
Adversarial Search 
(a.k.a. Game Playing) 

C h a p t e r  
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(Adapted	from	Stuart	Russell,	Dan	Klein,	and	others.	Thanks	guys!)			



Outline 

•  Games 

•  Perfect play: principles of adversarial search 

–  minimax decisions 

–  α–β pruning 

–  Move ordering 

•  Imperfect play: dealing with resource limits 

–  Cutting of search and approximate  evaluation 

•  Stochastic games (games of chance) 

•  Partially Observable games 

•  Card Games 
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Games vs. search problems 

•  Search in Ch3&4:  Single actor! 
–  “single player” scenario or game, e.g., Boggle. 
–  Brain teasers: one player against “the game”. 
–  Could be adversarial, but not directly as part of game 

•  e.g. “I can find more words than you” 

•  Adversarial game:  “Unpredictable” opponent shares control of state 
–  solution is a strategy à specifying a move for every possible opponent  

response 
–  Time limits ⇒ unlikely to find goal, must find optimal move with incomplete 

search 
–  Major penalty for inefficiency (you get your clock cleaned) 
–  Most commonly:  “zero-sum” games.  My gain is your loss = Adversarial 

•  Gaming has a deep history in computational thinking 
–  Computer considers possible lines of play (Babbage,  1846) 
–  Algorithm for perfect play (Zermelo, 1912; Von Neumann,   1944) 
–  Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;  Shannon, 1950) 
–  First chess program (Turing, 1951) 
–  Machine learning to improve evaluation accuracy (Samuel,  1952–57) 
–  Pruning to allow deeper search (McCarthy,  1956) 
–  Plus explosion of more modern results... 
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Types of Games 

•  Access to Information  
–  Perfect Info.  Fully observable.  Both player see whole board, all of the time 
–  Imperfect Info.  Not/partially-observable.  Blind or partial knowledge of board. 

•  Determinism: 
–  Deterministic: No element of chance. Players have 100% control over actions taken in game 
–  Chance:  Some element of chance:  die rolls, cards dealing, etc. 
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deterministic chance 

perfect information 

imperfect information 

chess,	checkers,		go,	
othello,	connect-4,	Dc-
tac-toe 

Backgammon,		
Monopoly,	Chutes-n-
ladders 

BaHleship,		Blind	Dc-tac-
toe,	Kriegspiel 
	

Bridge,	Poker,	Scrabble		
Nuclear	war 



Game 	 tree	(2-player,	deterministic,		turns)	
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Pondering Game Tree Size... 
•  Tic-tac-toe (3x3) 

–  “Small” = 9! = 362,880 terminal 
nodes 

•  Chess   
–  1040 terminal nodes! 

–  Never could generate whole tree! 



Minimax Search 
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•  Normal Search:  Solution = seq. of actions leading to goal. 
•  Adversarial Search:  Opponent interfering at every step! 

–  Solution= Contingent plan of action 
–  Finds optimal solution to goal, assuming that opponent makes optimal counter-plays. 
–  Essentially an AND-OR tree (Ch4):  opponent provides “non-determinism” 

•  Perfect play for deterministic, perfect-information games: 
–  Idea:  choose move to position with highest minimax  value 

•  E.g., 2-ply game: 



Minimax	algorithm	

function Minimax-Decision(state)	returns an	ac(on	
inputs:	state,	current	state	in			game	

return the		a	in	Actions(state)	maximizing	Min-Value(Result(a,	state))	
 

function Max-Value(state)	returns a		u(lity	value	
if Terminal-Test(state)	then return Utility(state)	
v	← −∞ 
for a,	s	in		Successors(state)	do v	← Max(v,	Min-Value(s))	
return v	

 
function Min-Value(state)	returns a		u(lity	value	

if Terminal-Test(state)	then return Utility(state)	
v	← ∞ 
for a,	s	in		Successors(state)	do v	← Min(v,	Max-Value(s))	
return v	
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Minimax:  Reflection 

•  Need to understand how minimax works! 
•  Recursive depth-first algorithm 

–  Max-Value at one level...calls Min-Value at next...calls Max-Value at next. 
–  Base case:  Hits a terminal state = game is over à has known score (for max) 

–  Scores “backed up” through the tree on recursive return 
•  As each node fully explores its children, it can pass its value back 

–  Score arriving back at root shows which move current player (max) should make 
•  Makes move that maximizes outcome, assuming optimal play by opponent.  

•  Multi-player games? 
–  Don’t have just Max & Min.  Have whole set of players A,B,C, etc. 
–  Calculate utility vector of scores at each level/node 

•  Contains node (board position) value for each player 

–  Value of node = utility vector that maximizes benefit for player whose move it is 
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Properties of minimax search 

•  Complete??  
–  Yes, if tree is finite (chess has specific rules for this) 
–  Minimax performs complete depth-first exploration of game tree 

•  Optimal??   
–  Yes, against an optimal opponent.  Otherwise?? 

•  Time complexity??  
–  O(bm) 

•  Space complexity??  
–  O(bm) (depth-first exploration)    (m is tree depth) 

•  Practical Analysis:  
–  For chess, b  ≈ 35, m ≈ 100 (moves) for “reasonable”  games 

•  Time cost gets out of range of “3 minute per move” standard fast! 
•  ⇒ exact solution completely infeasible! 

•  Engage cleverness:  do we really need to explore every  path in tree? 
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Alpha-Beta (α–β) pruning  

MAX 

3 12 8 

MIN 3 

3 
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Reference:	whole	tree	

•  DFS plunges down tree to a terminal state fast!  
•  Knows	about	one	complete	branch	first...	
•  Can	we	use	this	to	avoid	searching	later	branches?		

•  Alpha-Beta pruning:  



α–β  pruning	example 
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Reference:	whole	tree	



α–β  pruning	example 
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Reference:	whole	tree	



α–β  pruning	example 
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Reference:	whole	tree	



α–β  pruning	example 
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Reference:	whole	tree	
Observant	QuesDons:	
•  What	exactly	is	it	that	allowed	pruning	at	<=	2	node?	
•  Why	no	pruning	at	sibling	to	right?	
•  More	on	this	shortly...	



α–β:		Re>lection	on	behavior 
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•  α-β maintains two boundary values as it moves up/down tree 
•  α is the best value (to max) found so far off the current path 
•   β is the best value found so far at choice points for min 

•  Example:  If V is worse than α, Max-n will avoid it  
•  ⇒ prune  that branch   

•  β works similarly for min 

MAX 

MIN 
 
.. 
.. 
.. 
 
MAX-n 

MIN-n V 

α	
α	

α	

α	is	set/updated	as	first	branch	
is	explored…then	sent	down	
subsequent	branches	to	prune	
with.	



The	 α–β  algorithm  

function Alpha-Beta-Decis ion (s tate ) 	returns an	acDon	
return the		a	in	Actions(state) 	maximizing	Min-Va lue (Resu l t (a , 	 state))	

 
function Max-Value(state , 	α,	β)	returns a	u(lity	value	

inputs:	state,	current	state	in			 game	
α,	the		value		of		the		best	alternaDve	for 	max along	the		path		to	state	
β,	the		value		of		the		best	alternaDve	for 	min along	the		path		to	state	

if Termina l -Test ( s ta te ) 	 then return Uti l i ty (state ) 	
v	← − ∞  
for a,	s	in		Successors (state ) 	 do 

v	← Max (v , 	Min-Value (s , 	α,	β))	
if v 	≥  β then return v	
α ← Max (α , 	v)	

return v	
 

function Min-Value(state , 	α,	β)	returns a	u(lity	value	
same		as	M a x - Va l u e  but		with	roles		of		α,	β reversed	
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Properties of α–β 

•  α–β observations: 
–  Pruning is zero-loss.   

•  Final outcome same as without pruning. 

–  Great example of “meta-reasoning”= reasoning about computational process. 
•  Here: reasoning about which computations could possibly be relevant (or not) 
•  Key to high efficiency in AI programming. 

–  Effectiveness depends hugely which path (moves) you examine first. 
•  Slide 14:  why prune in middle subtree…but not in rightmost one.  
•  Middle subtree:  examines highest value (for max) nodes first!  

–  Analysis: 
•  Chess has average branching factor around 35 
•  Pruning removes branches (whole subtrees)  

–  à effective branching factor = 28.  Substantial reduction. 

•  Unfortunately, 2850   is still impossible to search in reasonable time! 
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Move ordering to improve α–β efficacy 

•  Plan: at any ply:  examine higher value (to max) siblings first. 
–  Sets the α value tightly à more likely to prune subsequent branches. 

•  Strategies: 
–  Static:  Prioritize higher value moves like captures, forward moves, etc.  

–  Dynamic:  prioritize moves that have been good in the past 
•  Use IDS: searches to depth=n reveal high values moves for subsequent re-

searches at depth > n. 
•  Stats:  

–  Minimax search = O(bm) 
–  α–β with random ordering = about O(b3m/4) à nice reduction 

–  α–β with strong move ordering = about O(bm/2) 
•  Effectively reduced b-factor from 35 to 6 in chess!   Can ply twice as deep, same time! 

•  More power: transpositions 
–  Some move chains are transpositions of each other.  (aàb, then dàe) gives same board as 

(dàe, then bàa).   

–  Identify and only compute once: can double reachable depth again! 
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Imperfect Game Play 

•  Reality check: 
–  Thus far: minimax assumes we can search down to “bottom” of tree 
–  Not realistic:  minimax is O(bm) 

•  Chess = of 50 moves/game,  b about 35 
•  O(3550)….or, with theoretical best α–β move ordering: O(650).  Huge! 

–  Plan:  Search as deep as time allows 
•  Terminal-test()  à Cutoff-test() 
•  Cut-off-test(s) decides if we should stop searching at that state/level. 
•  If true:  apply evaluation function and return value of that board. 

•  When to cut off search? 
–  Fred Flintstone static approach = just always cut off search at some depth d. 
–  Problem: leaves valuable time on the table 

•  Reachable depth within t-limit varies depending on board/# pieces/etc. 
–  Solution:  Use IDS. 

•  Search until time is up à return result from latest completed search 
•  Bonus:  Use info from previous IDS runs to optimize α–β move ordering 

–  Problem:  horizon effect = something bad could happen just beyond search limit 
–  Solution:  Add quiescence metric.  Never cut off search in middle of heavy action.  
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Advanced Techniques: when winning matters 

•  Idea 1:  Find ways to search deeper.   
–  Efficiency:  efficient board representation, faster eval functions, etc. 
–  Better pruning:  maximize efficacy of move ordering subsystem 

–  Forward pruning:  cut off “un-interesting” branches of search tree early 
•  α–β prunes nodes that are provably useless à loss-less 
•  Forward pruning “guesses” à prunes nodes that are probably useless. 
•  Danger:  could prune away moves that ultimately lead to wins! 
•  Strategy: shallow search gets rough node value.  Stored info estimates likely utility 

•  Idea 2:  More sophisticated evaluation function 
–  Linear weighted function assume independence of features…statically 

•  But often it’s the combo of pieces that count…more at some points in game than others 
•  E.g., pair of bishops > two bishops…but more so in the end-game 
•  Non-linear weighted functions allow more subtle tuning 

–  Machine learning can also be used to adjust weights from experience 
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Advanced Techniques: when winning matters 

•  Idea 3:  Avoid search completely when you can 

–  In many games, there are certain rote phases 
•  e.g. Chess:  whole libraries of books about standard openings/end games 
•  Why search down through billions of boards?  Look it up! 

–  Can just store and look-up moves for “standard” situations 
•  Enter from books and other “human knowledge” 
•  Calculate stats on DB of previously played games à which openings won most? 

–  Computers can have advantage of humans here!  
•  Human:  has general strategy for certain endgames 

–  King-rook-king (KRK) endgame, king-bishop-knight-king (KBNK), etc. 

•  Computer:  with so few pieces, can literally compute winning move sequence! 
–  For all possible KRK endings, etc. 

•  Computer recognizes a pre-computed sequence à plays perfect deterministic 
endgame! 
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History:  Deterministic Games in practice… 

•  Checkers:  
–  Chinook ended 40-year-reign of human world champion Marion  Tinsley in 1994. 
–  Used  an  endgame database defining perfect play for all positions involving 8 or fewer 

pieces on the board, a total of 443,748,401,247  positions. 

•  Chess:  
–  Deep Blue defeated human world champion Gary Kasparov in a six-game match in 

1997.  
–  Deep Blue searches 200 million positions per second,  uses very sophisticated 

evaluation, and undisclosed methods for extending  some lines of search up to 40  ply. 

•  Othello:  
–  human champions refuse to compete against computers, who are too good. 

•  Go:  
–  2005:  human champions refuse to compete against computers, who are too  bad.  
–  In go, b > 300, so most programs use pattern knowledge bases to  suggest plausible 

moves. 
–  2017:  IBM reveals it has been secretly entering its Go agent in online tournaments. 

And winning.  Beats reigning Go champion four in a row… 
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Stochastic (non-deterministic games) 

•  Combination of luck and skill 
–  Strategy must account for roll of dice = random chance.  Plus other player! 
–  Backgammon:  Dice determine possible moves 

•  Can’t construct a standard game tree!   
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•  Player-at-turn	rolls	dice:	
•  Can	now	move	one	piece	5	places,	and	

another	piece	6	places	



Non-deterministic Games 

•  Chance introduced by:  dice, card-shuffling/dealing, drawing cards 
•  Minimax à Expectiminimax 

–  Chance essentially acts as another “player” 

–  Chance level= sum of expected outcomes, weighted by probability of happening. 

•  Simplified example with coin-flipping “move” inserted into some game: 
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MIN 

CHANCE 

2  4  7  4  6  0  5  −2 

2 4 0 −2 

0.5 0.5 0.5 0.5 

3 −1 

MAX 



Expectiminimax Algorithm 

•  Expectiminimax produces perfect play 
–  Meaning:  best possible play, given the stochastic probabilities involved. 

•  Just like Minimax, except we  must also handle chance  nodes: 

. . . 
If terminal-test(s)=true 
  return Evaluation-fn(s) 
if state	is a Max node then 
  return the highest ExpectiMinimax-Value of Successors(state) 
if state	is a Min node then 
  return the lowest ExpectiMinimax-Value of Successors(state) 
if state	is a chance node  then 
  return SUM of  probability-weighted(ExpectiMinimax-Value of Successors(state)) 
. . . 

•  Dice rolls increase b:  
–  21 possible rolls with 2 dice  Backgammon ≈ 20 legal moves (can be 6,000 with 1-1   

roll) 
–  depth 4 = 20 × (21 × 20)3  ≈ 1.2 × 109 

–  Thus: As depth increases, probability of reaching a given node  shrinks 
•  ⇒ value of lookahead is diminished 
•  α–β pruning is much less  effective  (because chance makes pruning less common) 

•  TDGammon:  uses depth-2 search + very good  Eval≈ world-champion level 
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Games 	of	imperfect	 information	

g. ., card games, where opponent’s initial cards are unknown  

Typically we  can calculate a probability for each possible  deal 

Seems just like having one big dice roll at the beginning of the game∗  Idea:  

compute the minimax value of each action in each   deal, 
then choose the action with highest expected value over all   deals∗ 

Special case: if an action is optimal for all deals, it’s optimal.∗  

GIB, current best bridge program, approximates this idea   by 
1) generating 100 deals consistent with bidding  information 
2) picking the action that wins most tricks on   average 



Partially Observable Games 

•  So far:  Fully observable games 
–  All player can see all functional pieces (state) of the game at all times 

•  Many games are fun because of imperfect information 
–  Players see only none/part of opponents state. 
–  E.g. Poker and similar card games, Battleship, etc.  

•  Example:  Kriegspiel:  Blind chess! 
–  White and Black see only a board containing their pieces. 
–  On turn:  player proposes a move. 

•  Referee announced: legal/illegal. If legal: “Capture on square X”, “Check by 
<direction>”, “checkmate” or “stalemate”. 

–  Plan: Use belief states developed in Ch4!  
•  Referee feedback = percepts that update/prune belief states.  
•  All believe states NOT equally likely:  can calculate probabilities on believe states 

based predicting optimum play by opponent.  
•  Implication:  Best to add some randomness to your play:  be unpredictable! 
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Card Games   
•  Stochastic  partial observability 

–  Cards dealt randomly at the beginning of game.  Deterministic after that. 
–  Odds (probability) of possible hands easily calculated.  
–  E.g. Bridge, Whist, Hearts, some forms of poker.   

•  Plan:  Probabilistic weighted search 
–  Generate all possible deals of the (missing) cards 
–  Solve each one just like a fully observable games (Minimax) 
–  Weight each outcome with probability of that hand being dealt 
–  Chose move that has the best outcome, averaged over all possible deals. 

•  Reality check: 
–  In Bridge there are 10+ million possible visible hands.  Can’t explore all! 
–  Idea: Monte Carlo approach:  solve random sample of deals 

•  Choice of sample set is weighted to include more likely hands. 

–  Bidding may add valuable info on hands à changes probabilities. 

•  GIB, leading bridge program:  generates 100 deals consistent with bidding 
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Summary 

•  Games are just specialized search problems.  Modifications: 
–  Minimax (plus α–β pruning) to model opponent player 
–  Stochastic “choice” layers in tree to model chance 
–  Belief state management to model partial observability 
–    

•  Games illustrate several important points about  AI 
–  perfection is unattainable in reality ⇒ must approximate 
–  good idea to think about what to think about 

•  Meta-level analysis, as in considerations leading to α–β pruning 

–  Uncertainty constrains the assignment of values to states 
•  Increases effective branching factor, could make pruning less effective 

•  Optimal decisions depend on information state, not  real state 
–  As illustrated in partially observable games, when belief state is what matters 
  

•  Games are to AI as grand prix racing is to automobile design 
–  Proving ground for hardware, data structures, algorithms…and cleverness 
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