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ABSTRACT 

A formal model of the mental representation of task languages is presented. 
The model is a metalanguage for defining task-action grammars (TAG): genera- 
tive grammars that rewrite simple tasks into action specifications. Important 
features of the model are (a) Identification of the "simple-tasksn that users can 
perform routinely and that require no control structure; (b) Representation of 
simple-tasks by collections of semantic components reflecting a categorization 
of the task world; (c) Marking of tokens in rewrite rules with the semantic fea- 
tures of the task world to supply selection restrictions on the rewriting of simple- 
tasks into action specifications. This device allows the representation of family 
resemblances between individual task-action mappings. Simple complexity 
metrics over task-action grammars make predictions about the relative 
learnability of different task language designs. Some empirical support for 
these predictions is derived from the existing empirical literature on command 
language learning, and from two unreported experiments. Task-action gram- 
mars also provide designers with an analytic tool for exposing the configural 
properties of task languages. 
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1. INTRODUCTION 

The definitions of programming languages have frequently been formalized, 
often in Backus-Naur form (BNF), a notation which describes generative 
context-free phrase structure grammars. The virtue of BNF was originally seen 
as its unambiguity: Whereas programming languages had previously been de- 
scribed loosely in English, BNF allowed the syntax (though not the semantics) 
to be expressed precisely. A second virtue was soon found to be that BNF de- 
scriptions could be executed by program, guaranteeing a correspondence be- 
tween the documentation and the compiler. Yet a third virtue emerged: The 
descriptions of different languages could be compared through their expression 
in a uniform, limited metalanguage. 

Reisner (1977) introduced the term action language to describe the command 
system of interactive devices, and attempted to transport the virtues of BNF 
into this realm. She also hoped to achieve a fourth virtue; namely, to predict the 
psychological complexity of the language: 
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A natural index of the complexity (of a statement) might be the number of 
rewrite rules . . . used to describe it . . . By this we mean to suggest that a 
BNF description of a language, usually intended to describe a set of valid 
statements, may have a psychological validity. (p. 227) 

Reisner went on to propose an experimental search for a "single, consistent, 
psychological BNF." To  some degree her claims were vindicated; her analysis 
of two graphics systems (Reisner, 1981) signposted areas of complexity in one 
of them, which were confirmed by empirical observation. 

In this article we, like Reisner, offer a formalization of interface languages. 
Our formalism is intended to model the mental representation of the interface 
language and so to allow a formal specification of the language as perceived by the 
user. Of course, this goal is ambitious; we will be satisfied if our formal specifi- 
cations reflect some important aspects of the perceived structure. This formal- 
ism must therefore readily express those characteristics that are salient to the 
user, and will thus address many of the characteristics that determine usability, 
particularly configural properties. 

We aim to capture the notion of regularity or consistency. Consistency is diffi- 
cult to define and therefore difficult to measure, but it is informally recognized 
to be a major determinant of learnability. The advantages of consistency lie in 
facilitating generalizations by the user, who having learned some parts of the 
system can then infer others. 

A language can be consistent at several different levels, but at each level the 
key properties that determine consistency are configural in that they relate to the 
overall structure of the language, rather than to the nature of individual 
task-action mappings. 

T o  illustrate the notion of consistency, and informally describe the space of 
phenomena we intend to address, we present a series of examples. Although we 
have labeled these examples according to the level of linguistic description at 
which the interesting properties seem to emerge, we do not pretend to offer a 
taxonomy of consistency. We recognize that the boundaries between syntax 
and semantics are fuzzy and theory-dependent, but we have chosen examples 
which seem comfortably classifiable. A really useful taxonomy of consistency 
must wait to be stated in terms of a psychological theory, rather than linguistic 
abstractions. 

Syntactic Consistency. Some forms of consistency are syntactic in nature. 
BNF can only capture a weak version, namely, the consistent use of one expres- 
sion as a common element in other expressions. The term arithmetic expression, 
for instance, might well be an element common to rules for assignment state- 
ments, array bounds, Boolean expressions, and for-statements. In command 
languages it is sometimes the case that every command has an identical form - 
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perhaps a single letter followed by carriage return. This is a second example of 
common structure, a syntactic consistency that BNF grammars can display. 

But there are often family resemblances between syntax rules that are simply not 
expressible in BNF. An example of family resemblance is shown in Figure 1. 
The three separate types of sequence exhibit a clear similarity (to the human 
eye), yet require completely separate BNF rewritings. This kind of syntactic 
consistency can only be captured by notations that have more expressive 
power. 

Lexical Consistency. In natural languages it is usually assumed that 
lexemes are tied to their meaning by arbitrary connections. For computer lan- 
guages, in which the lexemes are often English words (or icons, e.g., arrows or 
waste bins), the relationship is clearly nonarbitrary. The relationship between 
the external meanings of words and their use is command languages in com- 
plex, but one configural aspect which has been shown to benefit learners is 
congruence- the matching of lexical (external to the command language) and se- 
mantic (internal) relations (Carroll, 1982). Congruence is discussed in detail 
below. 

Semantic-Syntactic Alignment. In the ideally consistent language, seman- 
tic relations will not only be mirrored in the lexical or symbolic relations, but 
also in the structure of commands. If a "copy file" command requires the ex- 
isting file to be specified before the new file, then a "copy disk" command should 
require the source drive to be specified before the target drive: The task seman- 
tics should map onto the language syntax in a consistent way. This point is de- 
veloped at greater length in Section 4.2. 

The inverse is also true: A single linguistic element will ideally perform the 
same semantic function in any context. Green and Payne (1984) noticed that in 
a commercial word-processing system, the control and escape keys were used to 
organize the cursor movement semantics, but according to two conflicting 
organizingprinciPles. For some pairs of commands, "controln and "escape" would 
switch between small and large units; in other cases, "controln and "escape" de- 
termined the direction of movement of the cursor. A language-learning experi- 
ment confirmed that this conflict troubled learners, to the extent that a lan- 
guage with no meaningful mnemonics, but a single organizing principle, 
proved reliably easier to learn. A small subset of both of these experimental 
command languages is shown in Figure 2. (A third language from the experi- 
ment, the most easily learned of all, is described later, in Figure 4.) 

Semantic Consistency. Our final examples of consistency are properties of 
the extensional semantics of a language. Again, the key issue is that one part of 
the language prompts expectations about the remainder. For example, if a 
word processor allows search for a character string both forward and backward 



TASK-ACTION GRAMMARS 9 7 

Figure 1. Family resemblances between syntactic rules. The three rules express a 
s&l fragment of a programming language in BNF. The rules have an obv&us re- 
semblance, but that is not directly represented in the grammar, which has no gener- 
alized notion of a sequence. 

<declaration sequence > ::- <declaration > 
I <declaration sequence> + <declaration > 

<statement sequence> ::- <statement > 
1 <statement sequence> + <statement> 

<letter sequence> ::- <letter> 
I <letter sequence> + <letter > 

Figure 2. Example commands from two experimental text-editing languages 
(Green & Payne, 1984). Language 1 is a subset of a commercially available editor, 
but has conflicting organizing principles. Language 2 has no mnemonic coding, but 
is organized according to a single principle. 

Commands Language 1 Language 2 

move cursor forward one character ctrl-F ctrl-L 
move cursor backward one character ctrl-B esc-L 
move cursor forward one word esc-F ctrl-E 
move cursor backward one word esc-B esc-E 
view next screen ctrl-V ctrl-C 
view previous screen esc-V esc-C 

through a file, then we expect it to allow a similar flexibility for a search-and- 
replace operation. Similarly, in the programming language Pascal, we are dis- 
appointed that one can read in values for real identifiers, but not for Boolean 
identifiers. We term the consistency principle that is being broken here complete- 
ness. Some richer examples of semantic consistency will be discussed below. 

Our central goal in this article is to present a notation for the description of 
languages which has something to say about all these various aspects of consist- 
ency. We attempt to capture generalizations in a psychologically valid manner, 
and so identify consistency with observable properties of notational descrip- 
tions. 

Our first efforts toward this goal modeled syntactic generalizations, ad- 
dressing the family resemblances illustrated here (Payne & Green, 1983). We 
proposed a context-free variant of van Wijngaarden's two-level grammar (for a 
good description, see Pagan, 1981), which we called set-grammar, because the re- 
write rules operated on sets of grammatical objects rather than individual 
nonterminal or terminal symbols (Payne & Green, 1983). Figure 3 shows the 
set-grammar representation of the syntactic family resemblances illustrated in 
Figure 1 .  
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Figure 3. Set-grammar treatment of family resemblance. The fragment of a pro- 
gramminglanguage shown in Figure 1 is represented here in the set-grammar nota- 
tion (Payne & Green, 1983). The family resemblances are captured by collapsing 
three rules into one higher-order rule. 

SET 
SEQ-ITEMS :: (declaration, statement, letter] 

RULE 
SEQ-ITEM sequence - SEQ-ITEM / SEQ-ITEM sequence + SEQ-ITEM 

SELECTION RULE 
Uniform replacement - the same element is chosen from the set of SEQ-ITEM 

throughout the rule. 

Consistent languages, we argued, could be expressed by a small number of 
set-grammar rules; whereas inconsistent languages, in which some syntax con- 
structions had little in common with other constructions, could not be reduced 
to a small number of set-grammar rules. The set-grammar achieved some suc- 
cess as a model of syntactic perception, predicting several laboratory results on 
the learnability of command languages and miniature artificial languages 
(Payne, 1985; Payne & Green, 1983). Payne (1985) gave some support to the 
specific type of family resemblance that was expressible in set-grammars by 
showing that of two miniature artificial languages, the easier to learn was the 
one predicted by set-grammar, because fewer set-grammar rules were needed 
to express its grammar. This result was promising because the languages were 
carefully devised so that their BNF representations predicted the opposite re- 
sult. However, the utility of set-grammar as a cognitive model and for the anal- 
ysis of usability suffered from a severe shortcoming: It possessed no mecha- 
nisms for relating the syntax of a language to its semantics. Many of the most 
important determinants of consistency rely on semantic properties. 

The notation presented here supersedes set-grammar and extends its explan- 
atory power beyond the syntactic realm into the semantics of tasks. The nota- 
tion is a grammar describing a mapping from the users' tasks onto sequences of 
actions. Because the starting symbols of our grammars are tasks and the ter- 
minal symbols are action specifications, our notation is called task-action gram- 
mar (TAG). We use the term task language to describe the intended domain of 
application of task-action grammars: A task language is any task-action inter- 
face between a person and a machine, including lexical command languages, 
direct manipulation interfaces, and knobs-and-dials control panels. 

Like other grammars, TAG models competence rather than performance, 
but we offer sketches of related learning and performance theories in this arti- 
cle. Many of our notational devices, such as the use of a feature grammar, the 
representation of concepts as sets of semantic components, and the notion of a 
simple or atomic task, have a basis in cognitive psychology and psycholin- 
guistics. This basis will also be discussed. 
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2. THE AIMS AND NOTATIONAL STRUCTURE OF TAG 

In this section we first illustrate the general principles of our notation, which 
are those of a feature grammar. This feature grammar describes the mapping 
from the task level to the action level. The central aim of TAG is to formalize 
that mapping in such a way that simple metrics over the grammar, such as the 
number of rules, will predict aspects of the psychological complexity of the 
mapping. These aspects of complexity include time spent learning, intrusive 
errors during learning, and the ability to generate a forgotten or unknown part 
of the language from the remainder. (We discuss metrics and predictions in 
Section 4.) A secondary aim of TAG is to help the analyst appreciate the struc- 
ture of a task language. 

A task-action grammar is a formal device. Its input is a description of a task 
as a set of semantic components. (A semantic component is a particular value 
on a featural dimension; if Direction is a feature, then Direction = right is a par- 
ticular value which might be a component of a task definition, such as move- 
one-character-to-the-right .) Its operation is that of a generative grammar, and 
its output is a list of the actions required to perform the input task. Thus task- 
action grammars describe not just the syntax of operations used to control the 
device, but also the relationship between the actions and commands and the 
user's view of particular tasks. 

Obviously, the users of interactive systems have the ability to perceive cer- 
tain regularities in task-action mappings, but not others. When regularities ex- 
ist and can be perceived, they can be used to simplify the structure of the 
mapping, replacing a number of unrelated mapping rules by a single, more 
general rule. Our choice of formalization makes an implicit theoretical state- 
ment about the limits of that ability. For instance, using a standard context-free 
phrase structure grammar as a representation of the mapping would postulate 
that users could perceive a hierarchical structure of rules and subrules, but that 
they were blind to family resemblances between rules. 

In describing the general principles and the particular notational conven- 
tions, we will show how TAG representations capture the following important 
attributes of particular mappings (including aspects of consistency discussed in 
Section 1): 

family resemblances, or the overall "sentence structuren of commands; 
the degree to which a task language relies on well-learned "world 
knowledge," in particular on familiar names, such as up for the concept 

UPWARD DIRECTION; 

the "completeness" of a mapping, as opposed to arbitrary absence of ex- 
pected components; 
the notion of "congruence," or the representation of semantic relations 
by equivalent lexical relations (notably, semantic opposition by lexical 
antonymy); 



100 PAYNE AND GREEN 

the organization of tasks and subtasks, and the alignment of semantic 
and syntactic aspects of the task language. 

2.1. The TAG Framework - Simple-Task Dictionary and Rule- 
Schema Expansion 

Figure 4 presents a TAG description of a fragment of an experimental text- 
editing language used by Green and Payne (1984) and introduced already in 
Section 1. The description consists of a Simpk-task dictionary, in which simple- 
tasks are identified and defined by their semantic components, and a feature 
grammar in which the dimensions of those components serve as features. (In 
more complex examples, it aids exposition to add a third component, an ex- 
plicit list of possible features and their values. This redundant device has been 
omitted here.) 

The TAG description models the mental representation of a user who has 
learned the four commands. The simple-task dictionary represents all the tasks 
the user can routinely perform, and defines each as a set of semantic compo- 
nents. These components are to be used in guiding the rule-schemas into 
generating the required actions for each possible task. 

The rule-schemas generate action specifications from simple-tasks in a simi- 
lar manner to standard phrase-structure grammars, but they have the addi- 
tional notational power of encapsulating several standard phrase-structure 
rules in a single rule-schema. In this example, the general task-action rule- 
schema (Rule 4.1) is expanded by assigning the values to all the features in the 
square brackets, with the constraint that a feature must be assigned with the 
same value wherever it appears in the rule. A possible result of these assign- 
ments is the single-level rewrite rule: 

Task [Direction = forward, Unit = word] - 
symbol [Direction = forward] + letter [Unit = word] 

All the tokens now refer to unique grammatical objects (they must; this is a 
constraint on the features in the square brackets). The simple-task object can be 
found by looking at the simple-task dictionary; the symbol and letter objects are 
expanded by further rewrite rules (in this case, Rules 4.2 and 4.4), using the 
standard production-rule grammar mechanism. These operations yield, in the 
example: 

move-cursor-one-word-forward - "ctrl" + "W" 

which is one of the represented commands. 
This simple example illustrates most of the important mechanisms of a TAG 

grammar. The most novel mechanism is the consistent assignment of values to 
features, combined with the looking up of simple-task descriptors in a diction- 
ary. The strength of the grammar which we have used as this first example is 
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Figure 4. TAG'S treatment of cursor control in an experimental text editor. 

List of Commands 

move cursor one character forward ctrl-C 
move cursor one character backward meta-C 
move cursor one word forward ctrl-W 
move cursor one word backward meta-W 

TAG Dejinition 

DZCTZONAR Y OF SIMPLE- TASKS 
move-cursor-one-character-forward (Direction = forward, Unit = char] 
move-cursor-one-character-backward (Direction = backward, Unit = char) 
move-cursor-one-word-forward [Direction = forward, Unit = word] 
move-cursor-one-word-backward (Direction = backward, Unit = word] 

RULE SCHEMAS 
4.1 Task [Direction, Unit] - symbol [Direction] + letter [Unit] 
4.2 symbol [Direction = forward] - "ctrl" 
4.3 symbol [Direction = backward] - "meta" 
4.4 letter [Unit = word] - "W" 
4.5 letter [Unit = char] - "C" 

that it allows the basic form of all the task-action mappings to be represented in 
a single higher-level schema (Rule 4.1). It captures the observed consistency in 
the organization of the language due to an organizing principle in the 
semantic-syntactic alignment. 

It is intuitively clear that the design of this language could be improved fur- 
ther by the use of mnemonic codes. Just such an improvement was validated in 
the experiment of Green and Payne (1984). The TAG description of the advan- 
tage is illustrated in the following section. 

2.2. Sentence Structure, Completeness, and World Knowledge 

An important type of consistency in a task language occurs when every com- 
mand has the same sentence structure. Frequently this structure is a single 
keypress, which is trivial. A less trivial sentence structure is the postfix-style 
language structure, as used, for instance, on the Apple Macintosh. Another 
nontrivial structure is the list of operations, followed by a terminator, familiar 
to users of TECO and its descendants. 

We start by considering an example of a system in khich every simple-task is 
performed by entering a single command name, followed by a carriage return. 
In this particular system, there are only three commands which are used for 
moving some object around a screen. The entire task world, therefore, com- 
prises three simple-tasks, which we can denote as follows: 
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move-up (Direction = up) 
move-down [Direction = down) 
move-right (Direction = right) 

The featural description of each simple-task concept arises from a straight- 
forward categoniation of the task world. A user who has learned the entire lan- 
guage will represent the dictionary of simple-tasks in this way, reflecting the 
natural categorization. The features are chosen to describe the important dis- 
criminations in the set of simple-tasks; if the current language were extended to 
include commands that have no movement function, then the direction compo- 
nents of our three tasks would need to be supplemented with a new feature, al- 
lowing their specialized movement function to be represented. 

If the commands chosen for the three tasks were, for example, N, V, and G, 
then the user may represent the task-action mappings as follows. 

0.1 Task [Direction] - name [Direction] + "RETURN" 
0.2 name [Direction = up] - "N" 
0.3 name [Direction = down] - "V" 
0.4 name [Direction = right] - "G" 

We use this trivially simple grammar to make three points. First, we note 
that the mapping is incomplete. Because TAG descriptions include a dictionary 
of simple-tasks and their associated semantic components, it is easy to spot 
combinations of features that are semantically acceptable but that have no asso- 
ciated simple-task. In this example, there is no simple-task with the component 
(Direction = left]. Of course, it is hardly necessary to use a task-action gram- 
mar to reveal this particular incompleteness, but, in general, incompleteness 
can be much harder to spot. Highlighting completeness is a small example of 
TAG'S potential as an analytic device for appreciating the structure of the task 
language, separate from its main role as a predictor of relative learnability. 

Next, the TAG description captures a strong intuition about sentence struc- 
ture. If a fourth command were to be added, for moving to the left, we would be 
perplexed if it were not accomplished by typing a single letter followed by RE- 
TURN. According to the task-action grammar, our difficulty would spring 
from the fact that a new top-level schema would need to be formed: a special one 
for the move left command. (Actually, we have not yet represented the fact that 
every command name in this system is a single letter. TAG can express this, but 
it depends on a notational device which we have yet to describe.) 

Finally, and the main point of this example, we can contrast Rules 0.1 
through 0.4 with Rules 0.5 through 0.9 which describe a language in which the 
arbitrary letters have been replaced by UP, DOWN, and RIGHT. 

0.5 Task [Direction] - name [Direction] + "RETURN" 
0.6 name [Direction] - known-item [Kind = word, Direction] 
0.7 *name [Direction = up] - " U P  
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0.8 *name [Direction = down] - "DOWN" 
0.9 'name [Direction = right] - "RIGHT" 

Since English-speaking users will know that UP is the name for the concept, 
we wish to find a way to differentiate between arbitrary and well-learned 
names. We do so by constructing a TAG that contains only two effective rules, 
0.5 and 0.6, of which Rule 0.6 says, "The subrule for determining the name for 
a given movement is: Use the word that shares the direction feature of the in- 
tended movement." We assume that lexical access to well-learned names is es- 
sentially effortless as long as the semantic components of the task genuinely do 
bring to mind the required words, the size of the vocabulary is not important. 
Rules 0.7 through 0.9 are therefore marked with asterisks to indicate that they 
should not be included in any simple metrics over the grammar, such as 
counting the number of rules. We choose to include them in TAG descriptions 
because all the terminal symbols of the language are then visible, and because 
assumptions about world knowledge are then open to inspection. (We can de- 
termine, for instance, what aspects of a language might give trouble if users 
come from a different population from the one envisaged by the designer.) 

Rules like 0.6 are called world knowledge rules. Naturally, they need not be 
exclusively lexical; their right-hand sides can refer to any entities that exist, in- 
dependently of the task language, in the user's semantic memory. Spatial fea- 
tures of the keyboard or screen are powerful examples. World knowledge rules 
serve two purposes for the user: They increase the robustness of the grammar in 
the head, so that a forgotten rule can be regenerated from a world knowledge 
schema; and they ease the learning load, allowing unlearned rules to be hypoth- 
esized from existing ones. 

A notational device similar to world knowledge rules is used to denote action 
variables-action specifications that require a feature value to be determined 
by the user's current goal. (We envisage the value being passed to the grammar 
as a parameter by the planning system; see Section 6.2.) Action variables are 
quite common in command languages. For example, most text editors allow 
the user to search through a file for any string of characters. The search com- 
mand will have a set syntax, but the particular string to be searched for is an ac- 
tion variable, whose value is determined by the current goal. Often it is conven- 
ient to simply denote action variables with standard quoted terminal symbols, 
specifying the action weakly by a general label which needs to be replaced by an 
exemplar (as shown in Figure 10). Sometimes, however, if the organization of 
the task language is to be fully captured, it is necessary to specify features that 
take values from the goal. Using this convention, a TAG rule for a search com- 
mand might be: 

0.10 Task [Purpose = search] - 
"ctrl-S" + action [Kind = key, String = value-from-goal] 
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2.3. Congruence: Matching Semantic and Lexical Relationships 

An important paper by Carroll (1982) provided empirical evidence in sup- 
port of a naming principle he called congruence. The idea can be illustrated by a 
small subset of two of his experimental languages, as shown in Figure 5. 

Carroll discovered that subjects learning a pencil-and-paper simulation 
game found the names of Language A easier to learn than those of Language B. 
He explained this with reference to the congruence of the name set and the task 
world; basically, opposite commands are invoked by opposite words. This is a 
good general principle, and intuitively likely to be a robust influence on usabil- 
ity, beyond individual differences and context effects. 

It is not difficult to devise a notational device to express congruence. On the 
one hand, we have a set of tasks whose semantic components are identical in ev- 
ery respect except one; thus the tasks whose components are (move, forward) 
and [move, backward) differ only in the Direction feature. On  the other hand, 
we have a set of names for just those semantic components. To express the idea 
of congruence between the names advance and retreat, therefore, we need a nota- 
tion that describes the set of words, choosing between them on the basis of the 
Direction feature. 

Rule 5.2 in Figure 5 shows how we do this. It can be read as: "The name for 
movement in a given direction is that word which has all the features of 'ad- 
vance' except the Direction feature, which it derives from the current task." So, 
if the Direction feature is forward, the name is advance; if it is backward, the 
word is retreat. Thus, to express the idea of congruent sets, we pick an arbitrary 
member of the name set (retreat would have done just as well as advance), use the 
notation Ff'advance") to refer to all the semantic components of that word, and 
then replace the Direction feature by the desired direction. Using a single sym- 
bol to denote a feature set defining a concept does not add formal power to the 
TAG notation, and it is, in fact, common practice in the linguistic and psycho- 
logical literature (e.g., Tversky, 1977). ' 

We are now in a position to compare the TAG descriptions of Carroll's two 
languages. Language A permits us to use the notational device we have de- 
scribed; Language B does not, because GO and BACK do not form a set differen- 
tiated solely by the relevant semantic component Direction (neither do TURN 

and LEFT). Language B will, therefore, require more rules. Simple metrics, 

Notational remark: Essentially, F is a function returning a set of components, we use round pa- 
rentheses to differentiate it from the feature-marked nonterminal symbols of the grammar. Because 
Rule 5.2 expresses the idea that "advancen and "retreatnshare the same semantic attributes, varying 
only in direction, the notation could be said to embody a view of antonymy that is in keeping with 
some suggestions in the linguistic literature (e.g , Katz, 1972). There is a debate surrounding such 
logical distinctions as contrast and opposition (Lyons, 1977), but we are merely suggesting that a 
good nameset will reflect differences and similarities between operations by providing names that 
vary along the same dimensions as the operations they represent 



Figure 5. Congruence. TAG'S treatment of lexical consistency in two experimen- 
tal languages from Carroll (1982). 

A Subset of Commands From the Languages 

Language A Language B 
(congruent) (noncongruent) 

Commands the robot to move forward or ad- ADVANCE GO 
vance one step 

Commands the robot to move backwards or RETREAT BACK 
retreat (in reverse) one step 

Commands the robot to change the direction RIGHT TURN 
it faces by moving or turning 90 degrees to 
the right 

Commands the robot to change the direction LEFT LEFT 
it faces by moving or turning 90 degrees to 
the left 

TAG Descriptions 

TASK FEATURES (the same for both languages) 
Feature Possible values 
MovelTurn move, turn 
Direction forward, backward, right, left 

SIMPLE TASKS (the same for both languages) 
move-robot-forward (MovelTurn = move, Direction = forward] 
move-robot-backward [MoveTTurn = move, Direction = backward] 
turn-robot-right [MovelTurn = turn, Direction = right) 
turn-robot-left [MovelTurn = turn, Direction = left) 

RULE SCHEMAS, Language A 
5.1 Task [Movefhrn, Direction] - name [MovelTurn, Direction] 
5.2 name [MovelTurn = move, Direction] - known-item [Type = word, 

F("advance9'), Direction] 
5.3 *name [Movenurn = move, Direction = forward] - "ADVANCE 
5.4 *name [MovelTurn = move, Direction = backward] - "RETREAT" 
5.5  name [MovelTurn = turn, Direction] - known-item [Type = word, 

F("rightW), Direction] 
5.6 'name [Movenurn = turn, Direction = right] - "RIGHT" 
5.7 *name[MoveTTurn = turn, Direction = left] - "LEFT" 

RULE SCHEMAS, Language B 
5.8 Task [MovelTurn, Direction] - name [Movemurn, Direction] 
5.9 name[Movemurn = move, Direction = forward] - " G O  
5.10 name lMovelTurn = move. Direction = backward1 - "BACK 
5.11 name [MoveTTurn = turn, Direction = right] - "TURN" 
5.12 name[Movefhrn = turn, Direction = left] - "LEFT" 
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such as the number of rules, suggest that Language A will be easier to learn and 
remember, as Carroll found. 

2.4. Task Structure, Organizational Consistency and Conflict 

Having described the main features of the notation, it remains for us to show 
how the structure of a more complex interactive system is expressed in these 
terms. We hope to use this example to demonstrate the secondary function of 
TAG, as a tool to help the analyst uncover subtle aspects of the structure of an 
interface. An important feature to bring out is how subtasks are captured by 
subrules, thus: 

Task - subtask 1 + subtask 2 

This procedure (which closely resembles subroutining) is assumed to model 
hierarchical task structure as perceived by the user. 

The example we draw on to illustrate the points must necessarily be rather 
larger than the smaller ones given previously. We have chosen to present an 
analysis of an idealized interactive graphics drafting system with a mouse- 
driven interface, based on Apple Computer's MacDraw program for the Mac- 
intosh. This program manipulates graphic objects, such as lines, circles, and 
rectangles. We suppose that the user perceives four main tasks: 

A new object can be created. The user chooses a "tool," or object type, 
from a menu of line, ellipse, rectangle, and arc. The user specifies the 
location and size by positioning the mouse in the top left corner of the 
desired location, pressing the mouse button, and "dragging" the mouse 
to the bottom right corner. The object is created inside the rectangle 
thus designated; for example, if an ellipse tool is chosen, an ellipse will 
be created inside the rectangle, with its origin in the center of the rec- 
tangle and its major axis either vertical or horizontal, parallel to the 
long side of the rectangle. "Stylen attributes, such as line width and fill- 
ing, are set by default. 
The default style attributes can be altered. The user must point to the 
appropriate style menu and item-within-menu. 
The style attributes of an existing object can be altered. The user se- 
lects an object, then points to the appropriate style menu and item- 
within-menu. 
An existing object can be moved. The user selects an object, then drags 
it to a new position. 

In the genuine MacDraw, users can also delete objects, resize the drawing, 
write text, and draw freehand. These abilities would add complexity to our de- 
scription without revealing any further aspects of our notation. A knottier prob- 
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lem that we will not discuss is that users can also manipulate different groups of 
objects at one time. 

Task Structure 

We first consider the modeling of hierarchical task structure. The main 
structure of the simple-tasks will be clear from Figure 6, but how does one de- 
cide on the detailed structure? This problem confronts any model purporting to 
describe perceived structures. In the absence of any empirical data on per- 
ceived task structure (e.g., in the style of Robertson & Black, 1983), writers of a 
task-action grammar must use their judgment. One solution to the problem is 
to base description on the structures presented in the training manual, as was 
done by Kieras and Polson (1985). 

The solution we have adopted is to search for the most economical represen- 
tation of a language that we can find. Although this representation may not be 
achieved by all users, it gives a lower bound on the psychological complexity. 
Observe that where alternative methods exist for achieving a particular task, 
the most economical representation will probably only describe one of the 
methods. This representation is a generative grammar, but not necessarily an 
acceptance grammar because it may not be able to describe an accurate parse of 
some users' action sequences. 

When, however, the aim of the analyst is to predict confusions that a learner 
might encounter, the appropriate representation might well be an acceptance 
grammar, describing all reasonable routes to a task, so that potential confusions 
between them become visible. We illustrate this problem of organizational conzict 
in the following section. 

In the present instance, it seems reasonable to suppose that experienced users 
perceive the task structure in terms of pointing at places and selecting tools, ob- 
jects, or styles. If this task structure is directly used as a design basis, it gives the 
following method for object creation: 

Task [Effect = create, Type] - 
select tool + point-to-place + point-to-place 

The designers of MacDraw foresaw, however, that this simple presentation 
created an extra and undesirable mode, in which a tool had been selected and 
the first place, but not the second, had been marked. To  avoid this mode, they 
imposed the rule that whenever two places are to be marked in succession, the 
mouse button must be depressed at the first place, held down while traveling to 
the second, and then released. It is therefore necessary to introduce a subtask, 
point-t0-2-places, to describe this generalized action sequence, giving the 
structure seen in Rule 6.1. 

Organizational Consistency 

The dragging operation also illustrates another neat piece of design, in which 
special cases are managed with a degree of consistency that is very high (but not 



108 PAYNE AND GREEN 

Figure 6. TAG description of an idealized MacDraw interface. In this grammar, 
the Place features can take values from the user's current goal, denoting action vari- 
ables as discussed in Section 2.2. 

SZMPL E TASKS 
Create new object (Effect = create, Case = regular) 
Create special object (Effect = create, Case = special) 
Move object (Effect = move, Case = regular) 
Move object along restricted path [Effect = move, Case = special) 
Change default style attributes (Effect = change-default-style) 
Change object style attributes [Effect = change-object-style) 

RULE SCHEMAS 
6.1 Task [Effect = create, Case] - 

select-tool 
+ point-to-2-places [Case, Placel = value-from-goal, 

Place2 = value-from-goal] 
6.2 Task [Effect = move, Case] - 

point-to-2-places [Case, Placel = value-from-goal, 
Place2 = object-location] 

6.3 Task [Effect = modify-object-style] - 
select-object 

+ select-style 
6.4 Task [Effect = change-default-style] - 

select-style 
6.5 point-to-2-places [Case = regular, Placel, Place21 - 

action [Kind = point, Placel] 
+ drag-to-place [Place21 

6.6 point-to-2-places [Case = special, Placel, Place21 - 
action [Kind = point, Placel] 

+ "depress mouse button" 
+ "depress SHIFT" 
+ action [Kind = point, Place21 
+ "release mouse button" 
+ "release SHIFT" 

6.7 drag-to-place [Place] - "depress mouse button" 
+ action [Kind = point, Place] 
+ "release mouse button" 

6.8 select-style - 
point-to-2-places [Place = style-menu, Place2-= menu-item] 

6.9 select-object - action [Kind = point, Place = object-location] 
+ "click mouse button" 

6.10 select-tool - action [Kind = point, Place = tool-icon] 
+ "click mouse button" 

perfect, as we will soon see). The graphic objects that can be created by 
MacDraw include lines, rectangles, ellipses, and arcs. Each of these objects has 
a special case: vertical or horizontal lines, squares, circles, and quarter circles. 
(Lines, of course, have more than one special case - we discuss that awkward 
fact in a moment.) It would be perfectly possible to design a system in which the 
command create-a-square was different from create-a-rectangle, and in this 
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system the designer could arbitrarily decide not to include a special case for, 
say, arcs. In MacDraw the designer has opted to use general tools to create both 
ordinary and special cases, and has created a language that requires every ob- 
ject to have exactly one special case; pressing SHIFT during the dragging part of 
the point-to-2-places subtask will create the appropriate object. In the special 
case of lines, the line snaps to vertical, horizontal, or 45 degrees, whichever is 
the best fit, so that three special cases are automatically subsumed into one to 
preserve consistency of structure. 

The same constraints apply also to the movement of graphic objects and are 
treated the same way: By pressing SHIFT during the dragging operation, the 
movement of the object can be restricted to vertical, horizontal, or 45 degrees. 
The task structure shown in Figure 6 captures this consistent use of the SHIFT 
key by using the same subtask, point-to-2-places, both for creating and moving 
objects. 

Organizational Conflict 

We have used the term organizational conflict to refer to the situation in which 
two or more competing organizations can be perceived. We know of no test that 
could alert designers to possible misperceptions of this type, but one counter- 
measure might be to ensure that each task and subtask of the intended organi- 
zation included a distinctive action. 

TAG analyses help unearth possible organizational conflicts, and examples 
can be found in our idealized MacDraw. One such conflict involves Rules 6.5, 
6.6,6.7. Of these, Rule 6.7 represents a standard drag-to-place method, which 
is utilized by Rule 6.5. Rule 6.6 does not utilize the standard dragging subtask, 
however, because the mouse button and point sequence is interrupted by press- 
ing the SHIFT key. An alternative perceived organization for Rule 6.6 would be: 

6.6a point-to-2-places [Case = special, Placel, Place21 - 
action [Kind = point, Placel] 

+ "depress SHIFT" 
+ drag-to-place [Place21 
+ "release SHIFT" 

This would be simpler. Moreover, it is successful-some of the time. We 
would therefore predict that some novices would discover Rule 6.6a. But it is 
only successful in one context, when an object-creation tool has been selected. 
So when the task is to create an object (Rule 6. I), the alternative form of Rule 
6.6 will be successful. When, instead, the task is to move an object, the 
alternative form of Rule 6.6 will have a different effect, because in that context 
pressing SHIFT will result in selecting multiple objects (or deselecting them, if 
already selected). 

The most economical TAG grammar for the idealized MacDraw can ignore 
Rule 6.6a, but an acceptance grammar would have to represent both that and 
Rule 6.6. The result would be complicated. We would expect learners who dis- 
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cover the structure by experience, rather than tuition, to suffer some difficulties 
before they acquire the more economical form of representation. 

A second conflict occurs because our idealized MacDraw supports a second 
organization for Rule 6.2. (In fact, this second organization was the one held by 
the authors until performing this analysis!) To explain the second organization, 
we will start with the task of modifying the style attributes of an object. To do 
so, the user selects the object (which causes MacDraw to highlight it) and then 
chooses a new style attribute. Naturally, this is presented in Figure 6 as select- 
object followed by select-style. It turns out in practice that many users seem to 
regard move-an-object as a task with a similar structure, in which the first 
subtask is to select the object. This gives them the following structure: 

6.2a Task [Effect = move] - 
select-object 

+ drag-to-place [Place = value-from-goal] 

Users then have a very consistent structure for all four tasks, because they all 
start by selecting something, whether tool, object, or style. There are two con- 
sequences of that perceived organization. First, unnecessary keystrokes are 
performed, although because these are no more than an otiose release and 
redepressing of the mouse button, they are not expensive in effort. Second, the 
consistent use of the SHIFT key is not visible in that organization, because it 
does not use the subtask point-to-2-places; the subtask drag-to-place might or 
might not make use of the SHIFT key to constrain direction of movement, en- 
tirely independently and apparently arbitrarily. It would therefore be quite 
possible to believe, as the authors did, that the SHIFT key produced special ef- 
fects during object creation, but had no further uses in MacDraw. 

Summary 

In this analysis of MacDraw, we have attempted to demonstrate that TAG 
can capture quite subtle aspects of organizational consistency. Indeed, by per- 
forming the TAG analysis we have ourselves been led to perceive initially ob- 
scure subtleties. This observation might lead to a criticism that TAG is 
capturing properties of the language that are not salient to users, and so do not 
influence complexity. Our response to this criticism is twofold. First, we would 
argue that it is a mistake to necessarily tie salience and complexity to aware- 
ness-consistency may reap benefits for users without being articulated by 
them. Second, TAG'S psychological validity should not be second-guessed, but 
should be subject to empirical scrutiny. This theme is taken up in Section 4. 

3. FORMAL SPECIFICATION OF THE TAG 
METALANGUAGE 

The preceding examples illustrate all the notational conventions of the TAG 
metalanguage and leave us in a strong position to define it precisely. We have 
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chosen, however, not to offer such a definition, for two reasons. First, we do not 
regard the notation as fixed: It seems sensible to keep the way open for refine- 
ments and extensions. Other attempts at formal definition in computer science 
do suggest that case-driven development is likely to be necessary (e.g., Lee, 
1972). Second, such a definition would add little to the precision of our case; if 
the examples given here are taken as definitive rather than merely illustrative, 
we are able to demonstrate the formal properties of TAG straightforwardly. It 
will be helpful, however, to offer a complete list of the symbolic expressions and 
operations used in the current notation. 

A task-action grammar has three parts: (a) an optional list of features for 
categorizing the simple-tasks, (b) a dictionary of simple-tasks, and (c) a set of 
rule-schemas. The list of features is redundant in the grammar's workings and 
is provided purely to aid exposition. 

The dictionary of simple-tasks lists a label for each operation which the user 
can perform routinely, together with a featural description of that simple-task 
in terms of semantic components which categorize the entire task world. The 
component-set is denoted by brackets, ( 1. Each component is denoted by a de- 
scriptive term for the feature, the equal sign, = , and a term for the value of that 
feature. The symbols + and - are used to denote presence or absence of bi- 
nary features. 

Every rule-schema contains a single element on the left-hand side (LHS); 
each LHS is a term consisting of an arbitrary label and a feature-set contained 
in square brackets, which may contain any number of unvalued or valued fea- 
tures (components).z The LHS is separated from the right-hand side (RHS) by 
an arrow - which denotes rewriting, or definition, in the standard phrase- 
structure grammar sense. The RHS of a rule contains an ordered sequence of 
terms (in exactly the same format as the LHS) and of terminal symbols. Entire 
sets of features may be abbreviated by the symbol Foabel), which denotes the set 
of defining features of the labeled token. Where a feature-set appears together 
with a specified feature, the specific feature takes precedence, and the feature- 
set is understood to denote only the unspecified defining features. Unvalued 
feature-sets may also be specified, denoted F(). 

To expand a rule-schema, any unvalued feature must be assigned values uni- 
formly throughout the rule, whether they are ordinary features or feature-sets. 
When this assignment is complete, every term must denote a unique grammati- 
cal object. If a term refers to a simple-task (given the generic label task), then 
the valued features will specify exactly one of the entries in the simple-task dic- 
tionary. Where the term refers to a nonterminal symbol, that nonterminal will 
itself appear as the LHS of a rule schema. The third possibility, if the rule is a 

The meaninglessness of all nonterminal symbols is a virtue not shared by earlier formulations of 
the TAG notation. It results from a simple change to the syntax ofworld knowledge rules, and was 
suggested by Tom Moran. 
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world knowledge rule, is that the term (denoted known-item) refers to a unique 
object assumed to be in the user's semantic memory. Terminal symbols are ac- 
tion specifications, denoted by terms in quotation marks, or action variables 
(denoted action) which contain features whose value may be determined by the 
current goal. 

The most important formal property of TAG is its generative power. It is 
easy to see that TAG only has context-free capability. Each ordinary rule 
schema can be expanded into a finite number of single-level (context-free) re- 
write rules, simply by assigning values to features in all admissible ways. World 
knowledge rules do not affect this capability, as they meet the same constraint, 
albeit through the device of features and components that exist independently 
of the system being described. Nevertheless, as we have noted, it is inevitable 
that some extension to the core metalanguage will be demanded as wider as- 
pects of usability are considered. 

4. USING TAG TO ASSESS LEARNABILITY 

Having described the workings of TAG and shown how it addresses some in- 
teresting properties of the interface, we now explain how to apply TAG in order 
to make predictions of task language learnability. First, we discuss some com- 
plexity metrics which allow direct comparisons between one TAG description 
and another. Next, we examine the empirical literature on command language 
learning to consider the extent to which TAG, allied to the complexity metrics, 
predicts the important results; this section is extended by summaries of two 
novel experiments testing central TAG learnability predictions. 

4.1. Complexity Metrics Over Grammars 

The prime applied focus of TAG is to assess the relative learnability of differ- 
ent task languages. The central argument is that because a TAG description 
models mental representation of the language, simple metrics over the gram- 
mar will reflect psychological complexity, and thus learnability. We have al- 
ready mentioned these metrics; in this section we inspect them more closely. 

This argument suffers two potential difficulties. First, in the absence of a 
specified learning mechanism one might argue that learnability is badly 
underdetermined, because a mechanism could be devised that learned complex 
grammars more easily than simple ones. Our response to this is straightfor- 
ward: Although we have not specified a learning mechanism, we simply assume 
one with the apropriate properties. Indeed, we are more or less bound to such 
an assumption by the nature of our enterprise for the status of any representa- 
tion as an explanatory device depends crucially on implicit processing assump- 
tions. If the empirical predictions made by TAG, through its alliance with 
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learning assumptions, should fail, then we must modify the grammar, not the 
assumptions. 

The second difficulty with our learnability argument is that any number of 
TAG grammars can be written to define a single task language. How do we 
know which definition to use? This degrees-of-freedom problem is an inevitable 
consequence of using a grammar as a competence model, but it also applies to 
other attempts at modeling human-computer interaction, such as the produc- 
tion systems of Kieras and Polson (1985). The problem in our case is rather less 
severe, for our express goal is the prediction of relative complexity, so that any 
consistent approach to choosing a single decription can be justified. The ap- 
proach that we choose is governed by our proposed complexity metrics over 
TAG descriptions. 

Any grammatical description has a large number of properties; which are the 
ones that determine complexity? The most important index of complexity de- 
rived from a TAG definition is the number of simple-task rule schemas, for 
these rules define the top-level configuration of the task language. For two lan- 
guages that possess the same number of simple-task rule schemas, complexity 
comparisons should utilize the total number of rule-schemas, including those 
that rewrite the nonterminal symbols of the grammar. Because of the prime im- 
portance of the simple-task rule schemas, our solution to the degrees-of- 
freedom is to base comparisons on descriptions of languages that minimize the 
number of simple-task rule schemas. 

It is worth noting that the degrees-of-freedom problem potentially can be 
turned into a positive advantage. Because several TAG descriptions of a given 
language are possible, we have the means of modeling individual differences in 
perceived structure. We have already seen some benefits of using TAG in this 
fashion in our discussion of the MacDraw interface. In that case, by departing 
from our usual constraint of minimizing the number of simple-task rules, we 
were able to display interesting alternative structurings of the task language. 
Our complexity metrics depend on the assumption that although alternative 
TAG descriptions are necessary to model individual perceptions of structure, 
the minimal description models regularities that generally will be perceived and 
is therefore the best available approximate guide to the intrinsic complexity of 
the design. 

4.2. Empirical Support 

TAG'S main empirical prediction is that, of two similar task languages, the 
one that will be the easier to learn and remember is the one with the fewer 
simple-task rule schemas or, should the languages be equivalent in this respect, 
the language with the fewer rules altogether (not counting rules that are cap- 
tured by world knowledge schemas). Empirical support for this claim can be 
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gathered from the existing experimental literature on command language 
learnability. TAG captures many results on command language names and 
syntax. From the naming literature, we have already seen TAG descriptions of 
the main effect demonstrated by Black and Moran (1982), Carroll (1982), and 
Green and Payne (1984). The advantage of using structured namesets, as dem- 
onstrated by Scapin (1982) and Carroll (1982), also can be captured. Scapin's 
experimental namesets, and a TAG description of each, are shown in Figure 7.  

Results on command language syntax are somewhat less concrete. The ex- 
periment by Barnard, Hammond, Morton, Long, and Clark (1981) is hard to 
interpret, but it offers some support for the principle of placing a common pa- 
rameter in a constant serial position within a command string- a principle that 
is supported by TAG in a fairly obvious way (see Figure 8). The observational 
reports of Reisner (1981) also support the notion of a consistent syntax; again, 
TAG predicts these findings (as did Reisner's own grammar, but only through 
an informal extension to the notation). 

More importantly, TAG makes predictions about syntactic consistency that 
go beyond the findings of Barnard or Reisner. The categorization of simple- 
tasks predicts that syntactic consistencies across entire semantic categories will 
be appreciated by users, as will syntactic consistencies within semantic catego- 
ries, but consistencies across groupings of tasks orthogonal to the semantic or- 
ganization will be of no benefit. This prediction has been tested in an experi- 
ment on syntax induction by Payne (1985). In this test, subjects learned to 
operate a toy "lost property office" computer system to perform three categories 
of task: request information from a database, end messages to colleagues in 
other locations, and play games (a scenario not unrepresentative of real world 
computer use). In each of these three main categories several distinct task-types 
could be performed - information could be requested about missing dogs, cars, 
jewelry, or valuables; messages could be sent privately or in public; two com- 
pletely different games could be played. The experimental results demon- 
strated that the best syntax utilized a consistent higher-level structure (as cap- 
tured by TAG schemas) for all possible tasks (Language 1, Figure 9). A design 
which incorporated only two different syntactic command structures, but 
which used these for groups of task-types that cut across the major categories 
(Language 3, Figure 9), was harder to learn than a design using three separate 
command structures, one for each of the categories (Language 2, Figure 9). 
TAG descriptions of the experimental languages are shown in Figure 10. 
Counting the number of simple-task rule schemas predicts the observed results. 
We should note that this prediction holds even though the TAG notation for 
Language 3 has the smallest total number of rules. The reason for this is that the 
naming and abbreviation conventions (which are exactly the same for all three 
languages, of course) are represented by additional grammatical rules in Lan- 
guages 1 and 2, precisely because the structure of these languages allows the 
generalized simple-task schemas. In Language 3,  because individual nile 



Figure 7. Structured namesets. TAG'S treatment of the experimental namesets 
from Scapin (1982). 

Structured 
SEND MESSAGE WAITING 
SEND MESSAGE RECEIVED 

FlLE MESSAGE WAITING 
FlLE MESSAGE RECEIVED 
FlLE MESSAGE MAILED 

CREATE MESSAGE WAlTlNG 
CREATE GROUP 
CREATE REFERENCE 
CREATE APPOINTMENT 

MODIFY MESSAGE WAITING 
MODIFY GROUP 
MODIFY REFERENCE 
MODIFY APPOINTMENT 

Unstructured 
SEND MESSAGE WAITING 
TRANSMIT MESSAGE RECEIVED 

FlLE MESSAGE WAITING 
CLASSIFY MESSAGE RECEIVED 
STORE MESSAGE MAILED 

WRITE MESSAGE WAITING 
FORM GROUP 
MAKE REFERENCE 
TAKE APPOINTMENT 

CORRECT MESSAGE WAITING 
MODIFY GROUP 
TRANSFORM REFERENCE 
CHANGE APPOINTMENT 

TAG Dcsm'ptions 

SIMPLE TASKS (same for both namesets) 
send-message-waiting [Operation = send, Object = waiting-message) 
send-message-received (Operation = send, Object = received-message] 
file-message-waiting [Operation = file, Object = waiting-message) 
file-message-received (Operation = file, Object = received-message] 
file-message-mailed [Operation = file, Object = mailed-message) 
create-message-waiting [Operation = create, Object = waiting-message) 
create-group (Operation = create, Object = group) 
create-reference (Operation = create, Object = reference) 
create-appointment (Operation = create, Object = appointment] 

R ULE SCHEMAS (Stnutured nameset) 
7.1 Task [Operation, Object] - name1 [Operation] + name2 [Object] 
7.2 namel[Operation] - known-item [Kind-word, Operation] 
7.3 'namel[Operation = send] - "SEND 
7.4 *namel[Operation = file] - "FILE 
7.5 'namel[Operation = create] - "CREATE 
7.6 'namel[Operation = modify] - "MODIFY" 
(name2[0bject] - THE SAME FOR BOTH NAMESETS) 

RULE SCHEMAS (Unrtnutured) 
7.7 Task [Operation, Object] -name1 [Operation, Object] + name2 [Object] 
7.8 namel[Operation = send,Object = waiting-message] - "SEND 
7.9 namel[Operation = send,Ob)ect = received-message] - "TRANSMIT" 
7.10 namel[Operation = file,Object = waiting-message] - "FILE 
7.1 1 namel[Operation = file,Object = received-message] - "CLASSIFY" 
7.12 namel[Operation = file,Object = mailed-message] - "STORE 
7.13 namel[Operation = create,Object = waiting-message] - 'WRITE 
7.14 namel[Operation = create,Object = group] - "FORM" 
7.15 namel[Operation = create,Ob)ect = reference] - "MAKE 
7.16 namel[Operation = create,Object = appointment] - "TAKE 
etc. for modify operations . . . 
(name2[0bject] - THE SAME FOR BOTH NAMESETS) 
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Figure 8. Consistent versus inconsistent syntax. Consider a command language in 
which each command is issued by typing a verb and two parameters, one of which is 
common to all commands in the language (cf. Barnard et al., 1981). Two separate 
commands from such a language are shown for a consistent and inconsistent dialect 
(the argument extends ob;io&ly to three or more commands). According to the 
metrics developed in the text, the consistent dialect will be easier to learnbecause it 
can be fully described using fewer simple-task rewrite rules. 

Consistent Dialect 

verbl common-parameter var-parameter1 
verb2 common-parameter var-parameter2 

Inconsistent Dialect 

verbl common-parameter var-parameter1 
verb2 var-parameter2 common-parameter 

TAG Definitions 

S I M P L E  T A S K S  (same for both languages) 
task1 ((Feature = f l )  
task2 (Feature = f2) 

RULE S C H E M A S  (Consistent dialect) 
8.1 Task [Feature] - 

name [Feature] 
+ common-parameter 
+ var [Feature] 

8.2 name [Feature = f l ]  - verbl 
8.3 name [Feature = f2] - verb2 
8.4 var [Feature = f l ]  - var-parameter1 
8.5 var [Feature = f2] - var-parameter2 

R U L E  S C H E M A S  (Inconsistent dialect) 
8.6 Task[Feature = fl]  - verbl + common-parameter + var-parameter1 
8.7 Task [Feature = f2] - verb2 + var-parameter2 + common-parameter 

schemas are required for each simple-task, the abbreviation conventions can be 
absorbed into them, and no additional rules are needed. 

TAG also makes predictions about the optimal strategies for abbreviating 
command names. Evidence has accumulated recently to suggest that, for 
encoding operations at least, the preferred abbreviation algorithm is simple 
truncation (e.g., Hirsch-Pasek, Nudelman, & Schneider, 1982). However, in 
life-size languages, any such simple scheme will lead to clashes, where two com- 
mand names suggest the same abbreviation. The only suggestion in the litera- 
ture known to the authors for resolving conflicts is to utilize a secondary rule 
(perhaps vowel deletion) for clashing items (Ehrenreich & Porcu, 1982). Cer- 
tainly this strategy appears to be better than using a minimum-to-distinguish 
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Figure 9. Example commands from the three languages used by Payne (1985) in an 
experiment on semantic-syntactic alignment. These commands were used as exam- 
ples in the learning phase of the experiment. 

Language I 
DOG BOXER HlGH BROWN 

CAR FORD VERY LOW D 

FIN CASH VERY HlGH 10 

JEW BROOCH LOW SILVER 

TOM PEEP HlGH PPP 

HEAD LOW HULL 

BLUFF VERY LOW DEFS 

QUOTE LOW AUTS 

Language 2 
DOG BOXER BROWN HlGH 
CAR FORD D VERY LOW 
FIN CASH 10 VERY HlGH 
JEW BROOCH SILVER LOW 
TOM PEEP HlGH PPP 
HEAD LOW HULL 
VERY LOW BLUFF DEFS 
LOW QUOTE AUTS 
Language 3 
DOG HlGH BOXER BROWN 
CAR FORD VERY LOW D 
FIN VERY HlGH CASH 10 
JEW BROOCH LOW SILVER 
HlGH TOM PEEP PPP 
HEAD LOW HULL 
VERY LOW BLUFF DEFS 
QUOTE LOW AUTS 

"high priority request for information about a 
missing brown boxer dog" 
"very low priority request for information about 
a D registered Ford" " 
"very high priority request for information 
about ten pounds cash lostn 
"Low priority request for information about 
jewelry, in particular, a silver broochn 
"high priority message to Tom Peep, whose 
password is PPPn 
"low priority message to the head of the Hull of- 
fice" 
"very low priority, play the definitions version 
of Call My Bluff' (the other version was 
WORDS) 
"low priority, play the authors verion of the 
quotations gamen (the other version was QS for 
quotes) 

truncation algorithm throughout the command set (Ehrenreich & Porcu, 
1982). However, TAG predicts that use of a secondary rule will be a poor tech- 
nique, as the conflict set need bear no relation to the semantic organization of 
the tasks: TAG has no mechanism for capturing regularities between arbitrary 
(nonsemantic) groupings of tasks. Instead, TAG predicts that abbreviation 
conflicts should be solved by splitting the command language into separate 
task-oriented categories and utilizing a different abbreviation rule within each 



Figure 10. TAG definitions for the three languages in Payne's (1985) experiment 
on semantic-syntactic alignment. In this grammar, lower case terms in quotes de- 
scribe action variables, which must be replaced by exemplars (see Section 2.2.). 

SIMPLE TASKS (the same for all three kanguagcs) 
request-info-about-dog (Category = info, Type = dog) 
request-info-about-financial-matters [Category = info, Type = fin] 
request-info-about-cars (Category = info, Type = car) 
request-info-about-jewelry (Category = info, Type = jew) 
send-public-mesaage (Category = message, Type = public] 
send-private-message (Category = message, Type = private) 
play-call-my-bluff (Category = game, Type = bluffl 
play-quotations (Category = game, Type = quote) 

R U L E  SCHEMAS, Language I 
10.1 Task [Category, Type] - headeflcategory, Type] 

+ descriptor[Type] 
+ priority + parameteflypel 

10.2 headeflcategory = info, Type] - three-letter-header [Type] 
10.3 header[Category = message, Type] - NULL 
10.4 headeflcategory = game, Type] - NULL 
10.5 three-letter-header [Type = car] - "CAR" 
10.6 three-letter-header [Type = fin] - "FIN" 
10.7 three-letter-header [Type = jew] - "JEW 
10.8 three-letter-header [Type = dog] - "DOG" 
10.9 descriptor [Type = dog] - "dog-breed" 
10.10 parameter [Type = dog] - "dog-colour" 
10.11 descriptor [Type = fin] - "valuable-object" 
10.12 parameter r ype  = fin] - "monetary-amount" 
10.13 descriptor [Type = jew] - "jewelry-item" 
10 14 parameter [Type = jew] - "material" 
10 15 descriptor [Type = car] - "car-make" 
10.16 parameter [Type = car] - "registration-letter" 
10.17 descriptor [Type = public] - "job" 
10.18 parameter [Type = public] - "town-office" 
10.19 descriptor [Type = private] - "name" 
10.20 parameter [Type = private] - "password" 
10 21 descriptor [Type = quote] - "QUOTE 
10.22 parameter [Type = quote] - "quote-game-type" 
10.23 descriptor [Type = bluff] - "BLUFF" 
10.24 parameter [Type = bluffl - "bluff-game-type" 
10.25 priority - "VERY HIGH" 
10.26 priority - "VERY LOW" 
10.27 priority - "HIGH" 
10.28 priority - "LOW 

R U L E  SCHEMAS, Language 2 
10.29 Task [Category = info, Type] - header llype] 

+ descriptor Fype] 
+ parameter Fype] 
+ priority 
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Figure 10. (Continued) 

10.30 Task [Category = message, Type] - descriptor [Type] 
+ priority 
+ parameter (Type] 

10.31 Task [Category = game, Type] - priority 
+ descriptor [Type] 
+ parameter Vype] 

- - 

RULE SCHEMS, Language 3 
10.32 Task[Category = info, Type = dog] - "DOG" + priority 

+ "dog-breed" + "dog-color" 
10.33 Task [Category = info, Type = fin] - "FIN" + priority 

+ "valuable-object" 
+ "monetary-amount" 

10.34 Task[Category = info, Type = jew] - "JEW" + "jewelry-item" 
+ priority + "material" 

10.35 Task [Category = info, Type = car] - "CAR" + "car-make'' 
+ priority + "reg-letter" 

10.36 Task [Category = message, Type = private] - priority + "name" 
+ "password" 

10.37 Task [Category = message, Type = public] - "town-off ice" 
+ priority + "job" 

10.38 Task [Category = game, Type = quote] - "QUOTE + priority 
+ "quote-game-type" 

10.39 Task [Category = game, Type = bluff] - priority + "BLUFF" 
+ "bluff-game-type" 

10.40 priority - "VERY HIGH" 
10.41 priority - "VERY LOW" 
10.42 priority - "HIGH" 
10.43 priority - "LOW" 

category. There are obviously begged questions in this recommendation, such 
as what to do about remaining clashes, and how to cope with very large lan- 
guages of many semantic categories; it may well be that such problems need to 
be solved at a level above the choice of abbreviations. Nevertheless, the sugges- 
tion seems useful in many circumstances, and is supported by an experiment 
reported by Payne (1985). 

In that experiment subjects learned a command language to manipulate 
small graphic symbols (a pointer and some blocks) on the display of a micro- 
computer. For one group, the task was described as a robot game, the pointer 
representing a robot and the blocks being mines. For the second group, instruc- 
tions were abstract. This instructional manipulation does not concern us here, 
for the command names remained identical, abbreviation conditions were fully 
crossed with instructions, and no interactions emerged in the results. The ex- 
perimental command language consisted of 18 commands, for moving the 
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robot around, adjusting position of the robot's claw, and manipulating the 
mines. The narnesets were extended versions of the congruent namesets used 
by Carroll (1982). The learnability of two separate abbreviation schemes was 
compared. The first scheme, Secondary Rule (SR), adopted two-letter trunca- 
tion as the primary rule and utilized vowel deletion as a secondary rule in the 
situations in which truncations led to clashes (5 of the 18 commands). Choosing 
members of the conflict set to be subject to the secondary rule was done ad hoc, 
but with the important constraint that the exceptions should be spread across 
the semantic categories of the language, to allow a distinction with the second 
scheme. The second scheme, Categories with Exception (CE), adopted rules in 
the manner advocated by the TAG model. This scheme used two-letter trunca- 
tion for commands that moved the robot without directly acting on a mine (12 
commands), and vowel deletion for commands that directly manipulated 
mines. Even this scheme led to a single clash in the truncation abbreviations, so 
one of the 12 movement commands, PUSH, was abbreviated by vowel 
deletion. 

An important point to note about the two abbreviation schemes is that the 
CE scheme, which TAG predicts is better, actually contains more items using 
the worst abbreviation algorithm (vowel drop). Further, for no less than 12 of 
the 18 commands, abbreviations were the same under the two schemes. 

The results of the experiment showed a reliable advantage for the CE 
scheme. Subjects learning abbreviations generated by this scheme made fewer 
abbreviation errors, consulted the help facility on fewer occasions, and actually 
solved the problems more efficiently. This last finding is particularly impor- 
tant, because it shows an influence of language structure on deeper aspects of 
human-computer interaction. 

5.  THE COGNITIVE SCIENCE BASIS OF THE TAG 
NOTATION 

In this section we look at the particular devices utilized by TAG and examine 
their relation to various cognitive science concerns. We begin with the thorny 
question of task analysis, describing our approach to simple-tasks. We next dis- 
cuss the use of semantic features to describe task concepts and to mark rewrite 
rules. We raise the issue of notational power, and finally discuss a possible ex- 
tension to TAG'S notation. 

TAG makes two novel contentions about the representation of tasks. First, it 
identifies the special simple-tasks that can be performed without any problem 
solving or iteration. Second, it represents simple tasks as concepts, whose se- 
mantic interrelationship plays a crucial role in the representation of the 
language. 
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5.1. Simple-Tasks 

We have defined a simple-task as any task that the user can routinely perform 
with no demand for a control structure, such as branching or iteration, that re- 
quires monitoring of plan progress. We believe that higher-level, more com- 
plex, tasks requiring coordination between task sequences are best handled by a 
separate planning component. Our motivation for this needs a little unpicking. 

First and foremost, we argue that this class of simple-tasks is psychologically 
important. Against this, critics may claim that, as simple iteration can be easily 
routinized (Card, Moran, & Newell, 1983) and as we distinguish iterative from 
noniterative tasks, the class of simple-tasks cannot be a psychologically relevant 
category. This argument has some force for task performance, but for task lan- 
guage learning it is faulted. A novice user who has been told the command for, 
say, deleting words, will induce the iterative method for deleting sentences with 
little trouble. This point has been demonstrated empirically by Douglas (1983), 
who showed that novices could correctly induce how to perform any task that 
relied on a simple combination of tutored tasks. Our focus on the prediction of 
learning effort renders such distinctions crucial: Simple-tasks are the set of tasks 
for which distinct action sequences have to be learned, or induced, from the 
particular structure of the task language. 

We should note at this stage that if TAG is eventually to play a role in theories 
of performance, as we intend, simply ignoring iteration will not do. A tactic of 
"leaving iteration to the planning system" may handle the repetition of entire 
task-action sequences, but it would be critically weak in one important respect: 
Many tasks have iterable subcomponents. For example, to format disks on the 
CPM operating system one must run the Format program, and respond to the 
prompt that yes, you really do want to format the disk in Drive B. To format 
more than one disk, one could, of course, exit the Format program and loop 
through the entire sequence, but an option is supplied to allow users to effi- 
ciently repeat the last step only. Our current thoughts on planning with task- 
action grammars suggest tackling this problem by allowing control tokens on 
subtasks and action specifications, such as can-be-iterated. These develop- 
ments will not be discussed in this article, because they do not affect our central 
concerns with learning and learnability. 

The concern with learnability also dictates the second property of simple- 
tasks. The simple-tasks for a given system are determined as much by the de- 
vice as by the external task domain. In Moran's (1983) terms, simple-tasks are 
"internaln rather than "externaln tasks. To  adapt one of Moran's examples, con- 
sider a very simple cut-and-paste display editor. Although in the external task 
domain the user can distinguish between such entities as sentence and para- 
graph, in the internal world of the system this distinction may disappear; both 
words and sentences are treated as strings. For example, to delete a sentence 
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one has to mark the beginning and end with the mouse and choose the cut com- 
mand. The job of a task-action grammar in this case is to describe the operation 
sequence required for the "delete string" command and its relation to other as- 
pects of the task language, not to illuminate the nature of the mapping from ex- 
ternal task to internal task. 

Our position is in close agreement with Moran (1983), in that we see the need 
for a psychological mapping from external to internal tasks as well as the acqui- 
sition of task language semantics and syntax. This view agrees with our claim 
that simple-tasks are a psychological construct. 

Simple-tasks, then, are equivalent entities in human-computer interaction to 
operators in the classical problem space view of problem solving (Newel1 & Si- 
mon, 1972). It is instructive to explore this connection. 

One obvious difference between human-computer interaction and the kind 
of puzzles studied by problem-solving theorists is the need for a task language to 
map the operators onto action sequences. The psychological implications of this 
mapping are the central concern of the TAG model. To  address this issue we 
have found it necessary to depart from the treatment of operators in the puzzle- 
solving literature. Puzzle-solving operators are more or less atomic entities, 
whose use is determined by preconditions and postconditions: The relationship 
of one operator to another is not explicitly represented, except with regard to 
roles on solution paths (e.g., the preconditions of one operator may become the 
goal state which prompts application of a second). In contrast, TAG treats 
simple-task operators as semantic concepts which are organized into mental 
categories. 

To  describe learning effects in problem-solving domains, it is necessary to al- 
low operators to be chunked into macro-operators (e.g., Chase & Simon, 
1973). We regard simple-tasks to be dynamic in a similar way. For the novice 
user, simple-tasks are, roughly, all those tasks for which there is a distinct com- 
mand or operation in the task language (and which have been learned). It is this 
level of analysis that we have found to be most useful in assessing the learn- 
ability of task language designs. For the more advanced user, several simple 
tasks may have been composed to form more complex tasks that can neverthe- 
less be performed wthout a problem-solving effort. We illustrate this view of 
practice in Section 6. 

5.2. Tasks as Concepts 

We hypothesize that simple-tasks are mentally represented as concepts. The 
thrust of this suggestion is that the internal structure of tasks and the intentional 
relations among tasks are both of major importance in the user's mental repre- 
sentation of task languages. 

There exists in the literature a lively debate about the mental representation 
of concepts (Smith & Medin, 1981). Are concepts represented by sets of 
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defining features, as the classical view maintains (Bruner, Goodnow, & Austin, 
1956; Katz, 1972), or as schematic prototypes (e.g., Rosch & Mervis, 1975), or 
even as networks of exemplars (e.g., Medin & Schaffer, 1978)? So lively is the 
debate and so difficult the issues that they have led some commentators to con- 
jecture that many important tensions will never be resolved (Armstrong, 
Gleitman, & Gleitman, 1983). The safest general view of concepts would ap- 
pear to be a permissive one: All of these representational forms exist, but they 
are used for different purposes. By taking this stance, one is able to offer a 
theory of certain aspects of conceptual performance without being necessarily 
committed to a unitary view of concepts. This is exactly the approach taken by 
Tversky (1977) in his theory of similarity computations. Following Tversky, 
TAG utilizes feature-set representations of task concepts, and of lexical com- 
mand names, without insisting that other representations are redundant or that 
the debate in the linguistics literature (e.g., Lyons, 1977; Miller &Johnson- 
Laird, 1976) is dead. 

In view of the importance of featural descriptions of concepts in TAG, it is 
well to be clear exactly what is meant by a feature. The term is being used in ex- 
act accord with the conventions of semantic theory - anything that can take a 
value with respect to a term. (See Rosenberg, 1982, for a rigorous mathemat- 
ical treatment .) 

As in mainstream semantics, the features and components that are specified 
in a TAG description should have psychological validity, in that they are im- 
portant for the categorization of the task world. Unfortunately, again just as in 
semantics, there is nothing that analysts can do to ensure this ideal, except rely 
on their intuition. 

5.3. Feature-tagged Rule Sehemas 

With regard to their role in the rewrite rules, it may be helpful to view fea- 
tures as strongly typed variables, for which the entire range of values is defined 
by an n-tuple, usually small. The assignment of values to features in TAG rule 
schemas is therefore parallel to the assignment of values to variables in ad- 
vanced production system architectures, and indeed sometimes serves similar 
purposes, such as the capturing of certain kinds of generalization. However, 
the strong typing of features, and the fact that they play an important role not 
only in the rule-schemas but also in the categorization of task concepts and of 
the action world, does mean that rule-schemas are heavily constrained com- 
pared to generalized production rules and often make quite different predic- 
tions. 

The use of semantic features in syntactic rules is a major break from the de- 
vices employed by linguists' theories of syntax, most of which stress the role of 
syntactic features. The break reflects the simplicity of the syntactic structures of 
task languages relative to natural language. Syntactic features are simply not 
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needed to compactly describe the regularities; but semantic features are needed 
to express important characteristics of the mental representation of even such 
simple syntax. 

A similar device is employed in the "semantic grammars" used by Burton 
(1976) to implement natural language dialogues in intelligent computer- 
assisted instruction and in "attribute grammars" originated by Knuth (1968) as 
a means of specifying the "semantics of context-free languages." 

Attribute grammars supply a corresponding semantic rule for every rewrite 
rule, specifying the attributes of the left-hand side nonterminal in terms of the 
attributes of the right-hand side, or some already meaningful symbol (e.g., a 
number). This technique allows the specification of a language's intentional se- 
mantics. Our convention of associating values to attributes consistently 
throughout a rule is a very limited version of this idea. The limitation repre- 
sents an important constraint: that the componential semantics of an interac- 
tive command can be derived in a simple additive fashion from the command's 
constituents. Further research is required to investigate the validity and impli- 
cations of this constraint; it may prove advantageous in the long term to provide 
separate semantic rules in the analysis. 

5.4. The Competence Hypothesis and Formal Power 

In identifying and defining the class of simple-tasks we hope to clarify the im- 
portant distinction between the user's knowledge of the task language and the 
goal-driven problem solver (unspecified but constrained by the TAG model) 
which interprets that knowledge. The separation distinguishes this work from 
other attempts at formal modeling in human-computer interaction (Card et al., 
1983; Kieras & Polson, 1985) but dovetails with current thinking in computa- 
tional linguistics, where it is dubbed the competence hypothesis: "A reasonable 
model of language use will incorporate, as a basic component, the generative 
grammar that expresses the speaker-hearer's knowledge of the language . . . " 
(Chomsky, 1965, p. 9, quoted in Bresnan & Kaplan, 1983). 

The competence hypothesis affords us a crucial advantage by enabling a 
model of the user's knowledge with a tightly specified and very limited formal 
power, despite its large expressive power. Previous attempts at modeling 
human-computer interaction have not been able to offer this degree of re- 
straint, instead offering systems of unspecified and unclear, but worryingly 
powerful, capabilities. 

The benefits of restricting the formal power of computational models may 
not be immediately apparent. After all, both production systems and semantic 
networks have unlimited computational power, yet are regarded as successful 
models by many. We do not want to suggest that unrestricted power necessarily 
removes empirical content. Consideration of strong equivalence (as opposed to 
mere duplication of inputloutput pairs) disallows such a simple argument (see 
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Pylyshyn, 1980, 1984); production systems may accurately predict the time- 
complexity of different mental operations. Nevertheless, the formal power of 
metalanguages is a particularly important flavor of theoretical parsimony. For 
if a metalanguage is to prove useful as a theory, it must be applied to a large 
number of different language constructs (in our case, different task languages). 
Yet the more powerful the metalanguage, the greater the choice of grammatical 
descriptions of any given construction- the degrees-of-freedom problem we 
discussed above. As Pylyshyn (1980) put it: "The more constrained a notation 
or architecture, the greater the explanatory power of resulting models. It [the 
architecture or metalanguage] provides a principled rationale for why the 
model [the grammar] takes one particular form, as opposed to other logically 
possible ones" (p. 126). 

In our work on TAG we have only managed to go part way to this ideal, and 
so we have adopted "style rules" such as minimizing the number of simple-task 
rule schemas to further constrain possible descriptions. TAG itself is a highly 
constrained metalanguage (as we have seen, it only has context-free power); we 
believe that it is constrained according to psychologically plausible mecha- 
nisms. 

5.5. A Possible Extension 

We fully expect that the TAG notation will need to be developed and ex- 
tended to tackle more diverse issues than we have yet been able to consider. 
One such extension from the core context-free grammar is required to deal with 
command name abbreviation algorithms. As we have already seen, people 
learning abbreviations can capitalize on consistent algorithms used in their 
generation (Hirsh-Pasek et al., 1982). The obvious way to represent such algo- 
rithms in TAG is to allow functions, such as take-first-three-letters, to operate 
on tokens of the grammar. (This approach was adopted to formalize the predic- 
tions in Payne's, 1985, experiment on abbreviations, summarized in Section 
4.2.) 

There are some problems with this extension. First, the complexity of the 
functions will not be apparent at all if the functions are merely denoted symboli- 
cally. Against this, it may be possible to assign unanalyzed complexity indices 
to the functions on the basis of empirical guidelines- certainly this is true of ab- 
breviation algorithms. Second, embedded functions can arbitrarily increase 
the power of the notation. To maintain a maximally constrained notation we 
must define a limited class of permitted functions. 

The most straightforward way to define a class of permitted functions is to re- 
strict the type of the input and output parameters. Abbreviation rules always 
take a word or phrase (a string of characters) and return a different string of 
characters. The only other functions that we have yet found use for in TAG 
analyses are some suggested by the psychology of pattern perception, such as 
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taking the next item in a defined alphabet. All these functions are syntactic 
functions, in the sense that they transform input parameters independently of 
meaning. (Of course, all effective procedures are purely syntactic at some level, 
by definition, but our proposed constraint goes deeper by specifying that the 
transformation performed by the function must remain syntactic when de- 
scribed at the level of tasks and actions.) 

We do not pretend to yet have a fully specified theory for allowing and disal- 
lowing embedded functions in TAG descriptions, but we do feel that embed- 
ding could prove a useful technique for integrating TAG with further, as yet 
unconsidered aspects of users' mental representation. 

6. TAG'S RELATION TO LEARNING AND PERFORMANCE 
THEORIES 

In this section we endeavor to demonstrate that TAG is compatible with cur- 
rent psychological notions of learning and performance. 

6.1. Learning 

We illustrate TAG'S relation to models of learning with some further exam- 
ples, based on a description of EG, the example message system used by Moran 
(1981) in his presentation of the Command Language Grammar (CLG). Fig- 
ure 11 shows a TAG description of EG. It is immediately noticeable from the 
figure how much more compact this description is than the CLG version; but, 
of course, CLG expresses some aspects of the interface that TAG ignores on 
principle - particularly the expert user's learned methods. 

Following Moran (1981) we consider learning in terms of the simple frame- 
work of Rumelhart and Norman (1978), who distinguished three modes of 
learning: accretion (basically, the addition of new elements of knowledge with- 
out affecting existing knowledge), tuning (changes to the form of representation 
of knowledge to improve economy, robustness, and performance), and re- 
structuring (the modification of existing knowledge in the light of new). All 
three kinds of learning could play a part in the dynamics of a user's task-action 
grammar. 

First, the user may learn how to perform simple-tasks that are unrelated to 
those already learned. A new entry will be added to the simple-task dictionary, 
and a new rule-schema added to the task-action mappings. Because of the em- 
phasis TAG places on the semantic organization of the entire task world and the 
use of discriminating features in the task dictionary, we posit that this kind of 
bald accretion is rare in task language learning, except when learning big, seri- 
ously inconsistent systems such as Unix. 

Second, tuning can be represented in TAG by allowing simple-tasks to be 
composed into new (macro-operator) simple-tasks, This device may allow some 
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Figure 11. A task-action grammar of Moran's (1981) EG message system. (The 
token message-no is an action variable which must be replaced with an exemplar.) 

TASK FEA TURES 
Feature 
Context 
End-state 
Condition 
DeletelDisplay 
Specifier 

Possible values 
operating-system, EG 
operating-system, EG 
new-mail, nil 
delete, display 
number, next 

SIMPLE TASKS 
Enter (Context = operating-system, End-state = EG, Condition = nil] 
Enter-if-new-mail (Context = operating-system, End-state = EG, 

Condition = new-mail) 
Delete-current-message (Context = EG, End-state = EG, 

DeletelDisplay = delete 
Display-next-message (Context = EG, End-state = EG, 

DeletelDisplay = display, Specifier = next) 
Display-specified-message (Context = EG, End-state = EG, 

DeletelDisplay = display, Specifier = number) 
Quit (Context = EG, End-state = operating-system) 

RULE SCHEMAS 
1 1 . 1  Task [Context = operating-system, Condition] - 

"EG" + extra[Condition] + "RETURN" 
11.2 extra [Condition = nil] - nil 
11.3 extra [Condition = new-mail] - "IN" 
11.4 Task [Context = EG, DeletelDisplay = delete] - " D  
11.5 Task [Context = EG, DeletelDisplay = display, Specifier = number] - 

"M" + "message-no" + "RETURN" 
11.6 Task[Context = EG, Delete-Display = display, Specifier = next] - "N" 
11.7 Task [Context = EG, End-state = operating-system] - "Q" 

aspects of practice to be captured by TAG, but any analysis of this possibility is 
beyond the scope of this article. We can exemplify the idea of simple-task com- 
position in the EG system. Imagine that a frequent task was to enter EG and 
read a single message before exiting again (to use a different software system 
perhaps). The required sequence of actions requires no control structure, so it 
can be represented in a TAG rewrite rule, as shown in Figure 12. Composition 
of this kind bears a close relation to the production system learning mechanisms 
of Anderson (1982, 1983). 

Finally, new simple-tasks that are related to those already learned may be en- 
countered, calling for restructuring of the task-action grammar. If we assume 
that a user has already learned the EG system described in Figure 11, what - 

would happen if the system were extended by a command to display a message 
from a specified sender? The new simple-task is clearly related to show- 
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Figure 12. Tuning the task-action grammar for EG to learn the macro-operator of 
entering EG, reading a particular message, and exiting to the operating system. 

ADDITIONAL SIMPLE TASKS 
Enter-read-exit (Context = operating-system, 

End-state = operating-system, 
Condition = nil, 
DeletelDisplay = display, 
Specifier = number) 

ADDITIONAL RULE SCHEMAS 
1 2 . 1  Task [F(Enter-read exit)] - 

Task [Context, Condition] 
+ Task [DeletelDisplay, Specifier] 
+ Task [End-state] 

message-number; it shares most components, but it differs in terms of its 
specifier. The required additionslalterations to the grammar are shown in Fig- 
ure 13. 

Even this simple example of restructuring highlights some interesting issues. 
It seems clear that very little active generalization would be required, and one 
wonders whether, in some respects, Rule 13.1 (Figure 13) was there all along. 
One might conjecture a learning mechanism in which every task-action 
mapping was represented as a maximally general hypothesis, in keeping with 
the ideas on active learning of Carroll and Mack (1985) and Hayes-Roth 
(1983). The alternative is a system that learns single task-action mappings in a 
rather rigid way, and that requires an effort of generalization to represent a sec- 
ond mapping, with the third and subsequent related mappings being easier to 
learn. This mechanism is closely related to suggestions for learning in a produc- 
tion system framework (e.g., Anderson, 1983). 

6.2. Performance 

Although TAG is a competence theory, it necessarily constrains perform- 
ance. Indeed, in contrast to most generative grammars, TAG can be incorpo- 
rated into a performance theory straightforwardly because it defines a mapping 
from tasks to actions (rather than merely generating all possible action se- 
quences). 

Task-action grammars are task based; the rules are driven by state transfor- 
mations that the user knows how to effect. Performance, on the other hand, is 
goal based; it is driven by end-states which the user wishes to achieve. To per- 
form using task-action grammar knowledge, users must assess the current state 
with respect to their goal state, and devise a sequence of simple-tasks that will 
transform one into the other. In other words, as stated before, simple-tasks play 
a similar role to operators and macro-operators in classical problem-solving ar- 
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Figure 13. Restructuring the task-action grammar for EG to learn a new command 
for displaying a message from a particular author. Note that Rule 11.5 is no longer 
needed. (The tokens message-no and author-name are action variables which must 
be replaced with exemplars. 

- -  

ADDITIONAL FEA TURES 
Feature Possible values 
Specifier number, next, author 
ADDITIONAL SIMPLE TASKS 
Display-message-by-author {Context = EG, End-state = EG, 

DeletelDisplay = display, Specifier = author) 
ADDITIONAL RULE SCHEMAS 
13.1 Task [ DeletelDisplay = display, Specifier - 

"M" + id [Specifier] + "RETURN" 
13.2 id [Specifier = number] - "message-no." 
13.3 id [Specifier = author] - "author-name" 

chitectures. Two additional stages are required: (a) Users must expand all the 
simple-tasks into action specifications, using the task-action grammar; and (b) 
they must produce physical actions from the action specifications. 

Performance can therefore be represented by the schematic flow diagram in 
Figure 14. 

As shown in the figure, goals are combined with knowledge of the current 
state to provide tasks (and, sometimes, to pass parameters to the.grammar; see 
the discussion of action variables in Section 2.4); plans are generated for the 
performance of tasks, typically consisting of subgoals, which in turn must be 
transformed into tasks. At the bottom level, a plan is some structure of simple- 
tasks (possibly a single simple-task); every simple-task can be performed by 
"running" the task-action grammar, and interpreting the resulting action speci- 
fication. Of course, this control cycle is subject to the usual iterations and inter- 
actions and must not be thought of as operating in strictly serial stages. Our re- 
stricted definition of simple-tasks allows us to assume that any online moni- 
toring of performance is done outside the task-action grammar, by the planner 
or by the action interpreter. 

This picture is not meant to grind any particular theoretical axe; it is in- 
tended to present a noncontroversial view of goal-based performance. It illu- 
strates the way in which "weak" problem-solving theories (e.g., Laird & Newell, 
1983; Newel1 & Simon, 1972) may be extended to deal with the medium of a 
task language. It also highlights a major distinction between our endeavor and 
the models of Card et al. (1983) and Kieras and Polson (1985); namely, that 
their process models treat all aspects of the user's performance from high-level 
planning down to low-level interaction, whereas task-action grammars simply 
describe knowledge of task languages in a way that can be utilized by some 
unspecified planning system. 
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Figure 14. A simple schematic of goal-oriented performance with a computer 
system. 

Top-level goal r 

7. CONCLUSIONS 

+ 
Twks 

We do not view TAG as a fixed and immutable notation. Instead, we present 
TAG as an advance in the formal definition of human-computer interfaces. 
Many inadequacies, however, will only be addressed by extensions of the cur- 
rent theory. 

Plrns t 
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TAG'S strength is that it allows reasonably compact definitions of task lan- 
guages that are sensitive to structural properties perceived by users. This 
strength enables simple metrics over grammars to predict relative learnability 
of different interface designs. These metrics are indices of complexity based on 
configural properties of the target language. Further aspects of learnability and 
usability may be dependent on the internal structure of single rules. Clearly, 
the current specification of TAG does not allow any assessment of tradeoffs be- 
tween configural properties and microstructure issues. The issues themselves 
can be addressed, but only by developing an extra layer of interpretation to be 
applied by the analyst to the rule representations of the model. TAG has been 
designed to make the complexity of the entire language explicit; it is hypothe- 
sized to be related directly to the number of simple-task rule schemas. TAG 
therefore offers an explanation of configural effects on complexity. To  offer a 
similar explanation of complexity effects due to individual rule schemas, it 
would be necessary to develop detailed low-level theories about how the rules 
are mentally processed, for example how a right-hand side is activated and how 
a left-hand side is accessed. No effort has been directed to this enterprise for two 
reasons: (a) We believe that configural aspects of languages typically outweigh 
microstructures of individual rules and (b) we are eager to keep the TAG nota- 
tion compact so that it may provide a usable tool for designers. 

We feel that the simplicity and compactness of TAG distinguishes our at- 
tempt to provide formal tools for the assessment of psychological complexity 
from the related enterprises of Card et al. (1983), Moran (1981), and Kieras 
and Polson (1985). The simplicity of TAG has been bought at a price; in partic- 
ular, we have been content to make predictions about relative complexity of de- 
signs, rather than providing quantitative measures. Because of this focus, TAG 
is at its most useful when comparing task languages that are similar in most re- 
spects. However, a second utility of TAG is for analyzing alternative organiza- 
tions of the same language. We exemplified this approach with our MacDraw 
analysis in Section 2.4.  

Our plans for extending TAG are to address some of the many aspects of user 
interfaces, and of the user's mental representation, that have not yet been con- 
sidered. A priority is to integrate TAG with a planning system, as suggested in 
Section 6 .  A second important concern is with users' conceptions of the external 
task world and their mental model of the machine. We believe that by advanc- 
ing a simple metalanguage that is low in formal power, yet gains much in ex- 
pressive power from a treatment of the semantics of tasks, we have provided a 
good platform for such developments. 
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