices. To start, in order to define the
lexicographic order one will need a unique representative (m1,m2, ...,mn) for a given weight
µ. So considering Theorem 5.4.3, choose (m1,m2, ...,mn) such that mn = 0.

Definition 5.4.10. Suppose µ ≡ (m1,m2, ...,mn−1, 0) and ν ≡ (k1, k2, ..., kn−1, 0) are two
weights, of an irreducible SL(n,C)- module V. Then, µ ≥ ν in the lexicographic order,
whenever,for some i ∈ [n],

mj = kj for all j < i, and mi ≥ ki.

Note that this a total order on weights with a maximal element since, by Lemma 5.1.3,
there are only finitely many distinct weights. In fact, one has the following useful result.

Lemma 5.4.11. Let ρ : SL(n,C) → GL(V ) be an irreducible representation for SL(n,C),
and let µ be a weight. Then, µ is maximal with respect to the lexicographic order, if and only
if µ is the highest weight.
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Proof. In this proof, one appeals to the induced representation
·
ρ : sl(n,C)→ gl(V ).

Let v be a weight vector, and suppose µ, α ≡ (m1,m2, ...,mn−1,mn), where mn = 0.
(Recall Proposition 5.4.9.)

Now suppose µ is maximal with respect to the lexicographic order, and let 1 ≤ i < j ≤ n.
Then, in consideration of Theorem 5.4.8,

·
ρ(Eij)v

is another weight vector with weight α + αij, whenever
·
ρ(Eij)v 6= 0. So, take

H =


h1 0 0 0
0 h2 0 0

0 0
. . . 0

0 0 0 hn

 ∈ h,

and note that

(α + αij)(H) = α(H) + αij(H)

=
n∑
l=1

mlhl + (hi − hj)

= (mi + 1)hi + (mj − 1)hj +
∑
l 6=i,j

hlml.

Consequently, if
·
ρ(Eij)v is another weight vector with 1 ≤ i < j ≤, then there exists a

weight
ν ≡ (m1, ...,mi + 1, ...,mj − 1, ...,mn).

However, this would imply that ν > µ, with respect to the lexicographic order. Thus, under
the assumption that µ is maximal, it must be that, for all 1 ≤ i < j ≤ n,

·
ρ(Eij)v = 0.

As a result, v is annihilated by all of u.

Now, this implies that v is fixed by all of U . Indeed,
·
ρ(X)v = 0 for all X ∈ u, if and

only if ρ(U)v = v for all U ∈ U . Hence, by Theorem 5.3.3, v is a highest weight vector, and
therefore µ is the highest weight.

Alternatively, suppose µ is not maximal with respect to the lexicographic order. Then,
there is some other weight ν > µ that is maximal. But considering the previous argument,
ν is then highest weight. Therefore, by Theorem 5.3.7, µ is not the highest weight.

Like the lexicographic order, permutation matrices play a key role. The utility of such
matrices is illustrated by the following.

Lemma 5.4.12. Let ρ : SL(n,C) → GL(V ) be a representation. Suppose (m1,m2, ...,mn)
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defines a weight. Then, for any permutation σ ∈ Sn,

(mσ(1),mσ(2), ...,mσ(n))

defines a weight as well.

Proof. The following matrix will be utilized in this proof;

U =


1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 −1

 .
With that said, recall that for a given σ ∈ Sn, one can define a permutation matrix by

permuting the columns of the identity matrix with σ. So, let Pσ be that permutation matrix.
Then,

Pσ =
n∑
i=1

Eiσ(i),

which has the property that
det(Pσ) = sgn(σ).

Indeed,
det : Cn → C

is completely anti-symmetric.
Now, realize that Pσ ∈ SL(n,C) if and only if σ is an even permutation. Therefore, U

will act as a correction term since UPσ will be in SL(n,C). In other words,

det(UPσ) = det(U)sgn(σ) = (−1)2 = 1.

Continuing, Let D ∈ D, and consider (Pσ)−1DPσ. Note that (Pσ)−1 = Pσ−1 , and write

D =
n∑
i=1

δiEii.

Then, using the multiplication formula

ElkEij = δkiElj,

one can easily verify that

(Pσ)−1DPσ =
n∑
i=1

δσ−1(i)Eii.
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In other words, if

D =


δ1 0 0 0
0 δ2 0 0

0 0
. . . 0

0 0 0 δn

 ,
then

(Pσ)−1DPσ =


δσ−1(1) 0 0 0

0 δσ−1(2) 0 0

0 0
. . . 0

0 0 0 δσ−1(n)

 .
Hence, (Pσ)−1DPσ ∈ D. Additionally,

(UPσ)−1D(UPσ) = (Pσ)−1DPσ,

since U−1DU = D.
Now, for convenience set (Pσ)−1DPσ = Dσ, and suppose that v ∈ V is a weight vector

with corresponding weight µ ≡ (m1,m2, ...,mn). If σ is even, then

ρ(D)ρ(Pσ)v = ρ(Pσ)ρ(Pσ)−1ρ(D)ρ(Pσ)v = ρ(Pσ)ρ(P−1σ DPσ)v,

hence,
ρ(D)ρ(Pσ)v = µ(Dσ)ρ(Pσ)v.

Consequently, ρ(Pσ)v is another weight vector with weight ν, such that ν(D) = µ(Dσ) for
all D ∈ D. Furthermore,

(δσ−1(1))
m1(δσ−1(2))

m2 ...(δσ−1(n))
mn = (δ1)

mσ(1)(δ2)
mσ(2) ...(δn)mσ(n) .

Thus,
ν(D) = (δ1)

mσ(1)(δ2)
mσ(2) ...(δn)mσ(n)

for all D ∈ D, and therefore, ν ≡ (mσ(1),mσ(2), ...,mσ(n)).
Finally, if σ is odd, then repeat the previous argument with UPσ, since

ρ(UPσ)−1ρ(D)ρ(UPσ) = ρ(Pσ
−1DPσ) = ρ(Dσ).

In doing so, one finds that ρ(UPσ)v is another weight vector with corresponding weight
ν ≡ (mσ(1),mσ(2), ...,mσ(n)).

With the establishment of Lemma 5.4.11 and 5.4.12, it is now time to verify the final
needed result linking highest weights to weakly increasing sequences of integers.

Theorem 5.4.13. Suppose µ ≡ (m1,m2, ...,mn−1, 0) is the highest weight for the irreducible
SL(n,C)- module, V. Then,

m1 ≥ m2 ≥ ... ≥ mn−1 ≥ 0.

Proof. Suppose µ ≡ (m1,m2, ...,mn−1, 0) is the unique highest weight for the irreducible
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SL(n,C)-module V. Then, by Lemma 5.4.11, µ is also the maximal weight with respect to
the lexicographic order. Now, if (m1,m2, ...,mn−1,mn), with mn = 0, did not already satisfy
the condition

m1 ≥ m2 ≥ ... ≥ mn−1 ≥ 0,

then, for some appropriate σ ∈ Sn, one could find a different weight

ν ≡ (mσ(1),mσ(2), ...,mσ(n−1),mσ(n)),

such that
mσ(1) ≥ mσ(2) ≥ ... ≥ mσ(n−1) ≥ mσ(n).

However, µ > ν, since µ 6= ν. Thus, for some i ∈ [n],

mj = mσ(j) for all j < i, and mi > mσ(i).

With this in mind, realize that i ≥ 2. True, otherwise

m1 > mσ(1) ≥ mσ(2) ≥ ... ≥ mσ(n−1) ≥ mσ(n),

which implies m1 > m1. Consequently, m1 = mσ(1). And therefore, m1 ≥ ml for all l ∈ [n].
Now, one can just assume that σ(1) = 1 since m1, being maximal, did not need to be

permuted from the start. Moving forward, one has that

m2 ≥ mσ(2) ≥ ... ≥ mσ(n−1) ≥ mσ(n),

since i ≥ 2. So, by applying the previous argument again, one finds m2 = mσ(2), and
m1 ≥ m2 ≥ ml for all l ≥ 2. Hence, like before, it can be assumed that σ(2) = 2.

By continuing this, one sees

m1 ≥ m2 ≥ ... ≥ mi−1 ≥ ml,

for all l ≥ i, and thus it can be assumed that σ(k) = k for 1 ≤ k ≤ i− 1. However, one still
obtains a contradiction. Indeed, σ permutes the last n− i+ 1 entries of

(m1,m2, ...,mn−1, 0)

amongst themselves, since σ(k) = k for 1 ≤ k ≤ i − 1. Furthermore, mi > mσ(i), implies
that mi ≥ mσ(l) for all i ≤ l ≤ n. But then, mi > mi. Therefore

m1 ≥ m2 ≥ ... ≥ mn−1 ≥ 0,

for the highest weight µ ≡ (m1,m2, ...,mn−1, 0).

Remark. By repeating the methods presented in this section, but with the following sub-
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algebras of gl(n,C),

z = {H ∈ gl(n,C) | H = diag(h1, h2, ..., hn)}
u = {X ∈ gl(n,C) | X is strictly upper triangular}
l = {Y ∈ gl(n,C) | Y is strictly lower triangular, }

one sees the same results for the case of GL(n,C). However, now the highest weights of
irreducible GL(n,C)-modules are uniquely determined by n integers satisfying

m1 ≥ m2 ≥ ... ≥ mn−1 ≥ mn.

The main reason for this is that Z has coordinates consisting of n non-zero complex numbers
instead of n− 1, and that weights are determined uniquely by n integers with no condition
being placed on the trailing integer.

In summary, distinct irreducible complex analytic Lie group representations of GL(n,C)
and SL(n,C) are determined by their highest weights. For GL(n,C), these highest weights
are themselves determined uniquely by n integers satisfying

m1 ≥ m2 ≥ ... ≥ mn.

Where as, for SL(n,C), the highest weights are one to one correspondence with n−1 integers
having the following property,

m1 ≥ m2 ≥ ... ≥ mn−1 ≥ 0.

Such sequences were said to be nothing more than integer partitions of an appropriate
positive integer.

Now, in order to provide a complete classification of irreducible representations of SU(n),
realizations still need to be provided. Considering Chapter 3, and as suggested previously,
the various image spaces of the general projection operators corresponding to integer parti-
tions, λ = (λ1, λ2, ..., λl) ` m, provide the source of these realizations. However, it still needs
to be established that these are irreducible when seen as modules to SL(n,C) and SU(n).
Furthermore, considering this chapter, if one wants to characterize the complete classification
of irreducible representations of SU(n) in terms of integer partitions, then the following ques-
tion must be answered. Which partitions determine highest weights to irreducible complex
analytic representations of SL(n,C)? So with these issues in mind, the following chapter
picks up where Chapter 3 left off, in setting of the irreducible tensor representations of
GL(n,C).
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Chapter 6

Irreducible representations of SL(n,C)
and SU(n)

The final step to provide a complete classification of irreducible representations of SU(n) is
to provide realizations in setting of the irreducible tensor representations of GL(n,C). In this
chapter, the accomplishment of this last task will follow by first showing that the nonzero
image spaces of the various general projection operators are additionally irreducible SL(n,C)-
modules. Afterward, solely in terms of the defining integer partition and the positive integer
n, necessary and sufficient conditions for a particular image space of a general projection
operator being nontrivial will be provided. From there, given any nontrivial image space
of a general projection, the existence of a highest weight vector will be verified, along with
the confirmation that the description of the corresponding highest weight is determined
exactly by the integer partition associated to the projection operator. Finally, the chapter
will conclude with a formal presentation of the classifications of both the finite dimensional
irreducible complex analytic representations of SL(n,C) and finite dimensional irreducible
representations of SU(n).

The exposition presented in this chapter is modeled by the same given by Sternberg
[4]. In addition, some needed results also follow from B. Hall [1]. Throughout this chapter,
let V = Cn, and E = {ei | i ∈ [n]} denote the standard basis for V. Lastly, note that all
representations are still assumed to be finite.

6.1 The irreducible tensor representations are complex analytic

This section begins by reminding the reader of relevant theory from Chapter 3. Let m be a
positive integer. First, recall that both Sm and GL(n,C) act on V

⊗
m via monomials. For

σ ∈ Sm, one had

σ(v1 ⊗ v2 ⊗ ...⊗ vm) := vσ−1(1) ⊗ vσ−1(2) ⊗ ...⊗ vσ−1(m).

Likewise,
A⊗m(v1 ⊗ v2 ⊗ ...⊗ vm) = Av1 ⊗ Av2 ⊗ ...⊗ Avm,
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for A ∈ GL(n,C). Secondly, recall the following decomposition

V
⊗
m =

⊕
λ`m

W λ

where, for each λ = (λ1, λ2, ..., λl) ` m, W λ is the isotypic component corresponding to
the Specht module of shape λ. Furthermore, recall that Uλ = HomSm(Sλ, V

⊗
m), with

mλ = dimUλ, being the number of isomorphic copies of Sλ that appear in the decomposition
of V

⊗
m into irreducible Sm-submodules.

Finally, for each λ ` m and any tableau t of corresponding shape, one had the following
isomorphism of GL(n,C)-modules,

Uλ ∼= εt
(
V

⊗
m
)
,

where εt denotes the general projection operator built from the row and column stabilizer of
t.

Now, in order to apply the results from Chapter 5 to irreducible tensor representations
on V

⊗
m, it will appropriate at this time to point out that that the representation

T⊗m : GL(n,C)→ GL(V
⊗
m)

is indeed complex analytic for each m. This fact follows very naturally from the describing
action of GL(n,C), and is verifiable by first showing that the representation

T : GL(n,C)→ GL(V )

is complex analytic, and then establishing the claim for each m.
For the first case, one makes the usual identification of GL(V ) with GL(n,C) using the

map
L→ [L]E ,

where [L]E denotes the matrix of L ∈ GL(V ) relative to the standard basis. Under this
map, one has GL(V ) ∼= GL(n,C) as complex manifolds by virtue of the identification itself!
Furthermore, if

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


then, for each i ∈ [n],

TA(ei) =
n∑
j=1

ajiej.

Thus, the matrix entries of [TA]E are given by the matrix entries of A. Clearly, this repre-
sentation is complex analytic.
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More generally, let m > 1. Then

A⊗m(ej1 ⊗ ej2 ⊗ ...⊗ ejm) = Aej1 ⊗ Aej2 ⊗ ...⊗ Aejm

= (
n∑

i1=1

ai1j1ei1)⊗ (
n∑

i2=1

ai2j2ei2)⊗ ...⊗ (
n∑

im=1

aimjmeim)

=
n∑

i1,i2,...,im=1

ai1j1ai2j2 ...aimjmei1 ⊗ ei2 ⊗ ...⊗ eim .

With this in mind, the matrix entries of A⊗m relative to the basis

{ej1 ⊗ ej2 ⊗ ...⊗ ejm | (j1, ..., jm) ∈ [n]m}

are given by products of the entries of A. Therefore, T⊗m is complex analytic for each m.
Finally consider the following,

SU(n) ⊆ SL(n,C) ⊆ GL(n,C).

So by restriction of T⊗m, one sees that SL(n,C) and SU(n) also act on V
⊗
m. Consequently,

for each λ ` m, and each tableau t of corresponding shape, the GL(n,C)-module, εt
(
V

⊗
m
)
,

is additionally a module to both SL(n,C) and SU(n) under the restriction of T⊗m to each of
the respective subgroups. Ultimately it will be shown that as SL(n,C)-module, εt

(
V

⊗
m
)

is
irreducible, and therefore, by Theorem 4.4.14, is irreducible as a SU(n)-module as well.

6.2 The standard basis as weight vectors

In order to first show that each εt
(
V

⊗
m
)
, carrying the restriction of T⊗m to SL(n,C), is

still irreducible as an SL(n,C)-module, it will be established that modules that carrying irre-
ducible complex analytic representations of GL(n,C) and SL(n,C), in general, are spanned
by weight vectors. Afterward in Section 6.3, the desired observation will follow from showing
that, for the case of the irreducible tensor representations, weight spaces relative to GL(n,C)
and SL(n,C) are, in fact, one and the same. To start, consider the following results borrowed
from the work of B. Hall [1].

Definition 6.2.1. Let p : g→ gl(W ) be a Lie algebra representation for g, and let w ∈ W.
Then the cyclic subspace of w is

〈w〉p = 〈p(X1)p(X2)...p(Xl)w | {Xi}i∈[l] ⊆ g, l ∈ N〉.

It is straight forward to see that 〈w〉p is a g−submodule. Indeed, 〈w〉p is defined so that
it would be.

Lemma 6.2.2. Let p : g→ gl(W ) be a Lie algebra representation for g, and let

B = {X1, ...Xk}
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be an ordered basis of g, where k = dim g. Furthermore, for each K ≥ 1, define the following
subspace of gl(W )

〈K〉 = 〈p(X1)
m1p(X2)

m2 ...p(Xk)
mk | {mi}i∈[k] ⊆ N,

k∑
l=1

ml ≤ K〉.

Then, for any (i1, ..., iK) ∈ [k]K,

p(Xi1)p(Xi2)...p(XiK ) ∈ 〈K〉.

Proof. This proof will use induction on K. Also, one will need the collection of constants
{Lijl ∈ C | 1 ≤ i, j, l ≤ k} that define the commutator. In other words, for each j, l ∈ [k],
one has

[Xj, Xl] = XjXl −XlXj =
k∑
i=1

LijlXi.

Now, the claim is obviously true for K = 1. So let K = 2, suppose i > j, and write

p(Xi)p(Xj) = [p(Xi), p(Xj)] + p(Xj)p(Xi).

Then, since p([Xi, Xj]) = [p(Xi), p(Xj)], one has

p(Xi)p(Xj) = p([Xi, Xj]) + p(Xj)p(Xi)

=
k∑
l=1

Llijp(Xl) + p(Xj)p(Xi).

Clearly,
k∑
l=1

Llijp(Xl) ∈ 〈2〉,

and since j < i, one has p(Xj)p(Xi) ∈ 〈2〉 as well. Thus

p(Xi)p(Xj) ∈ 〈2〉.

Therefore, the result holds for the case K = 2.
With this, suppose that for some N ≥ 2, the claim is true for all 1 ≤ K ≤ N. Let j ∈ [k],

and let
{Xj, Xi1Xi2 ...XiN} ⊆ B.

Then, by the inductive hypothesis, for some M ≥ 1 and collection of complex numbers
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{al}l∈[M ],

p(Xj)p(Xi1)p(Xi2)...p(XiN ) = p(Xj) (p(Xi1)p(Xi2)...p(XiN ))

= p(Xj)

(
M∑
l=1

alp(X1)
m1lp(X2)

m2l ...p(Xk)
mkl

)

=
M∑
l=1

alp(Xj)p(X1)
m1lp(X2)

m2l ...p(Xk)
mkl ,

where mil ≥ 0, and
k∑
i=1

mil ≤ N, for each l. Consequently, one only needs to show the result

for elements of the form
p(Xj)p(X1)

m1p(X2)
m2 ...p(Xk)

mk ,

where mi ≥ 0, and
k∑
l=1

ml ≤ N .

Using this,

p(Xj)p(X1)
m1 ...p(Xk)

mk = (p(Xj)p(X1))
(
p(X1)

(m1−1)...p(Xk)
mk
)

= ([p(Xj)p(X1)] + p(X1)p(Xj))
(
p(X1)

(m1−1)...p(Xk)
mk
)

= (p([XjX1]) + p(X1)p(Xj))
(
p(X1)

(m1−1)...p(Xk)
mk
)

=

(
k∑
i=1

Lij1p(Xi) + p(X1)p(Xj)

)(
p(X1)

(m1−1)...p(Xk)
mk
)
.

Note that without loss of generality it was assumed that m1 ≥ 1. Now, realize that the
inductive hypothesis applies to the sum

k∑
i=1

Lij1p(Xi)p(X1)
(m1−1)p(X2)

m2 ...p(Xk)
mk

since, for each i, the term

p(Xi)p(X1)
(m1−1)p(X2)

m2 ...p(Xk)
mk

is a product of N or less factors. However notice that 〈K〉 ≤ 〈K + 1〉 for each K. Thus

k∑
i=1

Lij1p(Xi)p(X1)
m1−1p(X2)

m2 ...p(Xk)
mk ∈ 〈N + 1〉.

So, from repeated use of the commutator, one can successively ’move’ the factor of p(Xj)
to the right one position at time while simultaneously generating a new sum that is in 〈N+1〉.
Finally, once the factor of p(Xj) appears in the right position relative to the order of the
basis, it will be apparent that p(Xj)p(X1)

m1p(X2)
m2 ...p(Xk)

mk is a linear combination of
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elements in 〈N + 1〉 with the element

p(X1)
m1p(X2)

m2 ...p(Xj)p(Xj)
mjp(Xj+1)

mj+1 ...p(Xk)
mk .

Therefore,
p(Xj)p(X1)

m1p(X2)
m2 ...p(Xk)

mk ∈ 〈N + 1〉.

Recall the basis of sl(n,C) used in Chapters 3 and 5,

{Elk | 1 ≤ l 6= k ≤ n} ∪ {Hl | l ∈ [n− 1]}.

Proposition 6.2.3. Let g equal gl(n,C) or sl(n,C), and let p : g → gl(W ) be a complex
linear Lie algebra representation for g. Suppose w ∈ W is a weight vector for p. Then

〈w〉p = 〈p(El1k1)p(El2k2)...p(Eljkj)w | li 6= ki, j ∈ N〉.

In particular, the cyclic subspace is spanned by weight vectors.

Proof. To begin. Let w ∈ W be a weight vector for the representation p : sl(n,C)→ gl(W ),
and put some convenient order on the basis

{Elk | 1 ≤ l 6= k ≤ n} ∪ {Hl | l ∈ [n− 1]}

such that the elements of {Hl | l ∈ [n − 1]} appear last in line relative to this order.
Temporarily relabel this basis as

B = {X1, ..., X(n2−1)}.

So, for each l ∈ [n− 1],
Xn(n−1)+l = Hl,

under the previous requirement.
First, since p is linear, the cyclic subspace of w can be reduced to

〈p(Xi1)p(Xi2)...p(Xik)w | Xij ∈ B, k ∈ N〉.

Now, let k ≥ 1, and suppose that the product p(Xi1)p(Xi2)...p(Xik) contains one or more
factors of p(Hl) for l = 1, 2..., n− 1. Using Lemma 6.2.2, rewrite the product as

p(Xi1)p(Xi2)...p(Xik) =
N∑
j=1

ajp(X1)
m1p(X2)

m2 ...p(Xn(n−1))
mn(n−1)p(H1)

b1 ...p(Hn−1)
bn−1 .

where all the terms of linear combination satisfy Lemma 6.2.2. However, w is a weight.
Thus, for each j, one has that

p(H1)
b1j ...p(Hn−1)

bn−1j(w) = cjw,
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for some appropriate cj ∈ C. Hence,

p(Xi1)p(Xi2)...p(Xik)w =
N∑
j=1

(
cjajp(X1)

m1jp(X2)
m2j ...p(Xn(n−1))

mn(n−1)j
)

(w).

Therefore, the cyclic subspace of w reduces to

〈w〉p = 〈p(El1k1)p(El2k2)...p(Eljkj)w | li 6= ki, j ∈ N〉.

Furthermore, by Theorem 5.4.8, p(Elk)w is another weight vector whenever it is not zero.
Therefore, through induction, one sees that 〈w〉p is spanned by weight vectors.

Finally, consider p : gl(n,C)→ gl(W ). Note that the standard basis of gl(n,C) consists
of all the matrix units {Elk | l, k ∈ [n]}. So repeat the last argument with the role of h
replaced with z to get the result.

Corollary 6.2.4. Let G be equal to SL(n,C) or GL(n,C). Then an irreducible complex
analytic Lie group representation of G is spanned by weight vectors.

Proof. Suppose ρ : G→ GL(W ) is an irreducible complex analytic representation. Then, by
Theorem 4.4.8,

·
ρ : g→ gl(W )

is irreducible as well. Now let w ∈ W be a weight vector, and note that, by Proposition
6.2.3, the cyclic subspace

〈w〉 ·
ρ

is spanned by additional weight vectors. However, W is irreducible. Thus,

〈w〉 ·
ρ

= W.

Therefore, W is spanned by weight vectors.

This section concludes by showing that the standard basis for V
⊗
m consists of weight

vectors for both GL(n,C) and SL(n,C), and in addition, that weights and weight spaces for
the reducible module V

⊗
m relative to each GL(n,C) and SL(n,C) are the same. Further-

more, a description of all possible weights using integer composition will be presented.
Let m = 1; j ∈ [n], and let

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 ∈ GL(n,C).

Now
D⊗m(ej) = djej.

Thus, ej is a weight vector with weight µj ≡ (0, ..., 1, ..., 0) such that the 1 is in the jth
position and there are zeros elsewhere. Furthermore, it is clear that that if D was chosen
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from SL(n,C), then one would see the same result. In other words, the matrix Lie groups
GL(n,C), and SL(n,C) both share the same weight vectors for this case. But as one will
see, this naturally applies to every m ≥ 1.

Building off this example, consider the standard basis for V
⊗
m,

Em = {ei1 ⊗ ei2 ⊗ ...⊗ eim | I = (i1, ..., im) ∈ [n]m}.

Let I = (i1, ..., im) ∈ [n]m. Then, considering the defining action of the representation

T⊗m : GL(n,C)→ GL(V
⊗
m),

ei1 ⊗ ei2 ⊗ ...⊗ eim is naturally a weight vector for GL(n,C). Furthermore, by computing

D⊗m(ei1 ⊗ ei2 ⊗ ...⊗ eim) = Dei1 ⊗Dei2 ⊗ ...⊗Deim
= di1ei1 ⊗ di2ei2 ⊗ ...⊗ dimeim
= (di1di2 ...dim)ei1 ⊗ ei2 ⊗ ...⊗ eim .

one can see that the corresponding weight µI ≡ (m1,m2, ...,mn) is defined by

mi = ’the number of factors of ei.’

As a consequence, m1 + m2 + ... + mn = m, holds for any weight µI . Moreover, since
µI ≡ (m1,m2, ...,mn) consists of an order sequence of nonnegative integers, it follows that all
the distinct weights of T⊗m are determined by all possible integer compositions of m. These
will be denoted as m from this point on.

Now, if ei1 ⊗ ei2 ⊗ ...⊗ eim and ej1 ⊗ ej2 ⊗ ...⊗ ejm are in the same weight space, then the
fact that µI = µJ implies ei1 ⊗ ei2 ⊗ ...⊗ eim and ej1 ⊗ ej2 ⊗ ...⊗ ejm share the same number
of factors of each ei. Thus,

ej1 ⊗ ej2 ⊗ ...⊗ ejm = σei1 ⊗ ei2 ⊗ ...⊗ eim

for some permutation σ ∈ Sm. Therefore, if Vm denotes the weight space associated with
µm, then

Vm = 〈σei1 ⊗ ei2 ⊗ ...⊗ eim | σ ∈ Sm〉,

such that 1 ≤ i1 ≤ i2... ≤ im ≤ n.
Finally, each ei1 ⊗ ei2 ⊗ ... ⊗ eim is also a weight vector for SL(n,C). In addition, two

distinct weights µm1 and µm2 for GL(n,C) will restrict down to two distinct weights of
SL(n,C). Indeed, if

µm1 ≡ (m1, ...,mn) and µm2 ≡ (m1, ...,mn)

are to restrict down to the same weight for SL(n,C), then there must exist an integer a, such
that

(m1 −m1,m2 −m2, ...,mn −mn) = (a, a, ..., a).
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However, the condition that

m1 + ...+mn = m1 + ...+mn = m

implies
an = (m1 −m1) + (m2 −m2) + ...+ (mn −mn) = 0.

Thus, it must be that a = 0. Therefore, µm1 = µm2 as weights for GL(n,C) since mi = mi

for each i.
There is subtle point to made from this. Suppose that v ∈ V

⊗
m was only assumed

to be a weight vector for SL(n,C) with its corresponding weight being ν Then first, ν is
determined by some family

{(m1,m2...,mn) + (a, a, ..., a) | a ∈ Z}

for some (m1,m2...,mn). Now by Lemma 5.1.3, weight vectors from different weight spaces
are linearly independent. However, the weight spaces for GL(n,C) are all given by

Vm = 〈σei1 ⊗ ei2 ⊗ ...⊗ eim | σ ∈ Sm〉

as m ranges over all the compositions of m. So, if ν was distinct from various restrictions of
Vm to SL(n,C), then a contradiction would arise: v would be linearly independent from the
space ⊕

m

Vm = V
⊗
m.

Finally, it was just shown that only one distinct µm could restrict down to ν. Therefore, for
some m, one has that v is a weight vector for GL(n,C) with weight µm ≡ (m1, ...,mn) = m.

6.3 The image space εt
(
V
⊗
m
)

as an irreducible SL(n,C)-module

This section starts by finishing the verification that, for the tableau t corresponding to the
partition λ ` m, the corresponding GL(n,C) and SL(N,C)-module,

εt
(
V

⊗
m
)
,

possess the same weights and weight spaces as seen from each setting of GL(n,C) and
SL(n,C).

Now, like any linear transformation, one can appeal to the span of the image set of the
basis Em. This is seen as

εt
(
V

⊗
m
)

= 〈εt(ei1 ⊗ ...⊗ eim) | I = (i1, ..., im) ∈ [n]m〉.

Now by Corollary 6.2.4, as an irreducible GL(n,C)-module, εt
(
V

⊗
m
)

has a basis of weight

vectors. But, since the action of GL(n,C) commutes with the action of Sm on V
⊗
m, one
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needs to look no further than the set

{εt(ei1 ⊗ ...⊗ eim) | I = (i1, ..., im) ∈ [n]m}.

True, take any

D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 ∈ GL(n,C).

Then,

D⊗m (εt(ei1 ⊗ ...⊗ eim)) = εt
(
D⊗m(ei1 ⊗ ...⊗ eim)

)
= µI(D)εt(ei1 ⊗ ...⊗ eim).

Hence, the weight vectors for εt
(
V

⊗
m
)

are by given all the elements εt(ei1 ⊗ ...⊗ eim) such

that εt(ei1 ⊗ ... ⊗ eim) 6= 0. Consequently, the distinct weight spaces in εt
(
V

⊗
m
)

are given
by the compositions m = (m1, ...,mn) such that

εt(Vm) 6= {0}.

Finally, note that the weight vectors of SL(n,C) in εt
(
V

⊗
m
)

must also be weight vectors of

GL(n,C) since this result has been established for all of V
⊗
m.

So with this observation, comes the first of the major theorems of this chapter.

Theorem 6.3.1. Let λ ` n, and suppose εt
(
V

⊗
m
)
6= 0. Then, εt

(
V

⊗
m
)

carrying the
representation T⊗m restricted to SL(n,C) is an irreducible SL(n,C)-module.

Proof. Suppose εt
(
V

⊗
m
)

is nontrivial. Then, by Lemma 5.3.1, find W ≤ εt
(
V

⊗
m
)
, a

nonzero irreducible SL(n,C)-submodule. By Corollary 6.2.4, W has a basis of weight vectors
for SL(n,C). So, denote this basis as {w1, ...wk}, with k = dim(W ), and let A ∈ GL(n,C).
Using A, define

DA :=


det(A) 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
and Â := ADA−1 . By construction, A = ÂDA where Â ∈ SL(n,C). Indeed,

(DA)−1 = DA−1 ,

and
det(Â) = det(A) det(DA−1) = det(A) det(A−1) = 1.

With this in mind, let wi be the ith basis element of W, and suppose µi is its weight. Now,
it has been established that weight vectors for SL(n,C) are also weight vectors of GL(n,C),
and that there exists (m1, ...,mn) as a representative for µi given by a weight for GL(n,C).
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Thus,

A⊗m(wi) = T⊗m(ÂDA)(wi)

= Â⊗m
(
T⊗m(DA)(wi)

)
= Â⊗m(det(A)m1wi)

= det(A)m1

(
Â⊗mwi

)
.

But
Â⊗mwi ∈ W

since W is a SL(n,C)-submodule, and Â ∈ SL(n,C). Consequently,

A⊗m(wi) = det(A)m1

(
Â⊗mwi

)
∈ W.

From this, one can see that W is also a nonzero GL(n,C)−submodule, and therefore, W
must equal εt

(
V

⊗
m
)
.

From this comes the obvious, the need of necessary and sufficient conditions in determin-
ing whether or not a particular image space of a general projection operator is nontrivial.
Fortunately, this is next in line.

Theorem 6.3.2. Let λ = (λ1, λ2, ..., λl) ` m, and let t be a tableau corresponding to λ.
Then, εt

(
V

⊗
m
)
6= 0 if and only if dimV = n ≥ l.

Proof. Let t be a tableau of shape λ. Recall that

Ri = {ti,j | j ∈ [λi]} and Cj = {ti,j | i ∈ [λ∗j ]}

where λ∗j = max{k ∈ [l] | λk ≥ j} for each j ∈ [λ1]. Now if n ≥ l, then it is easy to

find a nonzero element in εt
(
V

⊗
m
)
. Indeed, by this assumption, one can take the first l

basis vectors {e1, e2, ..., el}, and pair them to each of the rows {R1, R2, ..., Rl}, respectively.
In other words, e1 pairs with R1, e2 pairs with R2, and etc. Note how this would not be
possible if n < l. With this mind, find the monomial, et := ei1 ⊗ ei2 ⊗ ...⊗ eim , such that, for
each i ∈ [l], the factors of ei exist in all the positions given by the entries in Ri. For example,
if n = 3, m = 6 and

436

t ≡ 25

1

then,
et = e3 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e1

would be the monomial of interest.
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By construction, one has that σet = et, for all σ ∈ Rt and hence

ιt(e
t) =

∑
σ∈Rt

σet = |Rt|et.

However, also by construction, for each i, no two factors are the same in any of the positions
given by the entries of Ci. Thus, σet 6= et for each σ ∈ Ct \ {ε}, and, for all σ, τ ∈ Ct, it is
true that σet = τet if and only if σ = τ. As a result,

κt(e
t) =

∑
σ∈Ct

sgn(σ)σet 6= 0

since {σet | σ ∈ Ct} is a linear independent set. Therefore,

εt(e
t) = κtιt(e

t) = |Rt|κt(et) 6= 0.

Conversely, suppose that n < l, and let I = (i1, i2, ...im) ∈ [n]m. Then, by a standard
pigeonhole argument, there exists a ej and a pair k1 6= k2 ∈ C1 = {ti,1 | i ∈ [l]}, such that

ei1 ⊗ ei2 ⊗ ...⊗ eim

has a factor of ej in the k1th and k2th position. Without loss, assume k1 < k2, and let
σ = (k1, k2). Then, σ ∈ Ct, and

σ(ei1 ⊗ ei2 ⊗ ...⊗ eim) = σ(ei1 ⊗ ...⊗ ek1 ⊗ ...⊗ ek2 ⊗ ...⊗ eim)

= ei1 ⊗ ...⊗ ek2 ⊗ ...⊗ ek1 ⊗ ...⊗ eim
= ei1 ⊗ ei2 ⊗ ...⊗ eim

since ek1 = ek2 = ej. With this in mind, notice that

κtσ =
∑
τ∈Ct

sgn(τ)τσ = sgn(σ)

(∑
τ∈Ct

sgn(τσ)τσ

)
= −κt

since

(1) sgn(σ)2 = 1,

(2) sgn(τ)sgn(σ) = sgn(τσ), and

(3)
∑
τ∈Ct

sgn(τσ)τσ =
∑
τ∈Ct

sgn(τ)τ.

Thus,

κt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = κt(σei1 ⊗ ei2 ⊗ ...⊗ eim)

= (κtσ)(ei1 ⊗ ei2 ⊗ ...⊗ eim)

= −κt(ei1 ⊗ ei2 ⊗ ...⊗ eim).
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However, if this is the case, then one would have

2κt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = 0.

Therefore,
κt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = 0.

Now, let π ∈ Rt. Then, by repeating the previous pigeonhole argument for the monomial

eiπ−1(1)
⊗ eiπ−1(2)

⊗ ...⊗ eiπ−1(m)
= π(ei1 ⊗ ei2 ⊗ ...⊗ eim),

one would also find
κt(eiπ−1(1)

⊗ eiπ−1(2)
⊗ ...⊗ eiπ−1(m)

) = 0.

Thus,

εt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = κtιt(ei1 ⊗ ei2 ⊗ ...⊗ eim)

= κt

(∑
π∈Rt

πei1 ⊗ ei2 ⊗ ...⊗ eim

)

=

(∑
π∈Rt

κt(πei1 ⊗ ei2 ⊗ ...⊗ eim)

)
= 0.

Therefore,
εt
(
V

⊗
m
)

= {0}.

Corollary 6.3.3. Let λ = (λ1, λ2, ..., λl) ` m. Then Uλ 6= 0 if and only if dimV = n ≥ l.

Proof. This follows by Theorem 6.3.2 and Theorem 3.4.2.

Now, the following result will needed for the remaining objective of identifying highest
weight vectors and their corresponding highest weights in each of the nontrivial image spaces
of the general projection operators corresponding to the various integer partitions of m.

Lemma 6.3.4. Let t be a tableau of shape λ ` m, and let I = (i1,i2, ..., im) ∈ [n]m. Suppose
that, for all π ∈ Rt, there exists a column Cj of t and a basis vector ek ∈ V , such that

π(ei1 ⊗ ei2 ⊗ ...⊗ eim) = eiπ−1(1)
⊗ eiπ−1(2)

⊗ ...⊗ eiπ−1(m)

has a factor of ek in at least two of the positions given by the entries of Cj. Then,

εt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = 0.

Proof. Let I = (i1, i2, ...im) ∈ [n]m, and π ∈ Rt. Find such a column Cj of t, and a basis
vector ek ∈ V, such that, for some pair k1 < k2 ∈ Cj,

π(ei1 ⊗ ei2 ⊗ ...⊗ eim) = eiπ−1(1)
⊗ eiπ−1(2)

⊗ ...⊗ eiπ−1(m)
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has a factor of ek in both the k1th and k2th positions. Then, σ = (k1, k2) ∈ Ct, and

σ (π(ei1 ⊗ ei2 ⊗ ...⊗ eim)) = π(ei1 ⊗ ei2 ⊗ ...⊗ eim).

But, by considering the proof of the Theorem 6.3.2, one has

κt(π(ei1 ⊗ ei2 ⊗ ...⊗ eim)) = 0.

Therefore, it follows that

εt(ei1 ⊗ ei2 ⊗ ...⊗ eim) = κtιt(ei1 ⊗ ei2 ⊗ ...⊗ eim)

= κt

(∑
π∈Rt

πei1 ⊗ ei2 ⊗ ...⊗ eim

)

=

(∑
π∈Rt

κt(πei1 ⊗ ei2 ⊗ ...⊗ eim)

)
= 0.

This section finally arrives at the last major result of the chapter preceding the formal
presentation of the classifications theorems regarding the specific irreducible representations
corresponding to SL(n,C) and SU(n). So, recall that tλ denotes the standard tableau of
shape λ, and that

Rtλ = S{1,2,..,λ1} × S{λ1+1,λ2+2...,λ1+λ2} × ...× S{n−λl−1+1,n−λl−1+2,...n}.

Theorem 6.3.5. Let λ = (λ1, λ2, ..., λl) ` m such that n ≥ l, and let t be a tableau corre-
sponding to λ. Then, the highest weight in εt

(
V

⊗
m
)

is given by

mλ = (λ1, λ2, ..., λl, 0, ..., 0).

Proof. The proof will be established via εtλ
(
V

⊗
m
)
. This will suffice, since each εt

(
V

⊗
m
)

is isomorphic to one another.
By Theorem 5.3.3, a weight vector v is a highest weight vector if and only if v is left fixed

by U , the subgroup of upper triangular unipotent matrices. Also, by Theorem 6.3.2,

εtλ
(
V

⊗
m
)
6= {0}

since n ≥ l. Thus, there is a unique one dimensional weight space of highest weight. So, the
proof amounts to finding a highest weight vector.

Now, considering the proof of Theorem 6.3.2, the element,

eλ := e1 ⊗ ...⊗ e1︸ ︷︷ ︸
λ1

⊗ e2 ⊗ ...⊗ e2︸ ︷︷ ︸
λ2

⊗ ...⊗ el−1 ⊗ ...⊗ el−1︸ ︷︷ ︸
λl−1

⊗ el ⊗ ...⊗ el︸ ︷︷ ︸
λl

,
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satisfies εt(eλ) 6= 0. Now, denote its weight as µmλ
, and see that

µmλ
≡ (λ1, λ2, ..., λl, 0, ..., 0).

Therefore, one just needs to show that U⊗m(εt(eλ)) = εt(eλ) for all

U =


1 a12 · · · a1n
0 1 · · · a2n
...

...
. . .

...
0 0 · · · 1

 ∈ U .
First, U is generated by {I + aEij | a ∈ C, 1 ≤ i < j ≤ n}. Thus, one can reduce

the problem to just considering this generating set. Furthermore, the largest ordered basis
appearing in eλ is el where l ≤ n. So, again the problem is reduced to a smaller setting, this
being

{I + aEij | a ∈ C, 1 ≤ i < j ≤ l}.

Second, it will be convenient to define

aK := a|{kN |kN=i, N∈[λj ]}|

for each
K = (k1, k2, ..., kλj) ∈ {i, j}λj ,

and

e(j→i) :=
∑

K∈{i,j}λj \{(j,...,j)}

aKe1 ⊗ ...⊗ e1︸ ︷︷ ︸
λ1

⊗ ...⊗ ek1 ⊗ ek2 ⊗ ...⊗ ekλj ⊗ ...⊗ el ⊗ ...⊗ el︸ ︷︷ ︸
λl

 .

With this in mind, realize that

(I + aEij)
⊗m (eλ) = eλ + e(j→i).

Thus, one has

(I + aEij)
⊗m (εt(eλ)) = εt

(
(I + aEij)

⊗m (eλ)
)

= εt(eλ) + εt(e(j→i)).

Now, if
K = (k1, k2, ..., kλj) = {i, j}λj \ {(j, ..., j)},

then, for some N ∈ [λj], it is true that kN = i. Thus, the monomial

e1 ⊗ ...⊗ e1︸ ︷︷ ︸
λ1

⊗ e2 ⊗ ...⊗ e2︸ ︷︷ ︸
λ2

⊗ ...⊗ ek1 ⊗ ...⊗ ekN ⊗ ...⊗ ekλj ⊗ ...⊗ el ⊗ ...⊗ el︸ ︷︷ ︸
λl

will have a factor of ei in at least two of the positions given by the entries of the column
CN . Indeed i < j. So, by construction of the original eλ, there will be a factor of ei in the
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(tλ)iNth position, along with the factor of ei in the (tλ)iNth position. ((tλ)iN , (tλ)jN ∈ CN)
Furthermore, since there are only factors of ei in the positions λi−1 + 1 through λi−1 + λi,
and since λi ≥ λj, one will find that, for each π ∈ Rt, there will also be a factor of ei in
at least two of the positions given by the entries of the column Cπ−1(N). Consequently, by
Lemma 6.3.4,

εtλ

e1 ⊗ ...⊗ e1︸ ︷︷ ︸
λ1

⊗ e2 ⊗ ...⊗ e2︸ ︷︷ ︸
λ2

⊗ ...⊗ ek1 ⊗ ...⊗ ekN ⊗ ...⊗ ekλj ⊗ ...⊗ el ⊗ ...⊗ el︸ ︷︷ ︸
λl


is equal to zero. As a result, εt(e(j→i)) = 0, and therefore,

(I + aEij)
⊗m (εt(eλ)) = εt(eλ) + εt(e(j→i)) = εt(eλ).

With the establishment of Theorem 6.3.5, the work of this exposition is complete. What
remains is pooling together all the major results established here along with major theorems
from Chapters 3, 4, and 5. This begins with the complete classification of irreducible complex
analytic representations for SL(n,C).

Theorem 6.3.6. For all n ≥ 1, each finite dimensional complex analytic irreducible repre-
sentations of SL(n,C) can be realized in

εtλ
(
V

⊗
m
)

for some positive integer m and partition λ = (λ1, λ2, ..., λl) ` m satisfying n− 1 ≥ l.
Furthermore, the collection{

εtλ
(
V

⊗
m
)
| λ = (λ1, λ2, ..., λl) ` m, n− 1 ≥ l, m ≥ 1

}
forms a complete list of irreducible complex analytic representations of SL(n,C).

Proof. Let n ≥ 1, and first suppose ρ : SL(n,C)→ GL(W ) is a complex analytic irreducible
representation carried by the finite dimensional vector space, W . Then, by Theorem 5.3.8,
ρ is uniquely identified by its highest weight, µ. Furthermore, applying Theorem 5.4.13 to
µ, one sees that ρ is determined uniquely by some sequence of integers,

(m1,m2, ...,mn−1, 0)

satisfying m1 ≥ m2 ≥, ...,≥ mn−1 ≥ 0. However, if

m := m1 +m2 + ...+mn−1,

and
λ := (m1,m2, ...,mn−1, 0),

then, by Theorem 6.3.5, W is equivalent to the SL(n,C)-module, εtλ
(
V

⊗
m
)
, carrying the
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representation T⊗m restricted to SL(n,C). Therefore, ρ is realized in εtλ
(
V

⊗
m
)

for λ ` m
defined above.

Now let m ≥ 1, and suppose λ = (λ1, λ2, ..., λl) is an integer partition of m satisfying
n − 1 ≥ l. Then, by Theorem 6.3.2, εtλ

(
V

⊗
m
)
6= 0. Thus, using Theorem 6.3.1 and 6.3.5,

one has that, as an SL(n,C)-module, εtλ
(
V

⊗
m
)
, carrying the representation T⊗m restricted

to SL(n,C), is irreducible, and has a highest weight given by λ = (λ1, λ2, ..., λl). Finally,
considering Theorem 5.3.8, one sees that λ and m uniquely determine a complex analytic
irreducible representation for SL(n,C).

6.4 Highest weight classification for SU(n)

Before the exposition concludes with the main objective, being the classification theorem
for the irreducible representations of SU(n), a small issue concerning the potential definition
of weight and weight space for the setting of SU(n) needs to be resolved. At first glance,
the concept of highest weight and highest weight space doesn’t seem to apply to Lie group
representations of SU(n) since the matrix Lie groups U and L are not subgroups of SU(n).
On the other hand, Lie’s Theorem does apply to

D ∩ SU(n),

which consists of matrices of form

D =


eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn


such that θ1 +θ2 + ...+θn ≡ 0 (mod 2π). Thus, weights and weight spaces can have meaning
for SU(n). With this, and with Theorems 4.4.14 and 4.4.15, one ultimately may extend
the notion of highest weight and highest weight space to the setting of SU(n) with the aid
of SL(n,C). Therefore, one has the following, long anticipated classification theorem for
irreducible representations of SU(n).

Theorem 6.4.1. For all n ≥ 1, each finite-dimensional irreducible representation of SU(n)
can be realized in

εtλ
(
V

⊗
m
)

for some positive integer m and partition λ = (λ1, λ2, ..., λl) ` m satisfying n− 1 ≥ l.
Furthermore, the collection{

εtλ
(
V

⊗
m
)
| λ = (λ1, λ2, ..., λl) ` m, n− 1 ≥ l, m ≥ 1

}
forms a complete list of irreducible representations of SU(n).

Proof. Let n ≥ 1, and first suppose ρ : SU(n) → GL(W ) is a irreducible representation
carried by the finite dimensional vector space, W . Then, by Theorem 4.4.15 and 6.3.6, ρ can
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be realized in
εtλ
(
V

⊗
m
)

for some positive integer m and partition λ = (λ1, λ2, ..., λl) ` m satisfying n− 1 ≥ l.
Now let m ≥ 1, and suppose λ = (λ1, λ2, ..., λl) is an integer partition of m satisfying

n− 1 ≥ l. Then, by Theorem 6.3.6 and 4.4.14, there exists an irreducible representation of
SU(n) determined uniquely by λ and m.
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