
CS486C – Senior Capstone Design in Computer Science
Project Description

Project Title: Near real-time portal for HPC cluster status

Sponsor Information:

Christopher Coffey, HPC Research System Administrator
HPC (High Performance Computing)
Information Technology Services, NAU
chris.coffey@nau.edu
928-523-1167

Project Overview:

Researchers are always looking for easier ways to exploit HPC (high performance computing) cluster resources,
and who can blame them. Traditionally, use of HPC resources requires interacting with a cluster via a console. For
many users, typing and interpreting results in this fashion can be a source of frustration…and can even prevent
many non-technical researchers from taking advantage of these resources.

With this in mind, our team in the HPC group of NAU Information Technology Services are gradually adding new
easy-to-use tools and interfaces that allow researchers to utilize HPC resources. One tool that would be very
helpful is a web app that can visualize and represent the cluster queue and utilization state in a way that is easy to
view and understand, whether it’s via the researcher’s desktop browser, or their phone.

Specifically, the aim of this project is to create an open-source web portal tool that increases clarity of HPC queue
status, and resource utilization, which in the end will be a step in the direction of making life easier for the end-user
researcher. This project involves creating a secure web portal where HPC job statuses, and cluster utilization are
shown in near real-time for n number of clusters.

• Should allow a variety of inspection and visualizations centered around showing the status of a particular
cluster. Some specific functionalities will include:

o Show # of jobs in running state, and pending state, cluster utilization, as well as current average
wait time

o Allow drill down into multiple views of job state in category: pending, and running while:
! Listing all jobs, along with various information such as: jobid, jobname, user, account,

requested cores, requested nodes, requested memory, submitted time, queued time,
expected start time

o Allow drill down into fields: user, account, and nodes, which results in list of jobs from that
selection

o Allow drill down to Individual job (we may end up needing to require authentication)
• Portal should be flexible allowing use of different back-end scheduling software: Slurm

(http://slurm.schedmd.com/) at minimum, and Torque, LSF, and others.
• Portal should either have the ability, or be easily changed at a later date to connect high level display of

utilization to ganglia (http://ganglia.info/) through drill down.

• Portal should be compatible with major browsers, including mobile. Ideally, design will allow for automated
adjustment of GUI to accommodate mobile viewing.

• Other useful tools and features, as may emerge during the initial design and requirements phase of the
project.

• Software should have friendly open source license such as GPL2, and be specifically designed and
delivered for easy future development.

• As much as possible, project is modular, and can be easily adapted, customized

Knowledge, skills, and expertise required for this project:

The project generally draws on typical skills learned in the CS curriculum, with additional emphasis on:

• Linux operating system expertise
• Knowledge webserver (apache) function and deployment
• Database expertise, insofar as status and other data must be archived for use in the interface or for future

data analysis needs.
• Web programming/design, with particular emphasis on modern Web2.0 portal implementation.
• Effective communication. Team must be able to learn HPC concepts and communicate design ideas

clearly.

Equipment Requirements:

No special equipment should be required beyond a standard development platform (your laptop), as well as freely
available environments and software tools.

Software and other Deliverables:

1. Complete secure Web2.0 portal implementing the a professional graphical interface to the functionalities
outlined above.

2. Extensive end-user testing with non-technical scientist users is expected, with a strong beta-level
deliverable expected.

3. Professionally documented codebase, delivered both on USB stick and via access to an online repository
(e.g. Github).

4. A strong as-built document that details the design and implementation of the site. This must be robust
enough to allow a future development team to easily pick up where you left off.

5. A straightforward user manual aimed a non-scientist end-users, introducing the main features and
functions of the tool.

