
P r o b l e m  solving a n d  s e a r c h  

C h a p t e r  3 
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(Adapted	from	Stuart	Russel,	Dan	Klein,	and	others.	Thanks!)			
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Out l i ne  

♦  Problem-solving agents 
 

♦  Problem types 

 

♦  Problem formulation 

 

♦  Example problems 

 

♦  Basic search algorithms (the meat, 90%) 
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Prob lem-so lv ing  agen ts  

Simplified form of general agent: 

function Simple-Problem-Solving-Agent( percept) returns an action 
static: seq, an action sequence, initially  empty 

state, some description of the current world  state 
goal, a goal, initially null 
problem, a problem formulation 

state	← Update-State(state,	percept) 
if seq		is empty then 

goal	← Formulate-Goal(state) 
problem	← Formulate-Problem(state,	goal)  seq	
← Search( problem) 

ac0on	← Recommendation(seq,	state)  
seq	← Remainder(seq,	state) 
return ac0on	

Note: this is offline problem solving; solution executed “eyes closed.”   
 
Online problem solving different: uncertainty, incomplete knowledge, etc 



Class i c  examp le :  rou te - f i nd ing  
( i n  R o m a n i a )  
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P r o b l e m  t ypes  

Deterministic, fully observable =⇒ single-state problem 
•  Agent knows exactly which state it will be in 
•  Solution is a simple sequence of actions 

Non-observable =⇒ conformant problem 
•  Also known as “sensorless search” 
•  Agent may have no idea where it really is 
•  Solution (if any) is a sequence 
•  Surprisingly useful in many situations (simplifies state space for computing a “likely” 

solution quickly...which is adjusted during action 

Nondeterministic and/or partially observable =⇒ contingency problem 
•  percepts provide new information about current state 
•  solution is a contingent plan or a policy 
•  often interleave search, execution 

Unknown state space =⇒ exploration problem 
•  Online” planning/re-planning 



Examp le : v a c u u m  wor ld  

Single-state, start in #5. Solution?? 

 

 

Conformant, start in: ?  
Solution?? 
 
 
 
 

Contingency, start in #5 
•  Murphy’s Law: Suck can dirty a clean carpet   
•  Local sensing:  dirt sensed in current location only. 
Solution?? 

1 2 

3 4 

5 6 

7 8 
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Sing le-s ta te  p r o b l e m  fo rmu la t ion  

A problem is defined by four items:   

1.  initial state  e.g., “at Arad” 

2.  successor function S(x) = set of action–state pairs 
•  e.g., S(Arad) = {(Arad → Zerind, Zerind), . . .} 

3.  goal test, can be 
•  explicit, e.g., x = “at Bucharest”   
•  implicit, e.g., NoDirt(x), Checkmate(board) 

4.  path cost (additive) 
•  e.g., sum of distances, number of actions executed,   etc. 
•  c(x, a, y) is the step cost, assumed to be ≥ 0 
 

A solution is a sequence of actions leading from the initial state to a goal 
state 
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Select ing a  s t a te  space 

Real world is absurdly complex !! 
⇒ state space must be abstracted for problem  solving 

(Abstract) state = set of real states 

(Abstract) action = complex combination of real actions   
•  e.g., “Arad → Zerind” represents a complex set of possible routes, 

detours, rest stops, etc. 
•  For guaranteed realizability, any real state “in Arad”must get to 

some real state “in  Zerind” 

(Abstract) solution = set of simplified paths that..that can be translated to 
solutions in the real world 

Leads to several definitions for quality of abstractions chosen:  
•  Useful abstraction:  Each abstract action should be “easier” than the original 

problem! 

•  Valid abstraction:  any abstract solution can be expanded to solution in real world 



Examp le :v a c u u m  wor ld  s t a te  space g r a p h  
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states??   
 
actions??  
 
 goal test??   
 
path cost?? 
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Examp le : T h e  8-puzzle 

Chapter 3	 11	

Start	State	 Goal	State	

states??   
 
actions??  
 
 goal test??   
 
path cost?? 





Examp le :  robo t i c  assembly  

R 

R R 
P 

R R 

states??:  
•  real-valued coordinates of robot joint angles 
•  parts of the object to be  assembled (location, orientation) 

 

actions??:  continuous motions of robot joints 

goal test??:  complete assembly with no robot included! 

path cost??:  time to execute?  Number of joints motions (wear and tear)? 

Chapter 3	 13	



Chapter 3	 14	

Tree search  a lgo r i thms 

Basic idea: 
•  offline, simulated exploration of state space 
•  by generating successors of already-explored states  (a.k.a. expanding states) 

function Tree-Search( problem,	strategy) returns a solution, or failure  
initialize the search tree using the initial state of  problem	
loop do 

if there are no candidates for expansion then return failure  
choose a leaf node for expansion according to  strategy	
if the node contains a goal state then return the corresponding solution 
else expand the node and add the resulting nodes to the search tree 

end 



Tree search  examp le  

Rimnicu 
Vilcea 

Lugoj 

Zerind Sibiu 

Arad Fagaras Oradea 

Timisoara 

Arad Arad Oradea 

Arad 
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Concep ts :  s ta tes  vs.  nodes  
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State Node depth = 6 

g(x) = 6 

state 

A state is a (representation of) a physical  configuration 
A node is a data structure constituting part of a search tree 

•  includes parent, children, depth, path cost à known as  g(x) 

States do not have parents, children, depth, or path cost! 
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The Expand function creates new nodes, filling in the various fields and  
using the SuccessorFn of the problem to create the corresponding states. 

parent, action 
	



Imp lemen ta t i on :  genera l  t r ee  search 

function Tree-Search( problem,	fron0er) returns a solution, or failure  
fron0er	← Insert(Make-Node(Initial-State[problem]), fron0er)  loop do 

if fron0er	is empty then return failure 
node	← Remove-Front(fron0er) 
if Goal-Test(problem, State(node)) then return node		fron0er	← 
InsertAll(Expand(node, problem), fron0er) 
 

 
function Expand( node,	problem) returns a set of nodes 

successors	← the empty set 
for each ac0on,	result	in Successor-Fn(problem, State[node]) do 

s	← a new Node 
Parent-Node[s] ← node;  Action[s] ← ac0on;  State[s] ← result	
Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, ac0on, s) 
Depth[s] ← Depth[node] + 1  add 
s	to successors	

return successors	
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G r a p h  search 

function Graph-Search( problem,	fron0er) returns a solution, or failure 
closed	← an empty set 
fron0er	← Insert(Make-Node(Initial-State[problem]), fron0er) 
loop do 

if fron0er	is empty then return failure 
node	← Remove-Front(fron0er) 
if Goal-Test(problem, State[node]) then return node	
if State[node] is not in closed	then 

add State[node] to closed	
fron0er	← InsertAll(Expand(node, problem), fron0er) 

end 

Q:		What	will	happen	is	the	search	space	is	not	a	DAG?	(a	strict	tree)	
• Bi-direcFonal	arcs?		(road	can	be	driven	both	ways!)	
• Cycles	in	the	direcFonal	graph	



STOP FOR TODAY! 
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Search  s t ra teg ies  

A strategy is defined by picking the order of node expansion 
•  Specifically: exact action of InsertAll() fn 

Strategies are evaluated along the following dimensions:   
•  Completeness—   
•  time complexity—   
•  space complexity—   
•  Optimality— 

Time and space complexity are measured in terms of   
•  b— 
•  d—  
•  m—  
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Un in fo rmed  search  s t ra teg ies  

Uninformed strategies use only the information available  in the 
problem definition: 

•  Breadth-first search   

•  Uniform-cost search   

•  Depth-first search   

•  Depth-limited search 

•  Iterative deepening search 



Bread th - f i r s t  search 

Plan:  Always expand shallowest unexpanded node 
•  Shallowest = shortest path from root 

 

Implementation: 
frontier is a FIFO queue, i.e., new successors go at   end 
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B C 

D E F G 

A



P r o p e r t i e s  of b read th - f i r s t  search 

Complete??   
 
 
 

Time??  

 

 

Space??   

 

 

Optimal??   
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Uni fo rm-cos t  search 

Plan:  Expand least-cost unexpanded node 
•  “least cost” = Having the lowest path cost 
•  Equivalent to breadth-first if step costs all equal  

Implementation: 
frontier = queue ordered by path cost, lowest  first 

Complete??  	

 
Time??   
 
Space??   
 
Optimal??   
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Depth- f i r s t  search 

Plan: Expand deepest unexpanded node 
•  Deepest= longest path from root 

Implementation: 
fron0er	= LIFO queue, i.e., put successors at  front 

Chapter 3	 25	

B C 

D E F G 

H I J  K  L  M  N  O 

A	



P r o p e r t i e s  of dep th - f i r s t  search 

Complete??  
 
 

Time??   

 

Space?? 

   

Optimal??  
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Depth-limited search 

Plan:  depth-first search with depth limit l, 
•   i.e., nodes at depth l have no  successors 

Recursive implementation: 
 

function Depth-Limited-Search( problem, limit) returns soln/fail/cutoff 
Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) 

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff 
cutoff-occurred?	← false 
if Goal-Test(problem, State[node]) then return node	
else if Depth[node] = limit	then return cutoff	

else for each successor	in Expand(node, problem) do  result	← 
Recursive-DLS(successor, problem, limit)  if result	= cutoff	then 
cutoff-occurred?	← true 
else if result	/=  failure	then return result	

if cutoff-occurred?	then return cutoff	else return  failure	
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I t e ra t i ve  deepen ing  search 

function I t e r a t i ve -Deepen ing -Sea rch (  problem) returns a solution 
inputs: problem, a problem 

for depth	←  0 to ∞  do 
result	← Depth-Limi ted-Search (  problem,	depth) 
if result	/=  cutoff then return result	

end 



I t e ra t i ve  deepen ing  search l = 0 

Limit = 0 A 

Chapter 3	 29	



I t e ra t i ve  deepen ing  search l = 1 

Limit = 1 A 

B C 

A 

B C 

A 
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C 



I t e ra t i ve  deepen ing  search l = 2 

Limit = 2 A 
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I t e ra t i ve  deepen ing  search l = 3 

Limit = 3 
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Chapter 3	 32	

B C 
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P r o p e r t i e s  of i te ra t i ve  deepen ing  search 

Complete??  

Time??  

Space??  

Optimal??  

 

Numerical comparison for b  = 10 and d = 5, solution at far right  leaf: 

N (IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 
N (BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100 
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B i - D i r e c t i o n a l  S e a r c h  

Plan:  Standard BFS…but search from both start and goal state 
• Goal test:  success when they meet (intersect of frontiers) 
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Advantages:			

	
Concerns:	
	



S u m m a r y  of uninformed a lgo r i thms 
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Legend:		
•  b	=	branching	factor	
•  d=	depth	of	shallowest	soluFon	
•  m	=	maximum	depth	of	tree	
•  	l	=	depth	limit	

	
Superscripts:		
a	=	complete	if	b	is	finite	
b	=	complete	if	step	costs	>	0	
c	=	opFmal	if	step	costs	all	idenFcal	
d	=	if	both	direcFons	use	breadth-first	


