
P r o b l e m solving a n d s e a r c h

C h a p t e r 3

Chapter 3	 1	

(Adapted	from	Stuart	Russel,	Dan	Klein,	and	others.	Thanks!)			

Chapter 3	 2	

Out l i ne

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms (the meat, 90%)

Chapter 3	 3	

Prob lem-so lv ing agen ts

Simplified form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state	← Update-State(state,	percept)
if seq		is empty then

goal	← Formulate-Goal(state)
problem	← Formulate-Problem(state,	goal) seq	
← Search(problem)

ac0on	← Recommendation(seq,	state)
seq	← Remainder(seq,	state)
return ac0on	

Note: this is offline problem solving; solution executed “eyes closed.”

Online problem solving different: uncertainty, incomplete knowledge, etc

Class i c examp le : rou te - f i nd ing
(i n R o m a n i a)

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Bucharest

71

75

118

111

70

75
120

151

140

99

80
Rimnicu Vilcea

97

101

211

138

146 85

90

Giurgiu

98

142

92

87

86

Chapter 3	 4	

Chapter 3	 6	

P r o b l e m t ypes

Deterministic, fully observable =⇒ single-state problem
•  Agent knows exactly which state it will be in
•  Solution is a simple sequence of actions

Non-observable =⇒ conformant problem
•  Also known as “sensorless search”
•  Agent may have no idea where it really is
•  Solution (if any) is a sequence
•  Surprisingly useful in many situations (simplifies state space for computing a “likely”

solution quickly...which is adjusted during action

Nondeterministic and/or partially observable =⇒ contingency problem
•  percepts provide new information about current state
•  solution is a contingent plan or a policy
•  often interleave search, execution

Unknown state space =⇒ exploration problem
•  Online” planning/re-planning

Examp le : v a c u u m wor ld

Single-state, start in #5. Solution??

Conformant, start in: ?
Solution??

Contingency, start in #5
•  Murphy’s Law: Suck can dirty a clean carpet
•  Local sensing: dirt sensed in current location only.
Solution??

1 2

3 4

5 6

7 8

Chapter 3	 7	

Chapter 3	 8	

Sing le-s ta te p r o b l e m fo rmu la t ion

A problem is defined by four items:

1. initial state e.g., “at Arad”

2. successor function S(x) = set of action–state pairs
•  e.g., S(Arad) = {(Arad → Zerind, Zerind), . . .}

3. goal test, can be
•  explicit, e.g., x = “at Bucharest”
•  implicit, e.g., NoDirt(x), Checkmate(board)

4. path cost (additive)
•  e.g., sum of distances, number of actions executed, etc.
•  c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal
state

Chapter 3	 9	

Select ing a s t a te space

Real world is absurdly complex !!
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
•  e.g., “Arad → Zerind” represents a complex set of possible routes,

detours, rest stops, etc.
•  For guaranteed realizability, any real state “in Arad”must get to

some real state “in Zerind”

(Abstract) solution = set of simplified paths that..that can be translated to
solutions in the real world

Leads to several definitions for quality of abstractions chosen:
•  Useful abstraction: Each abstract action should be “easier” than the original

problem!

•  Valid abstraction: any abstract solution can be expanded to solution in real world

Examp le :v a c u u m wor ld s t a te space g r a p h

R

L

S S

S S

R

L

R

L

R

L

S

S S

S

L

L

L L R

R

R

R

states??

actions??

 goal test??

path cost??

Chapter 3	 10	

Examp le : T h e 8-puzzle

Chapter 3	 11	

Start	State	 Goal	State	

states??

actions??

 goal test??

path cost??

Examp le : robo t i c assembly

R

R R
P

R R

states??:
•  real-valued coordinates of robot joint angles
•  parts of the object to be assembled (location, orientation)

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute? Number of joints motions (wear and tear)?

Chapter 3	 13	

Chapter 3	 14	

Tree search a lgo r i thms

Basic idea:
•  offline, simulated exploration of state space
•  by generating successors of already-explored states (a.k.a. expanding states)

function Tree-Search(problem,	strategy) returns a solution, or failure
initialize the search tree using the initial state of problem	
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy	
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Tree search examp le

Rimnicu
Vilcea

Lugoj

Zerind Sibiu

Arad Fagaras Oradea

Timisoara

Arad Arad Oradea

Arad

Chapter 3	 15	

Concep ts : s ta tes vs. nodes

1

2 3

4 5

6

7

8 1

2 3

4 5

6

7

8

State Node depth = 6

g(x) = 6

state

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

•  includes parent, children, depth, path cost à known as g(x)

States do not have parents, children, depth, or path cost!

Chapter 3	 16	

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

parent, action
	

Imp lemen ta t i on : genera l t r ee search

function Tree-Search(problem,	fron0er) returns a solution, or failure
fron0er	← Insert(Make-Node(Initial-State[problem]), fron0er) loop do

if fron0er	is empty then return failure
node	← Remove-Front(fron0er)
if Goal-Test(problem, State(node)) then return node		fron0er	←
InsertAll(Expand(node, problem), fron0er)

function Expand(node,	problem) returns a set of nodes

successors	← the empty set
for each ac0on,	result	in Successor-Fn(problem, State[node]) do

s	← a new Node
Parent-Node[s] ← node; Action[s] ← ac0on; State[s] ← result	
Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, ac0on, s)
Depth[s] ← Depth[node] + 1 add
s	to successors	

return successors	

Chapter 3	 17	

Chapter 3	 18	

G r a p h search

function Graph-Search(problem,	fron0er) returns a solution, or failure
closed	← an empty set
fron0er	← Insert(Make-Node(Initial-State[problem]), fron0er)
loop do

if fron0er	is empty then return failure
node	← Remove-Front(fron0er)
if Goal-Test(problem, State[node]) then return node	
if State[node] is not in closed	then

add State[node] to closed	
fron0er	← InsertAll(Expand(node, problem), fron0er)

end

Q:		What	will	happen	is	the	search	space	is	not	a	DAG?	(a	strict	tree)	
• Bi-direcFonal	arcs?		(road	can	be	driven	both	ways!)	
• Cycles	in	the	direcFonal	graph	

STOP FOR TODAY!

Chapter 3	 20	

Search s t ra teg ies

A strategy is defined by picking the order of node expansion
•  Specifically: exact action of InsertAll() fn

Strategies are evaluated along the following dimensions:
•  Completeness—
•  time complexity—
•  space complexity—
•  Optimality—

Time and space complexity are measured in terms of
•  b—
•  d—
•  m—

Chapter 3	 21	

Un in fo rmed search s t ra teg ies

Uninformed strategies use only the information available in the
problem definition:

•  Breadth-first search

•  Uniform-cost search

•  Depth-first search

•  Depth-limited search

•  Iterative deepening search

Bread th - f i r s t search

Plan: Always expand shallowest unexpanded node
•  Shallowest = shortest path from root

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

Chapter 3	 22	

B C

D E F G

A

P r o p e r t i e s of b read th - f i r s t search

Complete??

Time??

Space??

Optimal??

Chapter 3	 23	

Uni fo rm-cos t search

Plan: Expand least-cost unexpanded node
•  “least cost” = Having the lowest path cost
•  Equivalent to breadth-first if step costs all equal

Implementation:
frontier = queue ordered by path cost, lowest first

Complete?? 	

Time??

Space??

Optimal??

Chapter 3	 24	

Depth- f i r s t search

Plan: Expand deepest unexpanded node
•  Deepest= longest path from root

Implementation:
fron0er	= LIFO queue, i.e., put successors at front

Chapter 3	 25	

B C

D E F G

H I J K L M N O

A	

P r o p e r t i e s of dep th - f i r s t search

Complete??

Time??

Space??

Optimal??

Chapter 3	 26	

Depth-limited search

Plan: depth-first search with depth limit l,
•  i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?	← false
if Goal-Test(problem, State[node]) then return node	
else if Depth[node] = limit	then return cutoff	

else for each successor	in Expand(node, problem) do result	←
Recursive-DLS(successor, problem, limit) if result	= cutoff	then
cutoff-occurred?	← true
else if result	/= failure	then return result	

if cutoff-occurred?	then return cutoff	else return failure	

Chapter 3	 27	

Chapter 3	 28	

I t e ra t i ve deepen ing search

function I t e r a t i ve -Deepen ing -Sea rch (problem) returns a solution
inputs: problem, a problem

for depth	← 0 to ∞ do
result	← Depth-Limi ted-Search (problem,	depth)
if result	/= cutoff then return result	

end

I t e ra t i ve deepen ing search l = 0

Limit = 0 A

Chapter 3	 29	

I t e ra t i ve deepen ing search l = 1

Limit = 1 A

B C

A

B C

A

Chapter 3	 30	

C

I t e ra t i ve deepen ing search l = 2

Limit = 2 A

Chapter 3	 31	

B C

D E F G

A

B C

E F G

A

B C

D E F G

A

B C

D E F G

A

C

F G

A

C

G

A

C

F G

I t e ra t i ve deepen ing search l = 3

Limit = 3

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

A

C

F G

L M N O

A

B C

E F G

K L M N O

A

B C

E F G

J K L M N O

A

B C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N O I

A

Chapter 3	 32	

B C

D E F G

H I J K L M N O

P r o p e r t i e s of i te ra t i ve deepen ing search

Complete??

Time??

Space??

Optimal??

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N (IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N (BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100

Chapter 3	 33	

B i - D i r e c t i o n a l S e a r c h

Plan: Standard BFS…but search from both start and goal state
• Goal test: success when they meet (intersect of frontiers)

Chapter 3	 34	

Advantages:			

	
Concerns:	
	

S u m m a r y of uninformed a lgo r i thms

Chapter 3	 35	

Legend:		
•  b	=	branching	factor	
•  d=	depth	of	shallowest	soluFon	
•  m	=	maximum	depth	of	tree	
•  	l	=	depth	limit	

	
Superscripts:		
a	=	complete	if	b	is	finite	
b	=	complete	if	step	costs	>	0	
c	=	opFmal	if	step	costs	all	idenFcal	
d	=	if	both	direcFons	use	breadth-first	

