Adversarial Search

(a.k.a. Game Playing)

Chapter
5

(Adapted from Stuart Russell, Dan Klein, and others. Thanks guys!)

Outline

Games
Perfect play: principles of adversarial search
— minimax decisions
— a—f pruning
— Move ordering
Imperfect play: dealing with resource limits
— Cutting of search and approximate evaluation
Stochastic games (games of chance)
Partially Observable games

Card Games

Games vs. search problems

Search in Ch3&4: Single actor!
— “single player” scenario or game, e.g., Boggle.
— Brain teasers: one player against “the game”.

— Could be adversarial, but not directly as part of game
» e.g."I can find more words than you”

Adversarial game: “Unpredictable” opponent shares control of state

— solution is a strategy = specifying a move for every possible opponent
response

— Time rI]imits = unlikely to find goal, must find optimal move with incomplete
searc

— Major penalty for inefficiency (you get your clock cleaned)
— Most commonly: “zero-sum” games. My gain is your loss = Adversarial

Gaming has a deep history in computational thinking
— Computer considers possible lines of play (Babbage, 1846)
— Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
— Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
— First chess program (Turing, 1951)
— Machine learning to improve evaluation accuracy (Samuel, 1952-57)
— Pruning to allow deeper search (McCarthy, 1956)
— Plus explosion of more modern results...

Types of Games

deterministic chance
perfect information chess, checkers, go, Backgammon,
othello, connect-4, tic- Monopoly, Chutes-n-
tac-toe ladders

Battleship, Blind tic-tac- | Bridge, Poker, Scrabble
imperfect information | toe, Kriegspiel Nuclear war

» Access to Information
— Perfect Info. Fully observable. Both player see whole board, all of the time
— Imperfect Info. Not/partially-observable. Blind or partial knowledge of board.

* Determinism:
— Deterministic: No element of chance. Players have 100% control over actions taken in game

— Chance: Some element of chance: die rolls, cards dealing, etc.

Game tree (2-player, deterministic, turns)

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

O|X|OF——

(ol[e]

+
-

Pondering Game Tree Size...
« Tic-tac-toe (3x3)

— “Small” = 9! = 362,880 terminal
nodes

e Chess

— 1040 terminal nodes!

— Never could generate whole tree!

Minimax Search

Normal Search: Solution = seq. of actions leading to goal.
Adversarial Search: Opponent interfering at every step!

— Solution= Contingent plan of action
— Finds optimal solution to goal, assuming that opponent makes optimal counter-plays.
— Essentially an AND-OR tree (Ch4): opponent provides “non-determinism”

Perfect play for deterministic, perfect-information games:
— Idea: choose move to position with highest minimax value

E.g., 2-ply game:

MAX

MIN

Minimax algorithm

function Minimax-Decision(state) returns an action
inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
V¢ —
for a, sin Successors(state) do v < Max(v, Min-Value(s))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Ultility(state)
V «— o
for g, sin Successors(state) do v < Min(v, Max-Value(s))
return v

Minimax: Reflection

* Need to understand how minimax works!
» Recursive depth-first algorithm
— Max-Value at one level...calls Min-Value at next...calls Max-Value at next.
— Base case: Hits a terminal state = game is over - has known score (for max)

— Scores “backed up” through the tree on recursive return
» As each node fully explores its children, it can pass its value back

— Score arriving back at root shows which move current player (max) should make
« Makes move that maximizes outcome, assuming optimal play by opponent.

* Multi-player games?
— Don’t have just Max & Min. Have whole set of players A,B,C, etc.

— Calculate utility vector of scores at each level/node
» Contains node (board position) value for each player

— Value of node = utility vector that maximizes benefit for player whose move it is

Properties of minimax search

Complete??
— Yes, if tree is finite (chess has specific rules for this)
— Minimax performs complete depth-first exploration of game tree

Optimal??

— Yes, against an optimal opponent. Otherwise??
Time complexity??

— O(bm)
Space complexity??

— O(bm) (depth-first exploration) (m is tree depth)

Practical Analysis:

— For chess, b =35, m= 100 (moves) for “reasonable” games

Time cost gets out of range of “3 minute per move” standard fast!
= exact solution completely infeasible!

Engage cleverness: do we really need to explore every path in tree?

Alpha-Beta (a-8) pruning
* DFS plunges down tree to a terminal state fast!

* Knows about one complete branch first...
e Can we use this to avoid searching later branches?

« Alpha-Beta pruning:

MAX 23

MIN 3

Reference: whole tree

a-B pruning example

MAX >3
MIN 3 / €2
X X

Reference: whole tree

a-B pruning example

MAX

N

MIN 14

a-B pruning example

MAX

MIN

a-B pruning example

MAX

MIN

Observant Questions:

 What exactly is it that allowed pruning at <= 2 node?
 Why no pruning at sibling to right?

* More on this shortly...

a-B: Reflection on behavior

MAX
a is set/updated as first branch
is explored...then sent down

MIN subsequent branches to prune
with.

MAX-n

MIN-n v

* - maintains two boundary values as it moves up/down tree
« ais the best value (to max) found so far off the current path
« s the best value found so far at choice points for min

« Example: If Vis worse than a, Max-n will avoid it
« = prune that branch
* 3 works similarly for min

15

The a-p algorithm

function Alpha-Beta-Decision(state) returns an action
return the ain Actions(state) maximizingMin-Value(Result(a, state))

function Max-Value(state, a, B) returns a utility value
inputs: state, current state in game
a, the value of the bestalternative for max alongthe path to state
B, the value of the bestalternative for min alongthe path to state

if Terminal-Test(state) then return Utility(state)
Ve—— 0
for a, sin Successors(state) do
v—Max(v, Min-Value(s, a,))
if v 2 Bthen return v
a—Max(a, v)
return v

function Min-Value(state, a, B) returns a utility value
same asMax-Value but withroles of a, B reversed

16

Properties of a—3

* a—[observations:

— Pruning is zero-loss.
* Final outcome same as without pruning.

— Great example of “meta-reasoning’= reasoning about computational process.
» Here: reasoning about which computations could possibly be relevant (or not)
+ Key to high efficiency in Al programming.

— Effectiveness depends hugely which path (moves) you examine first.
» Slide 14: why prune in middle subtree...but not in rightmost one.
» Middle subtree: examines highest value (for max) nodes first!

— Analysis:
« Chess has average branching factor around 35

* Pruning removes branches (whole subtrees)
— > effective branching factor = 28. Substantial reduction.

« Unfortunately, 28%° s still impossible to search in reasonable time!

Move ordering to improve a—3 efficacy

Plan: at any ply: examine higher value (to max) siblings first.

— Sets the a value tightly - more likely to prune subsequent branches.
Strategies:

— Static: Prioritize higher value moves like captures, forward moves, etc.

— Dynamic: prioritize moves that have been good in the past

» Use IDS: searches to depth=n reveal high values moves for subsequent re-
searches at depth > n.

Stats:
— Minimax search = O(b™)
— o—B with random ordering = about O(b3™4) - nice reduction

— o— with strong move ordering = about O(b™?2)
Effectively reduced b-factor from 35 to 6 in chess! Can ply twice as deep, same time!

More power: transpositions

— Some move chains are transpositions of each other. (a->b, then d>e) gives same board as
(d->e, then b>a).

— ldentify and only compute once: can double reachable depth again!

Imperfect Game Play

Reality check:
— Thus far: minimax assumes we can search down to “bottom” of tree
— Not realistic: minimax is O(b™)
* Chess = of 50 moves/game, b about 35
« 0O(35%)....0r, with theoretical best a— move ordering: O(6%°). Huge!

— Plan: Search as deep as time allows
« Terminal-test() - Cutoff-test()
+ Cut-off-test(s) decides if we should stop searching at that state/level.
« Iftrue: apply evaluation function and return value of that board.

When to cut off search?
— Fred Flintstone static approach = just always cut off search at some depth d.

— Problem: leaves valuable time on the table
» Reachable depth within t-limit varies depending on board/# pieces/etc.
— Solution: Use IDS.
» Search until time is up = return result from latest completed search
* Bonus: Use info from previous IDS runs to optimize a— move ordering
— Problem: horizon effect = something bad could happen just beyond search limit

— Solution: Add quiescence metric. Never cut off search in middle of heavy action.

Advanced Techniques: when winning matters

 Idea 1. Find ways to search deeper.
— Efficiency: efficient board representation, faster eval functions, etc.
— Better pruning: maximize efficacy of move ordering subsystem
— Forward pruning: cut off “un-interesting” branches of search tree early
* o—B prunes nodes that are provably useless - loss-less
« Forward pruning “guesses” - prunes nodes that are probably useless.

« Danger: could prune away moves that ultimately lead to wins!
» Strategy: shallow search gets rough node value. Stored info estimates likely utility

« |dea 2: More sophisticated evaluation function

— Linear weighted function assume independence of features...statically
« But often it's the combo of pieces that count...more at some points in game than others
« E.g., pair of bishops > two bishops...but more so in the end-game
» Non-linear weighted functions allow more subtle tuning

— Machine learning can also be used to adjust weights from experience

Advanced Techniques: when winning matters

* Idea 3: Avoid search completely when you can

— In many games, there are certain rote phases
» e.g. Chess: whole libraries of books about standard openings/end games
* Why search down through billions of boards? Look it up!

— Can just store and look-up moves for “standard” situations
« Enter from books and other “human knowledge”
» Calculate stats on DB of previously played games - which openings won most?

— Computers can have advantage of humans here!
« Human: has general strategy for certain endgames
— King-rook-king (KRK) endgame, king-bishop-knight-king (KBNK), etc.
« Computer: with so few pieces, can literally compute winning move sequence!
— For all possible KRK endings, etc.

« Computer recognizes a pre-computed sequence - plays perfect deterministic
endgame!

History: Deterministic Games in practice...

Checkers:
— Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.

— Used an endgame database defining perfect play for all positions involving 8 or fewer
pieces on the board, a total of 443,748,401,247 positions.

Chess:

— Deep Blue defeated human world champion Gary Kasparov in a six-game match in
1997.

— Deep Blue searches 200 million positions per second, uses very sophisticated
evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello:
— human champions refuse to compete against computers, who are too good.
Go:
— 2005: human champions refuse to compete against computers, who are too bad.

— In go, b > 300, so most programs use pattern knowledge bases to suggest plausible
moves.

— 2017: IBM reveals it has been secretly entering its Go agent in online tournaments.
And winning. Beats reigning Go champion four in a row...

Stochastic (non-deterministic games)

0 1 2 3 4 5 6 7 8 9 10 11 12

* Player-at-turn rolls dice:
* Can now move one piece 5 places, and
another piece 6 places

25 24 23 2 21 20 19 18 17 16 15 14 13

« Combination of luck and skill
— Strategy must account for roll of dice = random chance. Plus other player!
— Backgammon: Dice determine possible moves

« Can'’t construct a standard game tree!

23

Non-deterministic Games

« Chance introduced by: dice, card-shuffling/dealing, drawing cards
* Minimax = Expectiminimax
— Chance essentially acts as another “player”
— Chance level= sum of expected outcomes, weighted by probability of happening.

« Simplified example with coin-flipping "move” inserted into some game:

CHANCE

MIN

Expectiminimax Algorithm

« Expectiminimax produces perfect play
— Meaning: best possible play, given the stochastic probabilities involved.

« Just like Minimax, except we must also handle chance nodes:

If terminal-test(s)=true
return Evaluation-fn(s)
if state is @ Max node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is @ Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is @ chance node then
return SUM of probability-weighted(ExpectiMinimax-Value of Successors(state))

« Dice rolls increase b:

— 21II gossible rolls with 2 dice Backgammon ~ 20 legal moves (can be 6,000 with 1-1
ro

— depth 4 = 20 x (21 x 20)3 ~ 1.2 x 10°

— Thus: As depth increases, probability of reaching a given node shrinks
» = value of lookahead is diminished
« a-B pruning is much less effective (because chance makes pruning less common)

« TDGammon: uses depth-2 search + very good Eval~ world-champion level

Games of imperfect information

g.., card games, where opponents initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*Idea:

compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals*

Special aase: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

26

Partially Observable Games

« Sofar: Fully observable games
— All player can see all functional pieces (state) of the game at all times

« Many games are fun because of imperfect information
— Players see only none/part of opponents state.
— E.g. Poker and similar card games, Battleship, etc.

« Example: Kriegspiel: Blind chess!
— White and Black see only a board containing their pieces.

— On turn: player proposes a move.

» Referee announced: legallillegal. If legal: “Capture on square X", “Check by

<direction>”, “checkmate” or “stalemate”.

— Plan: Use belief states developed in Ch4!

» Referee feedback = percepts that update/prune belief states.

« All believe states NOT equally likely: can calculate probabilities on believe states
based predicting optimum play by opponent.

* Implication: Best to add some randomness to your play: be unpredictable!

Card Games

Stochastic partial observability
— Cards dealt randomly at the beginning of game. Deterministic after that.
— Odds (probability) of possible hands easily calculated.
— E.g. Bridge, Whist, Hearts, some forms of poker.

Plan: Probabilistic weighted search
— Generate all possible deals of the (missing) cards
— Solve each one just like a fully observable games (Minimax)
— Weight each outcome with probability of that hand being dealt
— Chose move that has the best outcome, averaged over all possible deals.

Reality check:
— In Bridge there are 10+ million possible visible hands. Can’t explore all!

— Idea: Monte Carlo approach: solve random sample of deals
Choice of sample set is weighted to include more likely hands.

— Bidding may add valuable info on hands - changes probabilities.

GIB, leading bridge program: generates 100 deals consistent with bidding

Summary

Games are just specialized search problems. Modifications:
— Minimax (plus a—f pruning) to model opponent player
— Stochastic “choice” layers in tree to model chance
— Belief state management to model partial observability
Games illustrate several important points about Al
— perfection is unattainable in reality = must approximate

— good idea to think about what to think about
+ Meta-level analysis, as in considerations leading to a— pruning

— Uncertainty constrains the assignment of values to states
» Increases effective branching factor, could make pruning less effective

Optimal decisions depend on information state, not real state
— As illustrated in partially observable games, when belief state is what matters

Games are to Al as grand prix racing is to automobile design
— Proving ground for hardware, data structures, algorithms...and cleverness

