
HUMAN-COMPUTER INTERACTION, 1986, Volume 2, pp. 93-133
Copyright O 1986, Lawrence Erlbaum Associates, Inc.

Task- Action Grammars:

A Model of the Mental Representation

of Task Languages

Stephen J. Payne
Uniuersity of Lancaster

T. R. G . Green
M R C Applied Psychology Unit, Cambridge

ABSTRACT

A formal model of the mental representation of task languages is presented.
The model is a metalanguage for defining task-action grammars (TAG): genera-
tive grammars that rewrite simple tasks into action specifications. Important
features of the model are (a) Identification of the "simple-tasksn that users can
perform routinely and that require no control structure; (b) Representation of
simple-tasks by collections of semantic components reflecting a categorization
of the task world; (c) Marking of tokens in rewrite rules with the semantic fea-
tures of the task world to supply selection restrictions on the rewriting of simple-
tasks into action specifications. This device allows the representation of family
resemblances between individual task-action mappings. Simple complexity
metrics over task-action grammars make predictions about the relative
learnability of different task language designs. Some empirical support for
these predictions is derived from the existing empirical literature on command
language learning, and from two unreported experiments. Task-action gram-
mars also provide designers with an analytic tool for exposing the configural
properties of task languages.

Author's present addresses: Stephen J . Payne, Departments of Psychology and
Computing, University of Lancaster, Lancaster LA1 4YF, England; T. R. G. Green,
MRC Applied Psychology Unit, 15 Chaucer Road, Cambridge CB2 2EF, England.

94 PAYNE AND GREEN

CONTENTS

1. INTRODUCTION
2. THE AIMS AND NOTATIONAL STRUCTURE OF TAG

2.1. The TAG Framework - Simple-Task Dictionary and Rule-Schema
Expansion

2.2. Sentence Structure, Completeness, and World Knowledge
2.3. Congruence: Matching Semantic and Lexical illations
2.4. Task Structure, Organhtional Consistency and Conflict

Task Structure
Organizational Consistency
Ocganizational Conflict
Summary

3. FORMAL SPECIFICATION OF THE TAG METALANGUAGE
4. USING TAG TO ASSESS LEARNABILITY

4.1. Complexity Metrics Over Grammars
4.2. Empirical Support

5. THE COGNITIVE SCIENCE BASIS OF THE TAG NOTATION
5.1. Simple-Taeks
5.2. Tasks as Concepts
5.3. Feature-tagged Rule Schemas
5.4. The Competence Hypothesis and Formal Power
5.5. A Possible Extension

6. TAG'S RELATION TO LEARNING AND PERFORMANCE THEORIES
6.1. Learning
6.2. Performance

7. CONCLUSIONS

1. INTRODUCTION

The definitions of programming languages have frequently been formalized,
often in Backus-Naur form (BNF), a notation which describes generative
context-free phrase structure grammars. The virtue of BNF was originally seen
as its unambiguity: Whereas programming languages had previously been de-
scribed loosely in English, BNF allowed the syntax (though not the semantics)
to be expressed precisely. A second virtue was soon found to be that BNF de-
scriptions could be executed by program, guaranteeing a correspondence be-
tween the documentation and the compiler. Yet a third virtue emerged: The
descriptions of different languages could be compared through their expression
in a uniform, limited metalanguage.

Reisner (1977) introduced the term action language to describe the command
system of interactive devices, and attempted to transport the virtues of BNF
into this realm. She also hoped to achieve a fourth virtue; namely, to predict the
psychological complexity of the language:

TASK-ACTION GRAMMARS 95

A natural index of the complexity (of a statement) might be the number of
rewrite rules . . . used to describe it . . . By this we mean to suggest that a
BNF description of a language, usually intended to describe a set of valid
statements, may have a psychological validity. (p. 227)

Reisner went on to propose an experimental search for a "single, consistent,
psychological BNF." To some degree her claims were vindicated; her analysis
of two graphics systems (Reisner, 1981) signposted areas of complexity in one
of them, which were confirmed by empirical observation.

In this article we, like Reisner, offer a formalization of interface languages.
Our formalism is intended to model the mental representation of the interface
language and so to allow a formal specification of the language as perceived by the
user. Of course, this goal is ambitious; we will be satisfied if our formal specifi-
cations reflect some important aspects of the perceived structure. This formal-
ism must therefore readily express those characteristics that are salient to the
user, and will thus address many of the characteristics that determine usability,
particularly configural properties.

We aim to capture the notion of regularity or consistency. Consistency is diffi-
cult to define and therefore difficult to measure, but it is informally recognized
to be a major determinant of learnability. The advantages of consistency lie in
facilitating generalizations by the user, who having learned some parts of the
system can then infer others.

A language can be consistent at several different levels, but at each level the
key properties that determine consistency are configural in that they relate to the
overall structure of the language, rather than to the nature of individual
task-action mappings.

T o illustrate the notion of consistency, and informally describe the space of
phenomena we intend to address, we present a series of examples. Although we
have labeled these examples according to the level of linguistic description at
which the interesting properties seem to emerge, we do not pretend to offer a
taxonomy of consistency. We recognize that the boundaries between syntax
and semantics are fuzzy and theory-dependent, but we have chosen examples
which seem comfortably classifiable. A really useful taxonomy of consistency
must wait to be stated in terms of a psychological theory, rather than linguistic
abstractions.

Syntactic Consistency. Some forms of consistency are syntactic in nature.
BNF can only capture a weak version, namely, the consistent use of one expres-
sion as a common element in other expressions. The term arithmetic expression,
for instance, might well be an element common to rules for assignment state-
ments, array bounds, Boolean expressions, and for-statements. In command
languages it is sometimes the case that every command has an identical form -

96 PAYNE AND GREEN

perhaps a single letter followed by carriage return. This is a second example of
common structure, a syntactic consistency that BNF grammars can display.

But there are often family resemblances between syntax rules that are simply not
expressible in BNF. An example of family resemblance is shown in Figure 1.
The three separate types of sequence exhibit a clear similarity (to the human
eye), yet require completely separate BNF rewritings. This kind of syntactic
consistency can only be captured by notations that have more expressive
power.

Lexical Consistency. In natural languages it is usually assumed that
lexemes are tied to their meaning by arbitrary connections. For computer lan-
guages, in which the lexemes are often English words (or icons, e.g., arrows or
waste bins), the relationship is clearly nonarbitrary. The relationship between
the external meanings of words and their use is command languages in com-
plex, but one configural aspect which has been shown to benefit learners is
congruence- the matching of lexical (external to the command language) and se-
mantic (internal) relations (Carroll, 1982). Congruence is discussed in detail
below.

Semantic-Syntactic Alignment. In the ideally consistent language, seman-
tic relations will not only be mirrored in the lexical or symbolic relations, but
also in the structure of commands. If a "copy file" command requires the ex-
isting file to be specified before the new file, then a "copy disk" command should
require the source drive to be specified before the target drive: The task seman-
tics should map onto the language syntax in a consistent way. This point is de-
veloped at greater length in Section 4.2.

The inverse is also true: A single linguistic element will ideally perform the
same semantic function in any context. Green and Payne (1984) noticed that in
a commercial word-processing system, the control and escape keys were used to
organize the cursor movement semantics, but according to two conflicting
organizingprinciPles. For some pairs of commands, "controln and "escape" would
switch between small and large units; in other cases, "controln and "escape" de-
termined the direction of movement of the cursor. A language-learning experi-
ment confirmed that this conflict troubled learners, to the extent that a lan-
guage with no meaningful mnemonics, but a single organizing principle,
proved reliably easier to learn. A small subset of both of these experimental
command languages is shown in Figure 2. (A third language from the experi-
ment, the most easily learned of all, is described later, in Figure 4.)

Semantic Consistency. Our final examples of consistency are properties of
the extensional semantics of a language. Again, the key issue is that one part of
the language prompts expectations about the remainder. For example, if a
word processor allows search for a character string both forward and backward

TASK-ACTION GRAMMARS 9 7

Figure 1. Family resemblances between syntactic rules. The three rules express a
s&l fragment of a programming language in BNF. The rules have an obv&us re-
semblance, but that is not directly represented in the grammar, which has no gener-
alized notion of a sequence.

<declaration sequence > ::- <declaration >
I <declaration sequence> + <declaration >

<statement sequence> ::- <statement >
1 <statement sequence> + <statement>

<letter sequence> ::- <letter>
I <letter sequence> + <letter >

Figure 2. Example commands from two experimental text-editing languages
(Green & Payne, 1984). Language 1 is a subset of a commercially available editor,
but has conflicting organizing principles. Language 2 has no mnemonic coding, but
is organized according to a single principle.

Commands Language 1 Language 2

move cursor forward one character ctrl-F ctrl-L
move cursor backward one character ctrl-B esc-L
move cursor forward one word esc-F ctrl-E
move cursor backward one word esc-B esc-E
view next screen ctrl-V ctrl-C
view previous screen esc-V esc-C

through a file, then we expect it to allow a similar flexibility for a search-and-
replace operation. Similarly, in the programming language Pascal, we are dis-
appointed that one can read in values for real identifiers, but not for Boolean
identifiers. We term the consistency principle that is being broken here complete-
ness. Some richer examples of semantic consistency will be discussed below.

Our central goal in this article is to present a notation for the description of
languages which has something to say about all these various aspects of consist-
ency. We attempt to capture generalizations in a psychologically valid manner,
and so identify consistency with observable properties of notational descrip-
tions.

Our first efforts toward this goal modeled syntactic generalizations, ad-
dressing the family resemblances illustrated here (Payne & Green, 1983). We
proposed a context-free variant of van Wijngaarden's two-level grammar (for a
good description, see Pagan, 1981), which we called set-grammar, because the re-
write rules operated on sets of grammatical objects rather than individual
nonterminal or terminal symbols (Payne & Green, 1983). Figure 3 shows the
set-grammar representation of the syntactic family resemblances illustrated in
Figure 1 .

98 PAYNE AND GREEN

Figure 3. Set-grammar treatment of family resemblance. The fragment of a pro-
gramminglanguage shown in Figure 1 is represented here in the set-grammar nota-
tion (Payne & Green, 1983). The family resemblances are captured by collapsing
three rules into one higher-order rule.

SET
SEQ-ITEMS :: (declaration, statement, letter]

RULE
SEQ-ITEM sequence - SEQ-ITEM / SEQ-ITEM sequence + SEQ-ITEM

SELECTION RULE
Uniform replacement - the same element is chosen from the set of SEQ-ITEM

throughout the rule.

Consistent languages, we argued, could be expressed by a small number of
set-grammar rules; whereas inconsistent languages, in which some syntax con-
structions had little in common with other constructions, could not be reduced
to a small number of set-grammar rules. The set-grammar achieved some suc-
cess as a model of syntactic perception, predicting several laboratory results on
the learnability of command languages and miniature artificial languages
(Payne, 1985; Payne & Green, 1983). Payne (1985) gave some support to the
specific type of family resemblance that was expressible in set-grammars by
showing that of two miniature artificial languages, the easier to learn was the
one predicted by set-grammar, because fewer set-grammar rules were needed
to express its grammar. This result was promising because the languages were
carefully devised so that their BNF representations predicted the opposite re-
sult. However, the utility of set-grammar as a cognitive model and for the anal-
ysis of usability suffered from a severe shortcoming: It possessed no mecha-
nisms for relating the syntax of a language to its semantics. Many of the most
important determinants of consistency rely on semantic properties.

The notation presented here supersedes set-grammar and extends its explan-
atory power beyond the syntactic realm into the semantics of tasks. The nota-
tion is a grammar describing a mapping from the users' tasks onto sequences of
actions. Because the starting symbols of our grammars are tasks and the ter-
minal symbols are action specifications, our notation is called task-action gram-
mar (TAG). We use the term task language to describe the intended domain of
application of task-action grammars: A task language is any task-action inter-
face between a person and a machine, including lexical command languages,
direct manipulation interfaces, and knobs-and-dials control panels.

Like other grammars, TAG models competence rather than performance,
but we offer sketches of related learning and performance theories in this arti-
cle. Many of our notational devices, such as the use of a feature grammar, the
representation of concepts as sets of semantic components, and the notion of a
simple or atomic task, have a basis in cognitive psychology and psycholin-
guistics. This basis will also be discussed.

TASK-ACTION GRAMMARS

2. THE AIMS AND NOTATIONAL STRUCTURE OF TAG

In this section we first illustrate the general principles of our notation, which
are those of a feature grammar. This feature grammar describes the mapping
from the task level to the action level. The central aim of TAG is to formalize
that mapping in such a way that simple metrics over the grammar, such as the
number of rules, will predict aspects of the psychological complexity of the
mapping. These aspects of complexity include time spent learning, intrusive
errors during learning, and the ability to generate a forgotten or unknown part
of the language from the remainder. (We discuss metrics and predictions in
Section 4.) A secondary aim of TAG is to help the analyst appreciate the struc-
ture of a task language.

A task-action grammar is a formal device. Its input is a description of a task
as a set of semantic components. (A semantic component is a particular value
on a featural dimension; if Direction is a feature, then Direction = right is a par-
ticular value which might be a component of a task definition, such as move-
one-character-to-the-right .) Its operation is that of a generative grammar, and
its output is a list of the actions required to perform the input task. Thus task-
action grammars describe not just the syntax of operations used to control the
device, but also the relationship between the actions and commands and the
user's view of particular tasks.

Obviously, the users of interactive systems have the ability to perceive cer-
tain regularities in task-action mappings, but not others. When regularities ex-
ist and can be perceived, they can be used to simplify the structure of the
mapping, replacing a number of unrelated mapping rules by a single, more
general rule. Our choice of formalization makes an implicit theoretical state-
ment about the limits of that ability. For instance, using a standard context-free
phrase structure grammar as a representation of the mapping would postulate
that users could perceive a hierarchical structure of rules and subrules, but that
they were blind to family resemblances between rules.

In describing the general principles and the particular notational conven-
tions, we will show how TAG representations capture the following important
attributes of particular mappings (including aspects of consistency discussed in
Section 1):

family resemblances, or the overall "sentence structuren of commands;
the degree to which a task language relies on well-learned "world
knowledge," in particular on familiar names, such as up for the concept

UPWARD DIRECTION;

the "completeness" of a mapping, as opposed to arbitrary absence of ex-
pected components;
the notion of "congruence," or the representation of semantic relations
by equivalent lexical relations (notably, semantic opposition by lexical
antonymy);

100 PAYNE AND GREEN

the organization of tasks and subtasks, and the alignment of semantic
and syntactic aspects of the task language.

2.1. The TAG Framework - Simple-Task Dictionary and Rule-
Schema Expansion

Figure 4 presents a TAG description of a fragment of an experimental text-
editing language used by Green and Payne (1984) and introduced already in
Section 1. The description consists of a Simpk-task dictionary, in which simple-
tasks are identified and defined by their semantic components, and a feature
grammar in which the dimensions of those components serve as features. (In
more complex examples, it aids exposition to add a third component, an ex-
plicit list of possible features and their values. This redundant device has been
omitted here.)

The TAG description models the mental representation of a user who has
learned the four commands. The simple-task dictionary represents all the tasks
the user can routinely perform, and defines each as a set of semantic compo-
nents. These components are to be used in guiding the rule-schemas into
generating the required actions for each possible task.

The rule-schemas generate action specifications from simple-tasks in a simi-
lar manner to standard phrase-structure grammars, but they have the addi-
tional notational power of encapsulating several standard phrase-structure
rules in a single rule-schema. In this example, the general task-action rule-
schema (Rule 4.1) is expanded by assigning the values to all the features in the
square brackets, with the constraint that a feature must be assigned with the
same value wherever it appears in the rule. A possible result of these assign-
ments is the single-level rewrite rule:

Task [Direction = forward, Unit = word] -
symbol [Direction = forward] + letter [Unit = word]

All the tokens now refer to unique grammatical objects (they must; this is a
constraint on the features in the square brackets). The simple-task object can be
found by looking at the simple-task dictionary; the symbol and letter objects are
expanded by further rewrite rules (in this case, Rules 4.2 and 4.4), using the
standard production-rule grammar mechanism. These operations yield, in the
example:

move-cursor-one-word-forward - "ctrl" + "W"

which is one of the represented commands.
This simple example illustrates most of the important mechanisms of a TAG

grammar. The most novel mechanism is the consistent assignment of values to
features, combined with the looking up of simple-task descriptors in a diction-
ary. The strength of the grammar which we have used as this first example is

TASK-ACTION GRAMMARS

Figure 4. TAG'S treatment of cursor control in an experimental text editor.

List of Commands

move cursor one character forward ctrl-C
move cursor one character backward meta-C
move cursor one word forward ctrl-W
move cursor one word backward meta-W

TAG Dejinition

DZCTZONAR Y OF SIMPLE- TASKS
move-cursor-one-character-forward (Direction = forward, Unit = char]
move-cursor-one-character-backward (Direction = backward, Unit = char)
move-cursor-one-word-forward [Direction = forward, Unit = word]
move-cursor-one-word-backward (Direction = backward, Unit = word]

RULE SCHEMAS
4.1 Task [Direction, Unit] - symbol [Direction] + letter [Unit]
4.2 symbol [Direction = forward] - "ctrl"
4.3 symbol [Direction = backward] - "meta"
4.4 letter [Unit = word] - "W"
4.5 letter [Unit = char] - "C"

that it allows the basic form of all the task-action mappings to be represented in
a single higher-level schema (Rule 4.1). It captures the observed consistency in
the organization of the language due to an organizing principle in the
semantic-syntactic alignment.

It is intuitively clear that the design of this language could be improved fur-
ther by the use of mnemonic codes. Just such an improvement was validated in
the experiment of Green and Payne (1984). The TAG description of the advan-
tage is illustrated in the following section.

2.2. Sentence Structure, Completeness, and World Knowledge

An important type of consistency in a task language occurs when every com-
mand has the same sentence structure. Frequently this structure is a single
keypress, which is trivial. A less trivial sentence structure is the postfix-style
language structure, as used, for instance, on the Apple Macintosh. Another
nontrivial structure is the list of operations, followed by a terminator, familiar
to users of TECO and its descendants.

We start by considering an example of a system in khich every simple-task is
performed by entering a single command name, followed by a carriage return.
In this particular system, there are only three commands which are used for
moving some object around a screen. The entire task world, therefore, com-
prises three simple-tasks, which we can denote as follows:

102 PAYNE AND GREEN

move-up (Direction = up)
move-down [Direction = down)
move-right (Direction = right)

The featural description of each simple-task concept arises from a straight-
forward categoniation of the task world. A user who has learned the entire lan-
guage will represent the dictionary of simple-tasks in this way, reflecting the
natural categorization. The features are chosen to describe the important dis-
criminations in the set of simple-tasks; if the current language were extended to
include commands that have no movement function, then the direction compo-
nents of our three tasks would need to be supplemented with a new feature, al-
lowing their specialized movement function to be represented.

If the commands chosen for the three tasks were, for example, N, V, and G,
then the user may represent the task-action mappings as follows.

0.1 Task [Direction] - name [Direction] + "RETURN"
0.2 name [Direction = up] - "N"
0.3 name [Direction = down] - "V"
0.4 name [Direction = right] - "G"

We use this trivially simple grammar to make three points. First, we note
that the mapping is incomplete. Because TAG descriptions include a dictionary
of simple-tasks and their associated semantic components, it is easy to spot
combinations of features that are semantically acceptable but that have no asso-
ciated simple-task. In this example, there is no simple-task with the component
(Direction = left]. Of course, it is hardly necessary to use a task-action gram-
mar to reveal this particular incompleteness, but, in general, incompleteness
can be much harder to spot. Highlighting completeness is a small example of
TAG'S potential as an analytic device for appreciating the structure of the task
language, separate from its main role as a predictor of relative learnability.

Next, the TAG description captures a strong intuition about sentence struc-
ture. If a fourth command were to be added, for moving to the left, we would be
perplexed if it were not accomplished by typing a single letter followed by RE-
TURN. According to the task-action grammar, our difficulty would spring
from the fact that a new top-level schema would need to be formed: a special one
for the move left command. (Actually, we have not yet represented the fact that
every command name in this system is a single letter. TAG can express this, but
it depends on a notational device which we have yet to describe.)

Finally, and the main point of this example, we can contrast Rules 0.1
through 0.4 with Rules 0.5 through 0.9 which describe a language in which the
arbitrary letters have been replaced by UP, DOWN, and RIGHT.

0.5 Task [Direction] - name [Direction] + "RETURN"
0.6 name [Direction] - known-item [Kind = word, Direction]
0.7 *name [Direction = up] - " U P

TASK-ACTION GRAMMARS

0.8 *name [Direction = down] - "DOWN"
0.9 'name [Direction = right] - "RIGHT"

Since English-speaking users will know that UP is the name for the concept,
we wish to find a way to differentiate between arbitrary and well-learned
names. We do so by constructing a TAG that contains only two effective rules,
0.5 and 0.6, of which Rule 0.6 says, "The subrule for determining the name for
a given movement is: Use the word that shares the direction feature of the in-
tended movement." We assume that lexical access to well-learned names is es-
sentially effortless as long as the semantic components of the task genuinely do
bring to mind the required words, the size of the vocabulary is not important.
Rules 0.7 through 0.9 are therefore marked with asterisks to indicate that they
should not be included in any simple metrics over the grammar, such as
counting the number of rules. We choose to include them in TAG descriptions
because all the terminal symbols of the language are then visible, and because
assumptions about world knowledge are then open to inspection. (We can de-
termine, for instance, what aspects of a language might give trouble if users
come from a different population from the one envisaged by the designer.)

Rules like 0.6 are called world knowledge rules. Naturally, they need not be
exclusively lexical; their right-hand sides can refer to any entities that exist, in-
dependently of the task language, in the user's semantic memory. Spatial fea-
tures of the keyboard or screen are powerful examples. World knowledge rules
serve two purposes for the user: They increase the robustness of the grammar in
the head, so that a forgotten rule can be regenerated from a world knowledge
schema; and they ease the learning load, allowing unlearned rules to be hypoth-
esized from existing ones.

A notational device similar to world knowledge rules is used to denote action
variables-action specifications that require a feature value to be determined
by the user's current goal. (We envisage the value being passed to the grammar
as a parameter by the planning system; see Section 6.2.) Action variables are
quite common in command languages. For example, most text editors allow
the user to search through a file for any string of characters. The search com-
mand will have a set syntax, but the particular string to be searched for is an ac-
tion variable, whose value is determined by the current goal. Often it is conven-
ient to simply denote action variables with standard quoted terminal symbols,
specifying the action weakly by a general label which needs to be replaced by an
exemplar (as shown in Figure 10). Sometimes, however, if the organization of
the task language is to be fully captured, it is necessary to specify features that
take values from the goal. Using this convention, a TAG rule for a search com-
mand might be:

0.10 Task [Purpose = search] -
"ctrl-S" + action [Kind = key, String = value-from-goal]

104 PAYNE AND GREEN

2.3. Congruence: Matching Semantic and Lexical Relationships

An important paper by Carroll (1982) provided empirical evidence in sup-
port of a naming principle he called congruence. The idea can be illustrated by a
small subset of two of his experimental languages, as shown in Figure 5.

Carroll discovered that subjects learning a pencil-and-paper simulation
game found the names of Language A easier to learn than those of Language B.
He explained this with reference to the congruence of the name set and the task
world; basically, opposite commands are invoked by opposite words. This is a
good general principle, and intuitively likely to be a robust influence on usabil-
ity, beyond individual differences and context effects.

It is not difficult to devise a notational device to express congruence. On the
one hand, we have a set of tasks whose semantic components are identical in ev-
ery respect except one; thus the tasks whose components are (move, forward)
and [move, backward) differ only in the Direction feature. On the other hand,
we have a set of names for just those semantic components. To express the idea
of congruence between the names advance and retreat, therefore, we need a nota-
tion that describes the set of words, choosing between them on the basis of the
Direction feature.

Rule 5.2 in Figure 5 shows how we do this. It can be read as: "The name for
movement in a given direction is that word which has all the features of 'ad-
vance' except the Direction feature, which it derives from the current task." So,
if the Direction feature is forward, the name is advance; if it is backward, the
word is retreat. Thus, to express the idea of congruent sets, we pick an arbitrary
member of the name set (retreat would have done just as well as advance), use the
notation Ff'advance") to refer to all the semantic components of that word, and
then replace the Direction feature by the desired direction. Using a single sym-
bol to denote a feature set defining a concept does not add formal power to the
TAG notation, and it is, in fact, common practice in the linguistic and psycho-
logical literature (e.g., Tversky, 1977). '

We are now in a position to compare the TAG descriptions of Carroll's two
languages. Language A permits us to use the notational device we have de-
scribed; Language B does not, because GO and BACK do not form a set differen-
tiated solely by the relevant semantic component Direction (neither do TURN

and LEFT). Language B will, therefore, require more rules. Simple metrics,

Notational remark: Essentially, F is a function returning a set of components, we use round pa-
rentheses to differentiate it from the feature-marked nonterminal symbols of the grammar. Because
Rule 5.2 expresses the idea that "advancen and "retreatnshare the same semantic attributes, varying
only in direction, the notation could be said to embody a view of antonymy that is in keeping with
some suggestions in the linguistic literature (e.g , Katz, 1972). There is a debate surrounding such
logical distinctions as contrast and opposition (Lyons, 1977), but we are merely suggesting that a
good nameset will reflect differences and similarities between operations by providing names that
vary along the same dimensions as the operations they represent

Figure 5. Congruence. TAG'S treatment of lexical consistency in two experimen-
tal languages from Carroll (1982).

A Subset of Commands From the Languages

Language A Language B
(congruent) (noncongruent)

Commands the robot to move forward or ad- ADVANCE GO
vance one step

Commands the robot to move backwards or RETREAT BACK
retreat (in reverse) one step

Commands the robot to change the direction RIGHT TURN
it faces by moving or turning 90 degrees to
the right

Commands the robot to change the direction LEFT LEFT
it faces by moving or turning 90 degrees to
the left

TAG Descriptions

TASK FEATURES (the same for both languages)
Feature Possible values
MovelTurn move, turn
Direction forward, backward, right, left

SIMPLE TASKS (the same for both languages)
move-robot-forward (MovelTurn = move, Direction = forward]
move-robot-backward [MoveTTurn = move, Direction = backward]
turn-robot-right [MovelTurn = turn, Direction = right)
turn-robot-left [MovelTurn = turn, Direction = left)

RULE SCHEMAS, Language A
5.1 Task [Movefhrn, Direction] - name [MovelTurn, Direction]
5.2 name [MovelTurn = move, Direction] - known-item [Type = word,

F("advance9'), Direction]
5.3 *name [Movenurn = move, Direction = forward] - "ADVANCE
5.4 *name [MovelTurn = move, Direction = backward] - "RETREAT"
5.5 name [MovelTurn = turn, Direction] - known-item [Type = word,

F("rightW), Direction]
5.6 'name [Movenurn = turn, Direction = right] - "RIGHT"
5.7 *name[MoveTTurn = turn, Direction = left] - "LEFT"

RULE SCHEMAS, Language B
5.8 Task [MovelTurn, Direction] - name [Movemurn, Direction]
5.9 name[Movemurn = move, Direction = forward] - " G O
5.10 name lMovelTurn = move. Direction = backward1 - "BACK
5.11 name [MoveTTurn = turn, Direction = right] - "TURN"
5.12 name[Movefhrn = turn, Direction = left] - "LEFT"

106 PAYNE AND GREEN

such as the number of rules, suggest that Language A will be easier to learn and
remember, as Carroll found.

2.4. Task Structure, Organizational Consistency and Conflict

Having described the main features of the notation, it remains for us to show
how the structure of a more complex interactive system is expressed in these
terms. We hope to use this example to demonstrate the secondary function of
TAG, as a tool to help the analyst uncover subtle aspects of the structure of an
interface. An important feature to bring out is how subtasks are captured by
subrules, thus:

Task - subtask 1 + subtask 2

This procedure (which closely resembles subroutining) is assumed to model
hierarchical task structure as perceived by the user.

The example we draw on to illustrate the points must necessarily be rather
larger than the smaller ones given previously. We have chosen to present an
analysis of an idealized interactive graphics drafting system with a mouse-
driven interface, based on Apple Computer's MacDraw program for the Mac-
intosh. This program manipulates graphic objects, such as lines, circles, and
rectangles. We suppose that the user perceives four main tasks:

A new object can be created. The user chooses a "tool," or object type,
from a menu of line, ellipse, rectangle, and arc. The user specifies the
location and size by positioning the mouse in the top left corner of the
desired location, pressing the mouse button, and "dragging" the mouse
to the bottom right corner. The object is created inside the rectangle
thus designated; for example, if an ellipse tool is chosen, an ellipse will
be created inside the rectangle, with its origin in the center of the rec-
tangle and its major axis either vertical or horizontal, parallel to the
long side of the rectangle. "Stylen attributes, such as line width and fill-
ing, are set by default.
The default style attributes can be altered. The user must point to the
appropriate style menu and item-within-menu.
The style attributes of an existing object can be altered. The user se-
lects an object, then points to the appropriate style menu and item-
within-menu.
An existing object can be moved. The user selects an object, then drags
it to a new position.

In the genuine MacDraw, users can also delete objects, resize the drawing,
write text, and draw freehand. These abilities would add complexity to our de-
scription without revealing any further aspects of our notation. A knottier prob-

TASK-ACTION GRAMMARS 107

lem that we will not discuss is that users can also manipulate different groups of
objects at one time.

Task Structure

We first consider the modeling of hierarchical task structure. The main
structure of the simple-tasks will be clear from Figure 6, but how does one de-
cide on the detailed structure? This problem confronts any model purporting to
describe perceived structures. In the absence of any empirical data on per-
ceived task structure (e.g., in the style of Robertson & Black, 1983), writers of a
task-action grammar must use their judgment. One solution to the problem is
to base description on the structures presented in the training manual, as was
done by Kieras and Polson (1985).

The solution we have adopted is to search for the most economical represen-
tation of a language that we can find. Although this representation may not be
achieved by all users, it gives a lower bound on the psychological complexity.
Observe that where alternative methods exist for achieving a particular task,
the most economical representation will probably only describe one of the
methods. This representation is a generative grammar, but not necessarily an
acceptance grammar because it may not be able to describe an accurate parse of
some users' action sequences.

When, however, the aim of the analyst is to predict confusions that a learner
might encounter, the appropriate representation might well be an acceptance
grammar, describing all reasonable routes to a task, so that potential confusions
between them become visible. We illustrate this problem of organizational conzict
in the following section.

In the present instance, it seems reasonable to suppose that experienced users
perceive the task structure in terms of pointing at places and selecting tools, ob-
jects, or styles. If this task structure is directly used as a design basis, it gives the
following method for object creation:

Task [Effect = create, Type] -
select tool + point-to-place + point-to-place

The designers of MacDraw foresaw, however, that this simple presentation
created an extra and undesirable mode, in which a tool had been selected and
the first place, but not the second, had been marked. To avoid this mode, they
imposed the rule that whenever two places are to be marked in succession, the
mouse button must be depressed at the first place, held down while traveling to
the second, and then released. It is therefore necessary to introduce a subtask,
point-t0-2-places, to describe this generalized action sequence, giving the
structure seen in Rule 6.1.

Organizational Consistency

The dragging operation also illustrates another neat piece of design, in which
special cases are managed with a degree of consistency that is very high (but not

108 PAYNE AND GREEN

Figure 6. TAG description of an idealized MacDraw interface. In this grammar,
the Place features can take values from the user's current goal, denoting action vari-
ables as discussed in Section 2.2.

SZMPL E TASKS
Create new object (Effect = create, Case = regular)
Create special object (Effect = create, Case = special)
Move object (Effect = move, Case = regular)
Move object along restricted path [Effect = move, Case = special)
Change default style attributes (Effect = change-default-style)
Change object style attributes [Effect = change-object-style)

RULE SCHEMAS
6.1 Task [Effect = create, Case] -

select-tool
+ point-to-2-places [Case, Placel = value-from-goal,

Place2 = value-from-goal]
6.2 Task [Effect = move, Case] -

point-to-2-places [Case, Placel = value-from-goal,
Place2 = object-location]

6.3 Task [Effect = modify-object-style] -
select-object

+ select-style
6.4 Task [Effect = change-default-style] -

select-style
6.5 point-to-2-places [Case = regular, Placel, Place21 -

action [Kind = point, Placel]
+ drag-to-place [Place21

6.6 point-to-2-places [Case = special, Placel, Place21 -
action [Kind = point, Placel]

+ "depress mouse button"
+ "depress SHIFT"
+ action [Kind = point, Place21
+ "release mouse button"
+ "release SHIFT"

6.7 drag-to-place [Place] - "depress mouse button"
+ action [Kind = point, Place]
+ "release mouse button"

6.8 select-style -
point-to-2-places [Place = style-menu, Place2-= menu-item]

6.9 select-object - action [Kind = point, Place = object-location]
+ "click mouse button"

6.10 select-tool - action [Kind = point, Place = tool-icon]
+ "click mouse button"

perfect, as we will soon see). The graphic objects that can be created by
MacDraw include lines, rectangles, ellipses, and arcs. Each of these objects has
a special case: vertical or horizontal lines, squares, circles, and quarter circles.
(Lines, of course, have more than one special case - we discuss that awkward
fact in a moment.) It would be perfectly possible to design a system in which the
command create-a-square was different from create-a-rectangle, and in this

TASK-ACTION GRAMMARS

system the designer could arbitrarily decide not to include a special case for,
say, arcs. In MacDraw the designer has opted to use general tools to create both
ordinary and special cases, and has created a language that requires every ob-
ject to have exactly one special case; pressing SHIFT during the dragging part of
the point-to-2-places subtask will create the appropriate object. In the special
case of lines, the line snaps to vertical, horizontal, or 45 degrees, whichever is
the best fit, so that three special cases are automatically subsumed into one to
preserve consistency of structure.

The same constraints apply also to the movement of graphic objects and are
treated the same way: By pressing SHIFT during the dragging operation, the
movement of the object can be restricted to vertical, horizontal, or 45 degrees.
The task structure shown in Figure 6 captures this consistent use of the SHIFT
key by using the same subtask, point-to-2-places, both for creating and moving
objects.

Organizational Conflict

We have used the term organizational conflict to refer to the situation in which
two or more competing organizations can be perceived. We know of no test that
could alert designers to possible misperceptions of this type, but one counter-
measure might be to ensure that each task and subtask of the intended organi-
zation included a distinctive action.

TAG analyses help unearth possible organizational conflicts, and examples
can be found in our idealized MacDraw. One such conflict involves Rules 6.5,
6.6,6.7. Of these, Rule 6.7 represents a standard drag-to-place method, which
is utilized by Rule 6.5. Rule 6.6 does not utilize the standard dragging subtask,
however, because the mouse button and point sequence is interrupted by press-
ing the SHIFT key. An alternative perceived organization for Rule 6.6 would be:

6.6a point-to-2-places [Case = special, Placel, Place21 -
action [Kind = point, Placel]

+ "depress SHIFT"
+ drag-to-place [Place21
+ "release SHIFT"

This would be simpler. Moreover, it is successful-some of the time. We
would therefore predict that some novices would discover Rule 6.6a. But it is
only successful in one context, when an object-creation tool has been selected.
So when the task is to create an object (Rule 6. I), the alternative form of Rule
6.6 will be successful. When, instead, the task is to move an object, the
alternative form of Rule 6.6 will have a different effect, because in that context
pressing SHIFT will result in selecting multiple objects (or deselecting them, if
already selected).

The most economical TAG grammar for the idealized MacDraw can ignore
Rule 6.6a, but an acceptance grammar would have to represent both that and
Rule 6.6. The result would be complicated. We would expect learners who dis-

110 PAYNE AND GREEN

cover the structure by experience, rather than tuition, to suffer some difficulties
before they acquire the more economical form of representation.

A second conflict occurs because our idealized MacDraw supports a second
organization for Rule 6.2. (In fact, this second organization was the one held by
the authors until performing this analysis!) To explain the second organization,
we will start with the task of modifying the style attributes of an object. To do
so, the user selects the object (which causes MacDraw to highlight it) and then
chooses a new style attribute. Naturally, this is presented in Figure 6 as select-
object followed by select-style. It turns out in practice that many users seem to
regard move-an-object as a task with a similar structure, in which the first
subtask is to select the object. This gives them the following structure:

6.2a Task [Effect = move] -
select-object

+ drag-to-place [Place = value-from-goal]

Users then have a very consistent structure for all four tasks, because they all
start by selecting something, whether tool, object, or style. There are two con-
sequences of that perceived organization. First, unnecessary keystrokes are
performed, although because these are no more than an otiose release and
redepressing of the mouse button, they are not expensive in effort. Second, the
consistent use of the SHIFT key is not visible in that organization, because it
does not use the subtask point-to-2-places; the subtask drag-to-place might or
might not make use of the SHIFT key to constrain direction of movement, en-
tirely independently and apparently arbitrarily. It would therefore be quite
possible to believe, as the authors did, that the SHIFT key produced special ef-
fects during object creation, but had no further uses in MacDraw.

Summary

In this analysis of MacDraw, we have attempted to demonstrate that TAG
can capture quite subtle aspects of organizational consistency. Indeed, by per-
forming the TAG analysis we have ourselves been led to perceive initially ob-
scure subtleties. This observation might lead to a criticism that TAG is
capturing properties of the language that are not salient to users, and so do not
influence complexity. Our response to this criticism is twofold. First, we would
argue that it is a mistake to necessarily tie salience and complexity to aware-
ness-consistency may reap benefits for users without being articulated by
them. Second, TAG'S psychological validity should not be second-guessed, but
should be subject to empirical scrutiny. This theme is taken up in Section 4.

3. FORMAL SPECIFICATION OF THE TAG
METALANGUAGE

The preceding examples illustrate all the notational conventions of the TAG
metalanguage and leave us in a strong position to define it precisely. We have

TASK-ACTION GRAMMARS

chosen, however, not to offer such a definition, for two reasons. First, we do not
regard the notation as fixed: It seems sensible to keep the way open for refine-
ments and extensions. Other attempts at formal definition in computer science
do suggest that case-driven development is likely to be necessary (e.g., Lee,
1972). Second, such a definition would add little to the precision of our case; if
the examples given here are taken as definitive rather than merely illustrative,
we are able to demonstrate the formal properties of TAG straightforwardly. It
will be helpful, however, to offer a complete list of the symbolic expressions and
operations used in the current notation.

A task-action grammar has three parts: (a) an optional list of features for
categorizing the simple-tasks, (b) a dictionary of simple-tasks, and (c) a set of
rule-schemas. The list of features is redundant in the grammar's workings and
is provided purely to aid exposition.

The dictionary of simple-tasks lists a label for each operation which the user
can perform routinely, together with a featural description of that simple-task
in terms of semantic components which categorize the entire task world. The
component-set is denoted by brackets, (1. Each component is denoted by a de-
scriptive term for the feature, the equal sign, = , and a term for the value of that
feature. The symbols + and - are used to denote presence or absence of bi-
nary features.

Every rule-schema contains a single element on the left-hand side (LHS);
each LHS is a term consisting of an arbitrary label and a feature-set contained
in square brackets, which may contain any number of unvalued or valued fea-
tures (components).z The LHS is separated from the right-hand side (RHS) by
an arrow - which denotes rewriting, or definition, in the standard phrase-
structure grammar sense. The RHS of a rule contains an ordered sequence of
terms (in exactly the same format as the LHS) and of terminal symbols. Entire
sets of features may be abbreviated by the symbol Foabel), which denotes the set
of defining features of the labeled token. Where a feature-set appears together
with a specified feature, the specific feature takes precedence, and the feature-
set is understood to denote only the unspecified defining features. Unvalued
feature-sets may also be specified, denoted F().

To expand a rule-schema, any unvalued feature must be assigned values uni-
formly throughout the rule, whether they are ordinary features or feature-sets.
When this assignment is complete, every term must denote a unique grammati-
cal object. If a term refers to a simple-task (given the generic label task), then
the valued features will specify exactly one of the entries in the simple-task dic-
tionary. Where the term refers to a nonterminal symbol, that nonterminal will
itself appear as the LHS of a rule schema. The third possibility, if the rule is a

The meaninglessness of all nonterminal symbols is a virtue not shared by earlier formulations of
the TAG notation. It results from a simple change to the syntax ofworld knowledge rules, and was
suggested by Tom Moran.

112 PAYNE AND GREEN

world knowledge rule, is that the term (denoted known-item) refers to a unique
object assumed to be in the user's semantic memory. Terminal symbols are ac-
tion specifications, denoted by terms in quotation marks, or action variables
(denoted action) which contain features whose value may be determined by the
current goal.

The most important formal property of TAG is its generative power. It is
easy to see that TAG only has context-free capability. Each ordinary rule
schema can be expanded into a finite number of single-level (context-free) re-
write rules, simply by assigning values to features in all admissible ways. World
knowledge rules do not affect this capability, as they meet the same constraint,
albeit through the device of features and components that exist independently
of the system being described. Nevertheless, as we have noted, it is inevitable
that some extension to the core metalanguage will be demanded as wider as-
pects of usability are considered.

4. USING TAG TO ASSESS LEARNABILITY

Having described the workings of TAG and shown how it addresses some in-
teresting properties of the interface, we now explain how to apply TAG in order
to make predictions of task language learnability. First, we discuss some com-
plexity metrics which allow direct comparisons between one TAG description
and another. Next, we examine the empirical literature on command language
learning to consider the extent to which TAG, allied to the complexity metrics,
predicts the important results; this section is extended by summaries of two
novel experiments testing central TAG learnability predictions.

4.1. Complexity Metrics Over Grammars

The prime applied focus of TAG is to assess the relative learnability of differ-
ent task languages. The central argument is that because a TAG description
models mental representation of the language, simple metrics over the gram-
mar will reflect psychological complexity, and thus learnability. We have al-
ready mentioned these metrics; in this section we inspect them more closely.

This argument suffers two potential difficulties. First, in the absence of a
specified learning mechanism one might argue that learnability is badly
underdetermined, because a mechanism could be devised that learned complex
grammars more easily than simple ones. Our response to this is straightfor-
ward: Although we have not specified a learning mechanism, we simply assume
one with the apropriate properties. Indeed, we are more or less bound to such
an assumption by the nature of our enterprise for the status of any representa-
tion as an explanatory device depends crucially on implicit processing assump-
tions. If the empirical predictions made by TAG, through its alliance with

TASK-ACTION GRAMMARS

learning assumptions, should fail, then we must modify the grammar, not the
assumptions.

The second difficulty with our learnability argument is that any number of
TAG grammars can be written to define a single task language. How do we
know which definition to use? This degrees-of-freedom problem is an inevitable
consequence of using a grammar as a competence model, but it also applies to
other attempts at modeling human-computer interaction, such as the produc-
tion systems of Kieras and Polson (1985). The problem in our case is rather less
severe, for our express goal is the prediction of relative complexity, so that any
consistent approach to choosing a single decription can be justified. The ap-
proach that we choose is governed by our proposed complexity metrics over
TAG descriptions.

Any grammatical description has a large number of properties; which are the
ones that determine complexity? The most important index of complexity de-
rived from a TAG definition is the number of simple-task rule schemas, for
these rules define the top-level configuration of the task language. For two lan-
guages that possess the same number of simple-task rule schemas, complexity
comparisons should utilize the total number of rule-schemas, including those
that rewrite the nonterminal symbols of the grammar. Because of the prime im-
portance of the simple-task rule schemas, our solution to the degrees-of-
freedom is to base comparisons on descriptions of languages that minimize the
number of simple-task rule schemas.

It is worth noting that the degrees-of-freedom problem potentially can be
turned into a positive advantage. Because several TAG descriptions of a given
language are possible, we have the means of modeling individual differences in
perceived structure. We have already seen some benefits of using TAG in this
fashion in our discussion of the MacDraw interface. In that case, by departing
from our usual constraint of minimizing the number of simple-task rules, we
were able to display interesting alternative structurings of the task language.
Our complexity metrics depend on the assumption that although alternative
TAG descriptions are necessary to model individual perceptions of structure,
the minimal description models regularities that generally will be perceived and
is therefore the best available approximate guide to the intrinsic complexity of
the design.

4.2. Empirical Support

TAG'S main empirical prediction is that, of two similar task languages, the
one that will be the easier to learn and remember is the one with the fewer
simple-task rule schemas or, should the languages be equivalent in this respect,
the language with the fewer rules altogether (not counting rules that are cap-
tured by world knowledge schemas). Empirical support for this claim can be

114 PAYNE AND GREEN

gathered from the existing experimental literature on command language
learnability. TAG captures many results on command language names and
syntax. From the naming literature, we have already seen TAG descriptions of
the main effect demonstrated by Black and Moran (1982), Carroll (1982), and
Green and Payne (1984). The advantage of using structured namesets, as dem-
onstrated by Scapin (1982) and Carroll (1982), also can be captured. Scapin's
experimental namesets, and a TAG description of each, are shown in Figure 7.

Results on command language syntax are somewhat less concrete. The ex-
periment by Barnard, Hammond, Morton, Long, and Clark (1981) is hard to
interpret, but it offers some support for the principle of placing a common pa-
rameter in a constant serial position within a command string- a principle that
is supported by TAG in a fairly obvious way (see Figure 8). The observational
reports of Reisner (1981) also support the notion of a consistent syntax; again,
TAG predicts these findings (as did Reisner's own grammar, but only through
an informal extension to the notation).

More importantly, TAG makes predictions about syntactic consistency that
go beyond the findings of Barnard or Reisner. The categorization of simple-
tasks predicts that syntactic consistencies across entire semantic categories will
be appreciated by users, as will syntactic consistencies within semantic catego-
ries, but consistencies across groupings of tasks orthogonal to the semantic or-
ganization will be of no benefit. This prediction has been tested in an experi-
ment on syntax induction by Payne (1985). In this test, subjects learned to
operate a toy "lost property office" computer system to perform three categories
of task: request information from a database, end messages to colleagues in
other locations, and play games (a scenario not unrepresentative of real world
computer use). In each of these three main categories several distinct task-types
could be performed - information could be requested about missing dogs, cars,
jewelry, or valuables; messages could be sent privately or in public; two com-
pletely different games could be played. The experimental results demon-
strated that the best syntax utilized a consistent higher-level structure (as cap-
tured by TAG schemas) for all possible tasks (Language 1, Figure 9). A design
which incorporated only two different syntactic command structures, but
which used these for groups of task-types that cut across the major categories
(Language 3, Figure 9), was harder to learn than a design using three separate
command structures, one for each of the categories (Language 2, Figure 9).
TAG descriptions of the experimental languages are shown in Figure 10.
Counting the number of simple-task rule schemas predicts the observed results.
We should note that this prediction holds even though the TAG notation for
Language 3 has the smallest total number of rules. The reason for this is that the
naming and abbreviation conventions (which are exactly the same for all three
languages, of course) are represented by additional grammatical rules in Lan-
guages 1 and 2, precisely because the structure of these languages allows the
generalized simple-task schemas. In Language 3, because individual nile

Figure 7. Structured namesets. TAG'S treatment of the experimental namesets
from Scapin (1982).

Structured
SEND MESSAGE WAITING
SEND MESSAGE RECEIVED

FlLE MESSAGE WAITING
FlLE MESSAGE RECEIVED
FlLE MESSAGE MAILED

CREATE MESSAGE WAlTlNG
CREATE GROUP
CREATE REFERENCE
CREATE APPOINTMENT

MODIFY MESSAGE WAITING
MODIFY GROUP
MODIFY REFERENCE
MODIFY APPOINTMENT

Unstructured
SEND MESSAGE WAITING
TRANSMIT MESSAGE RECEIVED

FlLE MESSAGE WAITING
CLASSIFY MESSAGE RECEIVED
STORE MESSAGE MAILED

WRITE MESSAGE WAITING
FORM GROUP
MAKE REFERENCE
TAKE APPOINTMENT

CORRECT MESSAGE WAITING
MODIFY GROUP
TRANSFORM REFERENCE
CHANGE APPOINTMENT

TAG Dcsm'ptions

SIMPLE TASKS (same for both namesets)
send-message-waiting [Operation = send, Object = waiting-message)
send-message-received (Operation = send, Object = received-message]
file-message-waiting [Operation = file, Object = waiting-message)
file-message-received (Operation = file, Object = received-message]
file-message-mailed [Operation = file, Object = mailed-message)
create-message-waiting [Operation = create, Object = waiting-message)
create-group (Operation = create, Object = group)
create-reference (Operation = create, Object = reference)
create-appointment (Operation = create, Object = appointment]

R ULE SCHEMAS (Stnutured nameset)
7.1 Task [Operation, Object] - name1 [Operation] + name2 [Object]
7.2 namel[Operation] - known-item [Kind-word, Operation]
7.3 'namel[Operation = send] - "SEND
7.4 *namel[Operation = file] - "FILE
7.5 'namel[Operation = create] - "CREATE
7.6 'namel[Operation = modify] - "MODIFY"
(name2[0bject] - THE SAME FOR BOTH NAMESETS)

RULE SCHEMAS (Unrtnutured)
7.7 Task [Operation, Object] -name1 [Operation, Object] + name2 [Object]
7.8 namel[Operation = send,Object = waiting-message] - "SEND
7.9 namel[Operation = send,Ob)ect = received-message] - "TRANSMIT"
7.10 namel[Operation = file,Object = waiting-message] - "FILE
7.1 1 namel[Operation = file,Object = received-message] - "CLASSIFY"
7.12 namel[Operation = file,Object = mailed-message] - "STORE
7.13 namel[Operation = create,Object = waiting-message] - 'WRITE
7.14 namel[Operation = create,Object = group] - "FORM"
7.15 namel[Operation = create,Ob)ect = reference] - "MAKE
7.16 namel[Operation = create,Object = appointment] - "TAKE
etc. for modify operations . . .
(name2[0bject] - THE SAME FOR BOTH NAMESETS)

PAYNE AND GREEN

Figure 8. Consistent versus inconsistent syntax. Consider a command language in
which each command is issued by typing a verb and two parameters, one of which is
common to all commands in the language (cf. Barnard et al., 1981). Two separate
commands from such a language are shown for a consistent and inconsistent dialect
(the argument extends ob;io&ly to three or more commands). According to the
metrics developed in the text, the consistent dialect will be easier to learnbecause it
can be fully described using fewer simple-task rewrite rules.

Consistent Dialect

verbl common-parameter var-parameter1
verb2 common-parameter var-parameter2

Inconsistent Dialect

verbl common-parameter var-parameter1
verb2 var-parameter2 common-parameter

TAG Definitions

S I M P L E T A S K S (same for both languages)
task1 ((Feature = f l)
task2 (Feature = f2)

RULE S C H E M A S (Consistent dialect)
8.1 Task [Feature] -

name [Feature]
+ common-parameter
+ var [Feature]

8.2 name [Feature = f l] - verbl
8.3 name [Feature = f2] - verb2
8.4 var [Feature = f l] - var-parameter1
8.5 var [Feature = f2] - var-parameter2

R U L E S C H E M A S (Inconsistent dialect)
8.6 Task[Feature = fl] - verbl + common-parameter + var-parameter1
8.7 Task [Feature = f2] - verb2 + var-parameter2 + common-parameter

schemas are required for each simple-task, the abbreviation conventions can be
absorbed into them, and no additional rules are needed.

TAG also makes predictions about the optimal strategies for abbreviating
command names. Evidence has accumulated recently to suggest that, for
encoding operations at least, the preferred abbreviation algorithm is simple
truncation (e.g., Hirsch-Pasek, Nudelman, & Schneider, 1982). However, in
life-size languages, any such simple scheme will lead to clashes, where two com-
mand names suggest the same abbreviation. The only suggestion in the litera-
ture known to the authors for resolving conflicts is to utilize a secondary rule
(perhaps vowel deletion) for clashing items (Ehrenreich & Porcu, 1982). Cer-
tainly this strategy appears to be better than using a minimum-to-distinguish

TASK-ACTION GRAMMARS 117

Figure 9. Example commands from the three languages used by Payne (1985) in an
experiment on semantic-syntactic alignment. These commands were used as exam-
ples in the learning phase of the experiment.

Language I
DOG BOXER HlGH BROWN

CAR FORD VERY LOW D

FIN CASH VERY HlGH 10

JEW BROOCH LOW SILVER

TOM PEEP HlGH PPP

HEAD LOW HULL

BLUFF VERY LOW DEFS

QUOTE LOW AUTS

Language 2
DOG BOXER BROWN HlGH
CAR FORD D VERY LOW
FIN CASH 10 VERY HlGH
JEW BROOCH SILVER LOW
TOM PEEP HlGH PPP
HEAD LOW HULL
VERY LOW BLUFF DEFS
LOW QUOTE AUTS
Language 3
DOG HlGH BOXER BROWN
CAR FORD VERY LOW D
FIN VERY HlGH CASH 10
JEW BROOCH LOW SILVER
HlGH TOM PEEP PPP
HEAD LOW HULL
VERY LOW BLUFF DEFS
QUOTE LOW AUTS

"high priority request for information about a
missing brown boxer dog"
"very low priority request for information about
a D registered Ford" "
"very high priority request for information
about ten pounds cash lostn
"Low priority request for information about
jewelry, in particular, a silver broochn
"high priority message to Tom Peep, whose
password is PPPn
"low priority message to the head of the Hull of-
fice"
"very low priority, play the definitions version
of Call My Bluff' (the other version was
WORDS)
"low priority, play the authors verion of the
quotations gamen (the other version was QS for
quotes)

truncation algorithm throughout the command set (Ehrenreich & Porcu,
1982). However, TAG predicts that use of a secondary rule will be a poor tech-
nique, as the conflict set need bear no relation to the semantic organization of
the tasks: TAG has no mechanism for capturing regularities between arbitrary
(nonsemantic) groupings of tasks. Instead, TAG predicts that abbreviation
conflicts should be solved by splitting the command language into separate
task-oriented categories and utilizing a different abbreviation rule within each

Figure 10. TAG definitions for the three languages in Payne's (1985) experiment
on semantic-syntactic alignment. In this grammar, lower case terms in quotes de-
scribe action variables, which must be replaced by exemplars (see Section 2.2.).

SIMPLE TASKS (the same for all three kanguagcs)
request-info-about-dog (Category = info, Type = dog)
request-info-about-financial-matters [Category = info, Type = fin]
request-info-about-cars (Category = info, Type = car)
request-info-about-jewelry (Category = info, Type = jew)
send-public-mesaage (Category = message, Type = public]
send-private-message (Category = message, Type = private)
play-call-my-bluff (Category = game, Type = bluffl
play-quotations (Category = game, Type = quote)

R U L E SCHEMAS, Language I
10.1 Task [Category, Type] - headeflcategory, Type]

+ descriptor[Type]
+ priority + parameteflypel

10.2 headeflcategory = info, Type] - three-letter-header [Type]
10.3 header[Category = message, Type] - NULL
10.4 headeflcategory = game, Type] - NULL
10.5 three-letter-header [Type = car] - "CAR"
10.6 three-letter-header [Type = fin] - "FIN"
10.7 three-letter-header [Type = jew] - "JEW
10.8 three-letter-header [Type = dog] - "DOG"
10.9 descriptor [Type = dog] - "dog-breed"
10.10 parameter [Type = dog] - "dog-colour"
10.11 descriptor [Type = fin] - "valuable-object"
10.12 parameter r ype = fin] - "monetary-amount"
10.13 descriptor [Type = jew] - "jewelry-item"
10 14 parameter [Type = jew] - "material"
10 15 descriptor [Type = car] - "car-make"
10.16 parameter [Type = car] - "registration-letter"
10.17 descriptor [Type = public] - "job"
10.18 parameter [Type = public] - "town-office"
10.19 descriptor [Type = private] - "name"
10.20 parameter [Type = private] - "password"
10 21 descriptor [Type = quote] - "QUOTE
10.22 parameter [Type = quote] - "quote-game-type"
10.23 descriptor [Type = bluff] - "BLUFF"
10.24 parameter [Type = bluffl - "bluff-game-type"
10.25 priority - "VERY HIGH"
10.26 priority - "VERY LOW"
10.27 priority - "HIGH"
10.28 priority - "LOW

R U L E SCHEMAS, Language 2
10.29 Task [Category = info, Type] - header llype]

+ descriptor Fype]
+ parameter Fype]
+ priority

TASK-ACTION GRAMMARS

Figure 10. (Continued)

10.30 Task [Category = message, Type] - descriptor [Type]
+ priority
+ parameter (Type]

10.31 Task [Category = game, Type] - priority
+ descriptor [Type]
+ parameter Vype]

- -

RULE SCHEMS, Language 3
10.32 Task[Category = info, Type = dog] - "DOG" + priority

+ "dog-breed" + "dog-color"
10.33 Task [Category = info, Type = fin] - "FIN" + priority

+ "valuable-object"
+ "monetary-amount"

10.34 Task[Category = info, Type = jew] - "JEW" + "jewelry-item"
+ priority + "material"

10.35 Task [Category = info, Type = car] - "CAR" + "car-make''
+ priority + "reg-letter"

10.36 Task [Category = message, Type = private] - priority + "name"
+ "password"

10.37 Task [Category = message, Type = public] - "town-off ice"
+ priority + "job"

10.38 Task [Category = game, Type = quote] - "QUOTE + priority
+ "quote-game-type"

10.39 Task [Category = game, Type = bluff] - priority + "BLUFF"
+ "bluff-game-type"

10.40 priority - "VERY HIGH"
10.41 priority - "VERY LOW"
10.42 priority - "HIGH"
10.43 priority - "LOW"

category. There are obviously begged questions in this recommendation, such
as what to do about remaining clashes, and how to cope with very large lan-
guages of many semantic categories; it may well be that such problems need to
be solved at a level above the choice of abbreviations. Nevertheless, the sugges-
tion seems useful in many circumstances, and is supported by an experiment
reported by Payne (1985).

In that experiment subjects learned a command language to manipulate
small graphic symbols (a pointer and some blocks) on the display of a micro-
computer. For one group, the task was described as a robot game, the pointer
representing a robot and the blocks being mines. For the second group, instruc-
tions were abstract. This instructional manipulation does not concern us here,
for the command names remained identical, abbreviation conditions were fully
crossed with instructions, and no interactions emerged in the results. The ex-
perimental command language consisted of 18 commands, for moving the

PAYNE AND GREEN

robot around, adjusting position of the robot's claw, and manipulating the
mines. The narnesets were extended versions of the congruent namesets used
by Carroll (1982). The learnability of two separate abbreviation schemes was
compared. The first scheme, Secondary Rule (SR), adopted two-letter trunca-
tion as the primary rule and utilized vowel deletion as a secondary rule in the
situations in which truncations led to clashes (5 of the 18 commands). Choosing
members of the conflict set to be subject to the secondary rule was done ad hoc,
but with the important constraint that the exceptions should be spread across
the semantic categories of the language, to allow a distinction with the second
scheme. The second scheme, Categories with Exception (CE), adopted rules in
the manner advocated by the TAG model. This scheme used two-letter trunca-
tion for commands that moved the robot without directly acting on a mine (12
commands), and vowel deletion for commands that directly manipulated
mines. Even this scheme led to a single clash in the truncation abbreviations, so
one of the 12 movement commands, PUSH, was abbreviated by vowel
deletion.

An important point to note about the two abbreviation schemes is that the
CE scheme, which TAG predicts is better, actually contains more items using
the worst abbreviation algorithm (vowel drop). Further, for no less than 12 of
the 18 commands, abbreviations were the same under the two schemes.

The results of the experiment showed a reliable advantage for the CE
scheme. Subjects learning abbreviations generated by this scheme made fewer
abbreviation errors, consulted the help facility on fewer occasions, and actually
solved the problems more efficiently. This last finding is particularly impor-
tant, because it shows an influence of language structure on deeper aspects of
human-computer interaction.

5. THE COGNITIVE SCIENCE BASIS OF THE TAG
NOTATION

In this section we look at the particular devices utilized by TAG and examine
their relation to various cognitive science concerns. We begin with the thorny
question of task analysis, describing our approach to simple-tasks. We next dis-
cuss the use of semantic features to describe task concepts and to mark rewrite
rules. We raise the issue of notational power, and finally discuss a possible ex-
tension to TAG'S notation.

TAG makes two novel contentions about the representation of tasks. First, it
identifies the special simple-tasks that can be performed without any problem
solving or iteration. Second, it represents simple tasks as concepts, whose se-
mantic interrelationship plays a crucial role in the representation of the
language.

TASK-ACTION GRAMMARS

5.1. Simple-Tasks

We have defined a simple-task as any task that the user can routinely perform
with no demand for a control structure, such as branching or iteration, that re-
quires monitoring of plan progress. We believe that higher-level, more com-
plex, tasks requiring coordination between task sequences are best handled by a
separate planning component. Our motivation for this needs a little unpicking.

First and foremost, we argue that this class of simple-tasks is psychologically
important. Against this, critics may claim that, as simple iteration can be easily
routinized (Card, Moran, & Newell, 1983) and as we distinguish iterative from
noniterative tasks, the class of simple-tasks cannot be a psychologically relevant
category. This argument has some force for task performance, but for task lan-
guage learning it is faulted. A novice user who has been told the command for,
say, deleting words, will induce the iterative method for deleting sentences with
little trouble. This point has been demonstrated empirically by Douglas (1983),
who showed that novices could correctly induce how to perform any task that
relied on a simple combination of tutored tasks. Our focus on the prediction of
learning effort renders such distinctions crucial: Simple-tasks are the set of tasks
for which distinct action sequences have to be learned, or induced, from the
particular structure of the task language.

We should note at this stage that if TAG is eventually to play a role in theories
of performance, as we intend, simply ignoring iteration will not do. A tactic of
"leaving iteration to the planning system" may handle the repetition of entire
task-action sequences, but it would be critically weak in one important respect:
Many tasks have iterable subcomponents. For example, to format disks on the
CPM operating system one must run the Format program, and respond to the
prompt that yes, you really do want to format the disk in Drive B. To format
more than one disk, one could, of course, exit the Format program and loop
through the entire sequence, but an option is supplied to allow users to effi-
ciently repeat the last step only. Our current thoughts on planning with task-
action grammars suggest tackling this problem by allowing control tokens on
subtasks and action specifications, such as can-be-iterated. These develop-
ments will not be discussed in this article, because they do not affect our central
concerns with learning and learnability.

The concern with learnability also dictates the second property of simple-
tasks. The simple-tasks for a given system are determined as much by the de-
vice as by the external task domain. In Moran's (1983) terms, simple-tasks are
"internaln rather than "externaln tasks. To adapt one of Moran's examples, con-
sider a very simple cut-and-paste display editor. Although in the external task
domain the user can distinguish between such entities as sentence and para-
graph, in the internal world of the system this distinction may disappear; both
words and sentences are treated as strings. For example, to delete a sentence

122 PAYNE AND GREEN

one has to mark the beginning and end with the mouse and choose the cut com-
mand. The job of a task-action grammar in this case is to describe the operation
sequence required for the "delete string" command and its relation to other as-
pects of the task language, not to illuminate the nature of the mapping from ex-
ternal task to internal task.

Our position is in close agreement with Moran (1983), in that we see the need
for a psychological mapping from external to internal tasks as well as the acqui-
sition of task language semantics and syntax. This view agrees with our claim
that simple-tasks are a psychological construct.

Simple-tasks, then, are equivalent entities in human-computer interaction to
operators in the classical problem space view of problem solving (Newel1 & Si-
mon, 1972). It is instructive to explore this connection.

One obvious difference between human-computer interaction and the kind
of puzzles studied by problem-solving theorists is the need for a task language to
map the operators onto action sequences. The psychological implications of this
mapping are the central concern of the TAG model. To address this issue we
have found it necessary to depart from the treatment of operators in the puzzle-
solving literature. Puzzle-solving operators are more or less atomic entities,
whose use is determined by preconditions and postconditions: The relationship
of one operator to another is not explicitly represented, except with regard to
roles on solution paths (e.g., the preconditions of one operator may become the
goal state which prompts application of a second). In contrast, TAG treats
simple-task operators as semantic concepts which are organized into mental
categories.

To describe learning effects in problem-solving domains, it is necessary to al-
low operators to be chunked into macro-operators (e.g., Chase & Simon,
1973). We regard simple-tasks to be dynamic in a similar way. For the novice
user, simple-tasks are, roughly, all those tasks for which there is a distinct com-
mand or operation in the task language (and which have been learned). It is this
level of analysis that we have found to be most useful in assessing the learn-
ability of task language designs. For the more advanced user, several simple
tasks may have been composed to form more complex tasks that can neverthe-
less be performed wthout a problem-solving effort. We illustrate this view of
practice in Section 6.

5.2. Tasks as Concepts

We hypothesize that simple-tasks are mentally represented as concepts. The
thrust of this suggestion is that the internal structure of tasks and the intentional
relations among tasks are both of major importance in the user's mental repre-
sentation of task languages.

There exists in the literature a lively debate about the mental representation
of concepts (Smith & Medin, 1981). Are concepts represented by sets of

TASK-ACTION GRAMMARS 123

defining features, as the classical view maintains (Bruner, Goodnow, & Austin,
1956; Katz, 1972), or as schematic prototypes (e.g., Rosch & Mervis, 1975), or
even as networks of exemplars (e.g., Medin & Schaffer, 1978)? So lively is the
debate and so difficult the issues that they have led some commentators to con-
jecture that many important tensions will never be resolved (Armstrong,
Gleitman, & Gleitman, 1983). The safest general view of concepts would ap-
pear to be a permissive one: All of these representational forms exist, but they
are used for different purposes. By taking this stance, one is able to offer a
theory of certain aspects of conceptual performance without being necessarily
committed to a unitary view of concepts. This is exactly the approach taken by
Tversky (1977) in his theory of similarity computations. Following Tversky,
TAG utilizes feature-set representations of task concepts, and of lexical com-
mand names, without insisting that other representations are redundant or that
the debate in the linguistics literature (e.g., Lyons, 1977; Miller &Johnson-
Laird, 1976) is dead.

In view of the importance of featural descriptions of concepts in TAG, it is
well to be clear exactly what is meant by a feature. The term is being used in ex-
act accord with the conventions of semantic theory - anything that can take a
value with respect to a term. (See Rosenberg, 1982, for a rigorous mathemat-
ical treatment .)

As in mainstream semantics, the features and components that are specified
in a TAG description should have psychological validity, in that they are im-
portant for the categorization of the task world. Unfortunately, again just as in
semantics, there is nothing that analysts can do to ensure this ideal, except rely
on their intuition.

5.3. Feature-tagged Rule Sehemas

With regard to their role in the rewrite rules, it may be helpful to view fea-
tures as strongly typed variables, for which the entire range of values is defined
by an n-tuple, usually small. The assignment of values to features in TAG rule
schemas is therefore parallel to the assignment of values to variables in ad-
vanced production system architectures, and indeed sometimes serves similar
purposes, such as the capturing of certain kinds of generalization. However,
the strong typing of features, and the fact that they play an important role not
only in the rule-schemas but also in the categorization of task concepts and of
the action world, does mean that rule-schemas are heavily constrained com-
pared to generalized production rules and often make quite different predic-
tions.

The use of semantic features in syntactic rules is a major break from the de-
vices employed by linguists' theories of syntax, most of which stress the role of
syntactic features. The break reflects the simplicity of the syntactic structures of
task languages relative to natural language. Syntactic features are simply not

124 PAYNE AND GREEN

needed to compactly describe the regularities; but semantic features are needed
to express important characteristics of the mental representation of even such
simple syntax.

A similar device is employed in the "semantic grammars" used by Burton
(1976) to implement natural language dialogues in intelligent computer-
assisted instruction and in "attribute grammars" originated by Knuth (1968) as
a means of specifying the "semantics of context-free languages."

Attribute grammars supply a corresponding semantic rule for every rewrite
rule, specifying the attributes of the left-hand side nonterminal in terms of the
attributes of the right-hand side, or some already meaningful symbol (e.g., a
number). This technique allows the specification of a language's intentional se-
mantics. Our convention of associating values to attributes consistently
throughout a rule is a very limited version of this idea. The limitation repre-
sents an important constraint: that the componential semantics of an interac-
tive command can be derived in a simple additive fashion from the command's
constituents. Further research is required to investigate the validity and impli-
cations of this constraint; it may prove advantageous in the long term to provide
separate semantic rules in the analysis.

5.4. The Competence Hypothesis and Formal Power

In identifying and defining the class of simple-tasks we hope to clarify the im-
portant distinction between the user's knowledge of the task language and the
goal-driven problem solver (unspecified but constrained by the TAG model)
which interprets that knowledge. The separation distinguishes this work from
other attempts at formal modeling in human-computer interaction (Card et al.,
1983; Kieras & Polson, 1985) but dovetails with current thinking in computa-
tional linguistics, where it is dubbed the competence hypothesis: "A reasonable
model of language use will incorporate, as a basic component, the generative
grammar that expresses the speaker-hearer's knowledge of the language . . . "
(Chomsky, 1965, p. 9, quoted in Bresnan & Kaplan, 1983).

The competence hypothesis affords us a crucial advantage by enabling a
model of the user's knowledge with a tightly specified and very limited formal
power, despite its large expressive power. Previous attempts at modeling
human-computer interaction have not been able to offer this degree of re-
straint, instead offering systems of unspecified and unclear, but worryingly
powerful, capabilities.

The benefits of restricting the formal power of computational models may
not be immediately apparent. After all, both production systems and semantic
networks have unlimited computational power, yet are regarded as successful
models by many. We do not want to suggest that unrestricted power necessarily
removes empirical content. Consideration of strong equivalence (as opposed to
mere duplication of inputloutput pairs) disallows such a simple argument (see

TASK-ACTION GRAMMARS

Pylyshyn, 1980, 1984); production systems may accurately predict the time-
complexity of different mental operations. Nevertheless, the formal power of
metalanguages is a particularly important flavor of theoretical parsimony. For
if a metalanguage is to prove useful as a theory, it must be applied to a large
number of different language constructs (in our case, different task languages).
Yet the more powerful the metalanguage, the greater the choice of grammatical
descriptions of any given construction- the degrees-of-freedom problem we
discussed above. As Pylyshyn (1980) put it: "The more constrained a notation
or architecture, the greater the explanatory power of resulting models. It [the
architecture or metalanguage] provides a principled rationale for why the
model [the grammar] takes one particular form, as opposed to other logically
possible ones" (p. 126).

In our work on TAG we have only managed to go part way to this ideal, and
so we have adopted "style rules" such as minimizing the number of simple-task
rule schemas to further constrain possible descriptions. TAG itself is a highly
constrained metalanguage (as we have seen, it only has context-free power); we
believe that it is constrained according to psychologically plausible mecha-
nisms.

5.5. A Possible Extension

We fully expect that the TAG notation will need to be developed and ex-
tended to tackle more diverse issues than we have yet been able to consider.
One such extension from the core context-free grammar is required to deal with
command name abbreviation algorithms. As we have already seen, people
learning abbreviations can capitalize on consistent algorithms used in their
generation (Hirsh-Pasek et al., 1982). The obvious way to represent such algo-
rithms in TAG is to allow functions, such as take-first-three-letters, to operate
on tokens of the grammar. (This approach was adopted to formalize the predic-
tions in Payne's, 1985, experiment on abbreviations, summarized in Section
4.2.)

There are some problems with this extension. First, the complexity of the
functions will not be apparent at all if the functions are merely denoted symboli-
cally. Against this, it may be possible to assign unanalyzed complexity indices
to the functions on the basis of empirical guidelines- certainly this is true of ab-
breviation algorithms. Second, embedded functions can arbitrarily increase
the power of the notation. To maintain a maximally constrained notation we
must define a limited class of permitted functions.

The most straightforward way to define a class of permitted functions is to re-
strict the type of the input and output parameters. Abbreviation rules always
take a word or phrase (a string of characters) and return a different string of
characters. The only other functions that we have yet found use for in TAG
analyses are some suggested by the psychology of pattern perception, such as

126 PAYNE AND GREEN

taking the next item in a defined alphabet. All these functions are syntactic
functions, in the sense that they transform input parameters independently of
meaning. (Of course, all effective procedures are purely syntactic at some level,
by definition, but our proposed constraint goes deeper by specifying that the
transformation performed by the function must remain syntactic when de-
scribed at the level of tasks and actions.)

We do not pretend to yet have a fully specified theory for allowing and disal-
lowing embedded functions in TAG descriptions, but we do feel that embed-
ding could prove a useful technique for integrating TAG with further, as yet
unconsidered aspects of users' mental representation.

6. TAG'S RELATION TO LEARNING AND PERFORMANCE
THEORIES

In this section we endeavor to demonstrate that TAG is compatible with cur-
rent psychological notions of learning and performance.

6.1. Learning

We illustrate TAG'S relation to models of learning with some further exam-
ples, based on a description of EG, the example message system used by Moran
(1981) in his presentation of the Command Language Grammar (CLG). Fig-
ure 11 shows a TAG description of EG. It is immediately noticeable from the
figure how much more compact this description is than the CLG version; but,
of course, CLG expresses some aspects of the interface that TAG ignores on
principle - particularly the expert user's learned methods.

Following Moran (1981) we consider learning in terms of the simple frame-
work of Rumelhart and Norman (1978), who distinguished three modes of
learning: accretion (basically, the addition of new elements of knowledge with-
out affecting existing knowledge), tuning (changes to the form of representation
of knowledge to improve economy, robustness, and performance), and re-
structuring (the modification of existing knowledge in the light of new). All
three kinds of learning could play a part in the dynamics of a user's task-action
grammar.

First, the user may learn how to perform simple-tasks that are unrelated to
those already learned. A new entry will be added to the simple-task dictionary,
and a new rule-schema added to the task-action mappings. Because of the em-
phasis TAG places on the semantic organization of the entire task world and the
use of discriminating features in the task dictionary, we posit that this kind of
bald accretion is rare in task language learning, except when learning big, seri-
ously inconsistent systems such as Unix.

Second, tuning can be represented in TAG by allowing simple-tasks to be
composed into new (macro-operator) simple-tasks, This device may allow some

TASK-ACTION GRAMMARS 127

Figure 11. A task-action grammar of Moran's (1981) EG message system. (The
token message-no is an action variable which must be replaced with an exemplar.)

TASK FEA TURES
Feature
Context
End-state
Condition
DeletelDisplay
Specifier

Possible values
operating-system, EG
operating-system, EG
new-mail, nil
delete, display
number, next

SIMPLE TASKS
Enter (Context = operating-system, End-state = EG, Condition = nil]
Enter-if-new-mail (Context = operating-system, End-state = EG,

Condition = new-mail)
Delete-current-message (Context = EG, End-state = EG,

DeletelDisplay = delete
Display-next-message (Context = EG, End-state = EG,

DeletelDisplay = display, Specifier = next)
Display-specified-message (Context = EG, End-state = EG,

DeletelDisplay = display, Specifier = number)
Quit (Context = EG, End-state = operating-system)

RULE SCHEMAS
1 1 . 1 Task [Context = operating-system, Condition] -

"EG" + extra[Condition] + "RETURN"
11.2 extra [Condition = nil] - nil
11.3 extra [Condition = new-mail] - "IN"
11.4 Task [Context = EG, DeletelDisplay = delete] - " D
11.5 Task [Context = EG, DeletelDisplay = display, Specifier = number] -

"M" + "message-no" + "RETURN"
11.6 Task[Context = EG, Delete-Display = display, Specifier = next] - "N"
11.7 Task [Context = EG, End-state = operating-system] - "Q"

aspects of practice to be captured by TAG, but any analysis of this possibility is
beyond the scope of this article. We can exemplify the idea of simple-task com-
position in the EG system. Imagine that a frequent task was to enter EG and
read a single message before exiting again (to use a different software system
perhaps). The required sequence of actions requires no control structure, so it
can be represented in a TAG rewrite rule, as shown in Figure 12. Composition
of this kind bears a close relation to the production system learning mechanisms
of Anderson (1982, 1983).

Finally, new simple-tasks that are related to those already learned may be en-
countered, calling for restructuring of the task-action grammar. If we assume
that a user has already learned the EG system described in Figure 11, what -

would happen if the system were extended by a command to display a message
from a specified sender? The new simple-task is clearly related to show-

PAYNE AND GREEN

Figure 12. Tuning the task-action grammar for EG to learn the macro-operator of
entering EG, reading a particular message, and exiting to the operating system.

ADDITIONAL SIMPLE TASKS
Enter-read-exit (Context = operating-system,

End-state = operating-system,
Condition = nil,
DeletelDisplay = display,
Specifier = number)

ADDITIONAL RULE SCHEMAS
1 2 . 1 Task [F(Enter-read exit)] -

Task [Context, Condition]
+ Task [DeletelDisplay, Specifier]
+ Task [End-state]

message-number; it shares most components, but it differs in terms of its
specifier. The required additionslalterations to the grammar are shown in Fig-
ure 13.

Even this simple example of restructuring highlights some interesting issues.
It seems clear that very little active generalization would be required, and one
wonders whether, in some respects, Rule 13.1 (Figure 13) was there all along.
One might conjecture a learning mechanism in which every task-action
mapping was represented as a maximally general hypothesis, in keeping with
the ideas on active learning of Carroll and Mack (1985) and Hayes-Roth
(1983). The alternative is a system that learns single task-action mappings in a
rather rigid way, and that requires an effort of generalization to represent a sec-
ond mapping, with the third and subsequent related mappings being easier to
learn. This mechanism is closely related to suggestions for learning in a produc-
tion system framework (e.g., Anderson, 1983).

6.2. Performance

Although TAG is a competence theory, it necessarily constrains perform-
ance. Indeed, in contrast to most generative grammars, TAG can be incorpo-
rated into a performance theory straightforwardly because it defines a mapping
from tasks to actions (rather than merely generating all possible action se-
quences).

Task-action grammars are task based; the rules are driven by state transfor-
mations that the user knows how to effect. Performance, on the other hand, is
goal based; it is driven by end-states which the user wishes to achieve. To per-
form using task-action grammar knowledge, users must assess the current state
with respect to their goal state, and devise a sequence of simple-tasks that will
transform one into the other. In other words, as stated before, simple-tasks play
a similar role to operators and macro-operators in classical problem-solving ar-

TASK-ACTION GRAMMARS 129

Figure 13. Restructuring the task-action grammar for EG to learn a new command
for displaying a message from a particular author. Note that Rule 11.5 is no longer
needed. (The tokens message-no and author-name are action variables which must
be replaced with exemplars.

- -

ADDITIONAL FEA TURES
Feature Possible values
Specifier number, next, author
ADDITIONAL SIMPLE TASKS
Display-message-by-author {Context = EG, End-state = EG,

DeletelDisplay = display, Specifier = author)
ADDITIONAL RULE SCHEMAS
13.1 Task [DeletelDisplay = display, Specifier -

"M" + id [Specifier] + "RETURN"
13.2 id [Specifier = number] - "message-no."
13.3 id [Specifier = author] - "author-name"

chitectures. Two additional stages are required: (a) Users must expand all the
simple-tasks into action specifications, using the task-action grammar; and (b)
they must produce physical actions from the action specifications.

Performance can therefore be represented by the schematic flow diagram in
Figure 14.

As shown in the figure, goals are combined with knowledge of the current
state to provide tasks (and, sometimes, to pass parameters to the.grammar; see
the discussion of action variables in Section 2.4); plans are generated for the
performance of tasks, typically consisting of subgoals, which in turn must be
transformed into tasks. At the bottom level, a plan is some structure of simple-
tasks (possibly a single simple-task); every simple-task can be performed by
"running" the task-action grammar, and interpreting the resulting action speci-
fication. Of course, this control cycle is subject to the usual iterations and inter-
actions and must not be thought of as operating in strictly serial stages. Our re-
stricted definition of simple-tasks allows us to assume that any online moni-
toring of performance is done outside the task-action grammar, by the planner
or by the action interpreter.

This picture is not meant to grind any particular theoretical axe; it is in-
tended to present a noncontroversial view of goal-based performance. It illu-
strates the way in which "weak" problem-solving theories (e.g., Laird & Newell,
1983; Newel1 & Simon, 1972) may be extended to deal with the medium of a
task language. It also highlights a major distinction between our endeavor and
the models of Card et al. (1983) and Kieras and Polson (1985); namely, that
their process models treat all aspects of the user's performance from high-level
planning down to low-level interaction, whereas task-action grammars simply
describe knowledge of task languages in a way that can be utilized by some
unspecified planning system.

130 PAYNE AND GREEN

Figure 14. A simple schematic of goal-oriented performance with a computer
system.

Top-level goal r

7. CONCLUSIONS

+
Twks

We do not view TAG as a fixed and immutable notation. Instead, we present
TAG as an advance in the formal definition of human-computer interfaces.
Many inadequacies, however, will only be addressed by extensions of the cur-
rent theory.

Plrns t

TASK-ACTION GRAMMARS 131

TAG'S strength is that it allows reasonably compact definitions of task lan-
guages that are sensitive to structural properties perceived by users. This
strength enables simple metrics over grammars to predict relative learnability
of different interface designs. These metrics are indices of complexity based on
configural properties of the target language. Further aspects of learnability and
usability may be dependent on the internal structure of single rules. Clearly,
the current specification of TAG does not allow any assessment of tradeoffs be-
tween configural properties and microstructure issues. The issues themselves
can be addressed, but only by developing an extra layer of interpretation to be
applied by the analyst to the rule representations of the model. TAG has been
designed to make the complexity of the entire language explicit; it is hypothe-
sized to be related directly to the number of simple-task rule schemas. TAG
therefore offers an explanation of configural effects on complexity. To offer a
similar explanation of complexity effects due to individual rule schemas, it
would be necessary to develop detailed low-level theories about how the rules
are mentally processed, for example how a right-hand side is activated and how
a left-hand side is accessed. No effort has been directed to this enterprise for two
reasons: (a) We believe that configural aspects of languages typically outweigh
microstructures of individual rules and (b) we are eager to keep the TAG nota-
tion compact so that it may provide a usable tool for designers.

We feel that the simplicity and compactness of TAG distinguishes our at-
tempt to provide formal tools for the assessment of psychological complexity
from the related enterprises of Card et al. (1983), Moran (1981), and Kieras
and Polson (1985). The simplicity of TAG has been bought at a price; in partic-
ular, we have been content to make predictions about relative complexity of de-
signs, rather than providing quantitative measures. Because of this focus, TAG
is at its most useful when comparing task languages that are similar in most re-
spects. However, a second utility of TAG is for analyzing alternative organiza-
tions of the same language. We exemplified this approach with our MacDraw
analysis in Section 2.4.

Our plans for extending TAG are to address some of the many aspects of user
interfaces, and of the user's mental representation, that have not yet been con-
sidered. A priority is to integrate TAG with a planning system, as suggested in
Section 6 . A second important concern is with users' conceptions of the external
task world and their mental model of the machine. We believe that by advanc-
ing a simple metalanguage that is low in formal power, yet gains much in ex-
pressive power from a treatment of the semantics of tasks, we have provided a
good platform for such developments.

Acknowledgments. The authors are especially grateful to Tom Moran for detailed
critical comments on an earlier draft. Helpful comments have also been received, at
various stages of the work, from Don Norman, Phil Johnson-Laird, and Tim O'Shea.

PAYNE AND GREEN

REFERENCES

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard Univer-

sity Press.
Armstrong, S. L., Gleitman, L.R., & Gleitman, H. (1983). What some concepts might

not be. Cognition, 13, 263-308.
Barnard, P. J., Hammond, N. V., Morton, J . , Long, J . , &Clark, I. A. (1981). Consist-

ency and-compatibility in human-computer dialogue. International Journal of Man-
Machine Studies, 15, 87-1 34.

Black, J . B., & Moran, T . P. (1982). Learning and remembering command names. Pro-
ceedings of the CHI '82 Conference on Human Factors in Computer Systems, 8- 11. New York:
ACM.

Bresnan, J., & Kaplan, R. M. (1983). Introduction: Grammars as mental representa-
tions of languages. In J. Bresnan (Ed.), The mental representation ofgrammatical relations
(pp. xvii-hi). Cambridge, MA: MIT Press.

Bruner, J. S., Goodnow, J., &Austin, G. (1956). A study of thinking. New York: Wiley.
Burton, R. R. (1976). Semantic grammar: An engineering technique for constructing natural lan-

guage understanding systems (BBN Report No. 3453). Cambridge, MA: Bolt Beranek &
Newman.

Card, S. K., Moran, T. P., & Newell, A. (1983). Thepsychology of human-computer interac-
tion. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Carroll, J. M. (1982). Learning, using and designing command paradigms. Human
Learning, 1, 3 1-62,

Carroll, J. M. , & Mack, R. L. (1985). Metaphor, computing systems and active learn-
ing. International Journal of Man-Machine Studies, 22, 39-57.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4,
55-81,

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
Douglas, S. (1983). Learning to text edit: Semantics in procedural skill acquisition. Unpublished

doctoral dissertation, Stanford University, Palo Alto, CA.
Ehrenreich, S. L., & Porcu, T . (1982). Abbreviations for automated systems: Teaching

operators the rules. In A. Badre & B. Shneiderman (Eds.), Directions in human-computer
interaction (pp. 1 11-135). Norwood, NJ: Ablex.

Green, T . R. G., & Payne, S. J. (1984). Organisation and learnability in computer lan-
guages. International Journal of Man-Machine Studies, 21, 7- 18.

Hayes-Roth, F . (1983). Using proofs and refutations to learn from experience. In R. S.
Michaelski, J . G. Carbonell, & T . M. Mitchell (Eds.), Machinelearning(pp. 221-240).
Palo Alto, CA: Tioga Press.

Hirsh-Pasek, K., Nudelman, S., & Schneider, M. (1982). An experimental evaluation
of abbreviation schemes in limited lexicons. Behaviour and Information Technology, I ,
359-369.

Katz, J. J. (1972). Semantic theory. New York: Harper & Row.
Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user com-

plexity. International Journal of Man-Machine Studies, 22, 365-394.
Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Systems Theory,

2, 127-145.

Laird, J., & Newell, A. (1983). A universal weak method (Tech. Rep. CMU-CS-83-141) .
Pittsburgh: Carnegie-Mellon University, Computer Science Department.

TASK-ACTION GRAMMARS

Lee, J. (1972). Computer semantics. New York: Van Nostrand Reinholt.
Lyons, J. (1977). S m n t i c s (Vols. I and 2). Cambridge: Cambridge University Press.

Medin, D. L., & Schaffer, M. M. (1978). A context theory of classification learning.
Psychological Review, 85, 207-238.

Miller, G. A,, & Johnson-Laird, P. N. (1976). Language and Perception. Cambridge:
Cambridge University Press.

Moran, T . P. (1981). The command language grammar: A representation for the user
interface of interactive computer systems. International Journal ofMan-Machine Studies,
15, 3-50.

Moran, T . P. (1983). External-internal task-mapping analysis. Proceedings ofthe C H I '83
Conjerence on Human Factors in Computer Systems, 45-49. New York: ACM.

Newell, A,, & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Pagan, F. G. (1 98 1). Formal specification of programming languuges: A panoramic primer.
Englewood Cliffs, NJ: Prentice-Hall.

Payne, S. J. (1985). Task-action grammars: The mental representation of task languages in
human-computer interaction. Unpublished doctoral dissertation, University of Sheffield.

Payne, S. J., & Green, T . R. G. (1983). The user's perception of the interaction lan-
guage: A two-level model. Proceedings of the C H I '83 Conjerence on Human Factors in Com-
puter Systems, 202-206. New York: ACM.

Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations ofcogni-
tive science. The Behavioural and Brain Sciences, 3, 1 1 1 - 169.

Pylyshyn, Z. W. (1984). Computation andcognition: Issues in thefoundationsojcognitivescience.
Cambridge, MA: Bradford Books.

Reisner, P. (1977). Use of psychological experimentation as an aid to development of a
query language. I E E E Transactions on Software Engineering, SE-3, 21 8-229.

Reisner, P. (1981). Formal grammar and design of an interactive system. I E E E Transac-
tions on Software Engineering, SE-5, 229-240.

Robertson, S. P., & Black, J. B. (1983). Planning units in text editing behaviour. Pro-
ceedings of the C H I '83 Conference on Human Factors in Computer Systems, 2 17-22 1 . New
York: ACM.

Rosch, E., & Mervis, C. B. (1975). Family resemblance studies in the internal structure
of categories. Cognitive Psychology, 7, 573-605.

Rosenberg, J. K. (1982). Evaluating the suggestiveness of command names. Behaviour
and Information Technology, 1 , 1 1 8-1 28.

Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring:
Three modes of learning. In J. W. Cotton & R. Klatzky (Eds.), Semantic factors in cog-
nition (pp.37-53). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Scapin, D. L. (1982). Generation effect, structuring and computer commands. Behaviour
and Information Technology, 1 , 401 -41 0.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard
University Press.

Tversky, A. (1977). Features of similarity. Psychological Review, 69, 344-354.

HCI Editorial Record. First manuscript received January 6, 1986. Revision
received July 14, 1986. Accepted by Tim O'Shea and Thomas Moran. -
Editor

