Adversarial Search

(a.k.a. Game Playing)

Chapter 5

Outline

- Games
- Perfect play: principles of adversarial search
- minimax decisions
- $\alpha-\beta$ pruning
- Move ordering
- Imperfect play: dealing with resource limits
- Cutting of search and approximate evaluation
- Stochastic games (games of chance)
- Partially Observable games
- Card Games

Games vs. search problems

- Search in Ch3\&4: Single actor!
- "single player" scenario or game, e.g., Boggle.
- Brain teasers: one player against "the game".
- Could be adversarial, but not directly as part of game
- e.g. "I can find more words than you"
- Adversarial game: "Unpredictable" opponent shares control of state
- solution is a strategy \rightarrow specifying a move for every possible opponent response
- Time limits \Rightarrow unlikely to find goal, must find optimal move with incomplete search
- Major penalty for inefficiency (you get your clock cleaned)
- Most commonly: "zero-sum" games. My gain is your loss = Adversarial
- Gaming has a deep history in computational thinking
- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952-57)
- Pruning to allow deeper search (McCarthy, 1956)
- Plus explosion of more modern results...

Types of Games

deterministic

chance

perfect information	chess, checkers, go, othello, connect-4, tic- tac-toe	Backgammon, Monopoly, Chutes-n- ladders
imperfect information	Battleship, Blind tic-tac- toe, Kriegspiel	Bridge, Poker, Scrabble Nuclear war

- Access to Information
- Perfect Info. Fully observable. Both player see whole board, all of the time
- Imperfect Info. Not/partially-observable. Blind or partial knowledge of board.
- Determinism:
- Deterministic: No element of chance. Players have 100\% control over actions taken in game
- Chance: Some element of chance: die rolls, cards dealing, etc.

Game tree (2-player, deterministic, turns)

Pondering Game Tree Size...

- Tic-tac-toe (3×3)
- "Small" $=9$! $=362,880$ terminal nodes
- Chess
- 1040 terminal nodes!
- Never could generate whole tree!

Minimax Search

- Normal Search: Solution = seq. of actions leading to goal.
- Adversarial Search: Opponent interfering at every step!
- Solution= Contingent plan of action
- Finds optimal solution to goal, assuming that opponent makes optimal counter-plays.
- Essentially an AND-OR tree (Ch4): opponent provides "non-determinism"
- Perfect play for deterministic, perfect-information games:
- Idea: choose move to position with highest minimax value
- E.g., 2-ply game:

Minimax algorithm

```
function Minimax-Decision(state) returns an action
    inputs: state, current state in game
    return the a in Actions(state) maximizing Min-Value(Result(a, state))
function Max-Value(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    v\leftarrow-\infty
    for a, s in Successors(state) do v}\leftarrow\operatorname{Max(v, Min-Value(s))
    return v
function Min-Value(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    v \leftarrow \infty
    for a, s in Successors(state) do v}\leftarrow\operatorname{Min}(v,Max-Value(s)
    return v
```


Minimax: Reflection

- Need to understand how minimax works!
- Recursive depth-first algorithm
- Max-Value at one level...calls Min-Value at next...calls Max-Value at next.
- Base case: Hits a terminal state = game is over \rightarrow has known score (for max)
- Scores "backed up" through the tree on recursive return
- As each node fully explores its children, it can pass its value back
- Score arriving back at root shows which move current player (max) should make
- Makes move that maximizes outcome, assuming optimal play by opponent.
- Multi-player games?
- Don't have just Max \& Min. Have whole set of players A,B,C, etc.
- Calculate utility vector of scores at each level/node
- Contains node (board position) value for each player
- Value of node = utility vector that maximizes benefit for player whose move it is

Properties of minimax search

- Complete??
- Yes, if tree is finite (chess has specific rules for this)
- Minimax performs complete depth-first exploration of game tree
- Optimal??
- Yes, against an optimal opponent. Otherwise??
- Time complexity??
- O(bm)
- Space complexity??
- $\mathrm{O}(\mathrm{bm})$ (depth-first exploration) (m is tree depth)
- Practical Analysis:
- For chess, $b \approx 35, m \approx 100$ (moves) for "reasonable" games
- Time cost gets out of range of " 3 minute per move" standard fast!
- \Rightarrow exact solution completely infeasible!
- Engage cleverness: do we really need to explore every path in tree?

Alpha-Beta ($\alpha-\beta$) pruning

- DFS plunges down tree to a terminal state fast!
- Knows about one complete branch first...
- Can we use this to avoid searching later branches?
- Alpha-Beta pruning:

$\alpha-\beta$ pruning example

Reference: whole tree

$\alpha-\beta$ pruning example

Reference: whole tree

$\alpha-\beta$ pruning example

Reference: whole tree

$\alpha-\beta$ pruning example

Reference: whole tree
Observant Questions:

- What exactly is it that allowed pruning at <= 2 node?
- Why no pruning at sibling to right?
- More on this shortly...

$\alpha-\beta$: Reflection on behavior

α is set/updated as first branch is explored...then sent down subsequent branches to prune with.

- $\alpha-\beta$ maintains two boundary values as it moves up/down tree
- α is the best value (to max) found so far off the current path
- $\quad \beta$ is the best value found so far at choice points for min
- Example: If V is worse than α, Max-n will avoid it
- \Rightarrow prune that branch
- β works similarly for min

The $\alpha-\beta$ algorithm

```
function Alpha-Beta-Decision(state) returns an action
    return the a in Actions(state) maximizing Min-Value(Result(a, state))
function Max-Value(state, \alpha, \beta) returns a utility value
    inputs: state, current state in game
            \alpha, the value of the bestalternative for max along the path to state
            \beta}\mathrm{ , the value of the bestalternative for min along the path to state
    if Terminal-Test(state) then return Utility(state)
    v\leftarrow-\infty
    for a, s in Successors(state) do
        v\leftarrowMax(v, Min-Value(s, \alpha, \beta))
        if v\geq\beta
        \alpha\leftarrowMax(\alpha,v)
    return v
```

function Min-Value(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed

Properties of $\boldsymbol{\alpha} \boldsymbol{-} \boldsymbol{\beta}$

- $\alpha-\beta$ observations:
- Pruning is zero-loss.
- Final outcome same as without pruning.
- Great example of "meta-reasoning"= reasoning about computational process.
- Here: reasoning about which computations could possibly be relevant (or not)
- Key to high efficiency in Al programming.
- Effectiveness depends hugely which path (moves) you examine first.
- Slide 14: why prune in middle subtree...but not in rightmost one.
- Middle subtree: examines highest value (for max) nodes first!
- Analysis:
- Chess has average branching factor around 35
- Pruning removes branches (whole subtrees)
$-\rightarrow$ effective branching factor $=28$. Substantial reduction.
- Unfortunately, 28^{50} is still impossible to search in reasonable time!

Move ordering to improve $\alpha-\beta$ efficacy

- Plan: at any ply: examine higher value (to max) siblings first.
- Sets the α value tightly \rightarrow more likely to prune subsequent branches.
- Strategies:
- Static: Prioritize higher value moves like captures, forward moves, etc.
- Dynamic: prioritize moves that have been good in the past
- Use IDS: searches to depth=n reveal high values moves for subsequent researches at depth > n.
- Stats:
- Minimax search $=O\left(b^{m}\right)$
$-\alpha-\beta$ with random ordering $=$ about $O\left(b^{3 m / 4}\right) \rightarrow$ nice reduction
$-\alpha-\beta$ with strong move ordering $=$ about $O\left(b^{m / 2}\right)$
- Effectively reduced b-factor from 35 to 6 in chess! Can ply twice as deep, same time!
- More power: transpositions
- Some move chains are transpositions of each other. $(a \rightarrow b$, then $d \rightarrow e)$ gives same board as $(d \rightarrow e$, then $b \rightarrow a)$.
- Identify and only compute once: can double reachable depth again!

Imperfect Game Play

- Reality check:
- Thus far: minimax assumes we can search down to "bottom" of tree
- Not realistic: minimax is $O\left(b^{m}\right)$
- Chess = of 50 moves/game, b about 35
- $O\left(35^{50}\right) \ldots$.or, with theoretical best $\alpha-\beta$ move ordering: $O\left(6^{50}\right)$. Huge!
- Plan: Search as deep as time allows
- Terminal-test() \rightarrow Cutoff-test()
- Cut-off-test(s) decides if we should stop searching at that state/level.
- If true: apply evaluation function and return value of that board.
- When to cut off search?
- Fred Flintstone static approach = just always cut off search at some depth d.
- Problem: leaves valuable time on the table
- Reachable depth within t-limit varies depending on board/\# pieces/etc.
- Solution: Use IDS.
- Search until time is up \rightarrow return result from latest completed search
- Bonus: Use info from previous IDS runs to optimize $\alpha-\beta$ move ordering
- Problem: horizon effect = something bad could happen just beyond search limit
- Solution: Add quiescence metric. Never cut off search in middle of heavy action.

Advanced Techniques: when winning matters

- Idea 1: Find ways to search deeper.
- Efficiency: efficient board representation, faster eval functions, etc.
- Better pruning: maximize efficacy of move ordering subsystem
- Forward pruning: cut off "un-interesting" branches of search tree early
- $\alpha-\beta$ prunes nodes that are provably useless \rightarrow loss-less
- Forward pruning "guesses" \rightarrow prunes nodes that are probably useless.
- Danger: could prune away moves that ultimately lead to wins!
- Strategy: shallow search gets rough node value. Stored info estimates likely utility
- Idea 2: More sophisticated evaluation function
- Linear weighted function assume independence of features...statically
- But often it's the combo of pieces that count...more at some points in game than others
- E.g., pair of bishops > two bishops...but more so in the end-game
- Non-linear weighted functions allow more subtle tuning
- Machine learning can also be used to adjust weights from experience

Advanced Techniques: when winning matters

- Idea 3: Avoid search completely when you can
- In many games, there are certain rote phases
- e.g. Chess: whole libraries of books about standard openings/end games
- Why search down through billions of boards? Look it up!
- Can just store and look-up moves for "standard" situations
- Enter from books and other "human knowledge"
- Calculate stats on DB of previously played games \rightarrow which openings won most?
- Computers can have advantage of humans here!
- Human: has general strategy for certain endgames
- King-rook-king (KRK) endgame, king-bishop-knight-king (KBNK), etc.
- Computer: with so few pieces, can literally compute winning move sequence!
- For all possible KRK endings, etc.
- Computer recognizes a pre-computed sequence \rightarrow plays perfect deterministic endgame!

History: Deterministic Games in practice...

- Checkers:
- Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
- Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of $443,748,401,247$ positions.
- Chess:
- Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997.
- Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello:
- human champions refuse to compete against computers, who are too good.
- Go:
- 2005: human champions refuse to compete against computers, who are too bad.
- In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.
- 2017: IBM reveals it has been secretly entering its Go agent in online tournaments. And winning. Beats reigning Go champion four in a row...

Stochastic (non-deterministic games)

- Player-at-turn rolls dice:
- Can now move one piece 5 places, and another piece 6 places
- Combination of luck and skill
- Strategy must account for roll of dice = random chance. Plus other player!
- Backgammon: Dice determine possible moves
- Can't construct a standard game tree!

Non-deterministic Games

- Chance introduced by: dice, card-shuffling/dealing, drawing cards
- Minimax \rightarrow Expectiminimax
- Chance essentially acts as another "player"
- Chance level= sum of expected outcomes, weighted by probability of happening.
- Simplified example with coin-flipping "move" inserted into some game:

Expectiminimax Algorithm

- Expectiminimax produces perfect play
- Meaning: best possible play, given the stochastic probabilities involved.
- Just like Minimax, except we must also handle chance nodes:

```
If terminal-test(s)=true
    return Evaluation-fn(s)
if state is a Max node then
    return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
    return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
    return SUM of probability-weighted(ExpectiMinimax-Value of Successors(state))
```

- Dice rolls increase b :
- 21 possible rolls with 2 dice Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)
- depth $4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}$
- Thus: As depth increases, probability of reaching a given node shrinks
- \Rightarrow value of lookahead is diminished
- $\alpha-\beta$ pruning is much less effective (because chance makes pruning less common)
- TDGammon: uses depth-2 search + very good Eval \approx world-champion level

Games of imperfect information

g.,, card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*Idea:
compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Partially Observable Games

- So far: Fully observable games
- All player can see all functional pieces (state) of the game at all times
- Many games are fun because of imperfect information
- Players see only none/part of opponents state.
- E.g. Poker and similar card games, Battleship, etc.
- Example: Kriegspiel: Blind chess!
- White and Black see only a board containing their pieces.
- On turn: player proposes a move.
- Referee announced: legal/illegal. If legal: "Capture on square X", "Check by <direction>", "checkmate" or "stalemate".
- Plan: Use belief states developed in Ch4!
- Referee feedback = percepts that update/prune belief states.
- All believe states NOT equally likely: can calculate probabilities on believe states based predicting optimum play by opponent.
- Implication: Best to add some randomness to your play: be unpredictable!

Card Games

- Stochastic partial observability
- Cards dealt randomly at the beginning of game. Deterministic after that.
- Odds (probability) of possible hands easily calculated.
- E.g. Bridge, Whist, Hearts, some forms of poker.
- Plan: Probabilistic weighted search
- Generate all possible deals of the (missing) cards
- Solve each one just like a fully observable games (Minimax)
- Weight each outcome with probability of that hand being dealt
- Chose move that has the best outcome, averaged over all possible deals.
- Reality check:
- In Bridge there are 10+ million possible visible hands. Can't explore all!
- Idea: Monte Carlo approach: solve random sample of deals
- Choice of sample set is weighted to include more likely hands.
- Bidding may add valuable info on hands \rightarrow changes probabilities.
- GIB, leading bridge program: generates 100 deals consistent with bidding

Summary

- Games are just specialized search problems. Modifications:
- Minimax (plus $\alpha-\beta$ pruning) to model opponent player
- Stochastic "choice" layers in tree to model chance
- Belief state management to model partial observability
-
- Games illustrate several important points about AI
- perfection is unattainable in reality \Rightarrow must approximate
- good idea to think about what to think about
- Meta-level analysis, as in considerations leading to $\alpha-\beta$ pruning
- Uncertainty constrains the assignment of values to states
- Increases effective branching factor, could make pruning less effective
- Optimal decisions depend on information state, not real state
- As illustrated in partially observable games, when belief state is what matters
- Games are to Al as grand prix racing is to automobile design
- Proving ground for hardware, data structures, algorithms...and cleverness

