Finite Topological Spaces

Definition Let X be a finite set. A topology on X is a subset \mathcal{T} of the power set $\mathcal{P}(X)$ of X satisfying these three conditions:

- (i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- (ii) if $U \in \mathcal{T}$ and $V \in \mathcal{T}$, then $U \cup V \in \mathcal{T}$.
- (iii) if $U \in \mathcal{T}$ and $V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$.

The ordered pair (X, \mathcal{T}) is called a *finite topological space*. The set X is called the *underlying* set of the topological space (X, \mathcal{T}) .

The indiscrete topology If X is any finite set, then $\mathcal{T} = \{\emptyset, X\}$ is a topology on X -conditions (ii) and (iii) above are satisfied vacuously. This is called the *indiscrete topology* on X.

The discrete topology If X is any finite set, then $\mathcal{T} = \mathcal{P}(X)$ is a topology on X, called the discrete topology on X.

Example Let $X = \{0, 1\}$. Then there are four different topologies on X; they are listed below. The first two on the list are the indiscrete and discrete topologies, respectively.

$$\mathcal{T}_1 = \{\emptyset, \{0, 1\}\}.$$

$$\mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

$$\mathcal{T}_3 = \{\emptyset, \{0\}, \{0, 1\}\}.$$

$$\mathcal{T}_4 = \{\emptyset, \{1\}, \{0, 1\}\}.$$

The pair (X, \mathcal{T}_3) is called the Sierpinski space.

Open and closed sets Suppose (X, \mathcal{T}) is a finite topological space. A subset U of X is called an *open set* if U is an element of \mathcal{T} . A subset K of X is called a *closed set* if its complement $K^c = X - K$ is an element of \mathcal{T} .