Problem solving and search

Chapter 3

(Adapted from Stuart Russel, Dan Klein, and others. Thanks!)

Chapter 3 1

Outline

Problem-solving agents

Problem types

Problem formulation

Example problems

Basic search algorithms (the meat, 90%)

Chapter 3 2

Problem-solving agents

Simplified form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— Update-State(state, percept)

if seq is empty then
goal < Formulate-Goal(state)
problem < Formulate-Problem(state, goal) seq
«— Search(problem)

action — Recommendation(seq, state)

seq «— Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”

Online problem solving different: uncertainty, incomplete knowledge, etc

Chapter 3 3

Classic example: route-finding
(in Romania)

] Oradea
Neamt
- 87
75 .
] lasi
Arad(
o 92
Sibiu 99 Fagaras
118 [JVaslui
80
Timisoara R|mn|cu Vilcea
142
. . 211
111 9 Lugoj Pitesti
]
70 08 .
_ 35 Hirsova
JMehadia 101 S Urziceni
(1) 56
73 138 Bucharest
Dobreta [] 120 %0
ICraiova Eforie
—] Giurgiu

Chapter 3 4

Search Gone Wrong?

<
o

St

End: Trondhwim, Sor Tondeiag Norwey
Total Dmtamce: 171 1 Nomatery
Eatimatod Yatal Teawa 47 dn 11w

Problem types

Deterministic, fully observable == single-state problem
* Agent knows exactly which state it will be in
« Solution is a simple sequence of actions

Non-observable == conformant problem
« Also known as “sensorless search”
 Agent may have no idea where it really is

« Solution (if any) is a sequence

« Surprisingly useful in many situations (simplifies state space for computing a “likely”
solution quickly...which is adjusted during action

Nondeterministic and/or partially observable == contingency problem
« percepts provide new information about current state
« solution is a contingent plan or a policy
« often interleave search, execution

Unknown state space == exploration problem
« Online” planning/re-planning

Chapter 3 6

Example: vacuum world

Single-state, start in #5. Solution??

1 [=)
SR | BB

3 [=4

. SR
Conformant, start in: ?

Solution?? 5 | =)
3R

7 [=)

Contingency, start in #5
* Murphy’s Law: Suck can dirty a clean carpet

* Local sensing: dirt sensed in current location only.
Solution??

SRS

Chapter 3

7

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., “at Arad”

2. successor function S(x) = set of action—state pairs
* e.g., S(Arad) = {(Arad — Zerind, Zerind), . . .}

3. goal test, can be
« explicit, e.g., x = “at Bucharest”
« implicit, e.g., NoDirt(x), Checkmate(board)

4. path cost (additive)
* e.g., sum of distances, number of actions executed, etc.

* c¢(x, a, y)is the step cost, assumed to be = 0

A solution is a sequence of actions leading from the initial state to a goal
state

Chapter 3 8

Selecting a state space

Real world is absurdly complex !!
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

 e.g., “Arad — Zerind” represents a complex set of possible routes,
detours, rest stops, etc.

« For guaranteed realizability, any real state “in Arad’must get to
some real state “in Zerind”

(Abstract) solution = set of simplified paths that..that can be translated to
solutions in the real world

Leads to several definitions for quality of abstractions chosen:

» Useful abstraction: Each abstract action should be “easier” than the original
problem!

 Valid abstraction: any abstract solution can be expanded to solution in real world

Chapter 3 9

Example:vacuum world state space graph

&
e L T B (& L T [
=

states??
actions??
goal test??

path cost??

Chapter 3 10

Example:The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states??
actions??
goal

path

Chapter 3 11

Example: N-Queens

=

What are the states?

W

W
W
W

hat is the start?
nat is the goal?
hat are the actions?

hat should the costs be?

Example: robotic assembly

states??:
* real-valued coordinates of robot joint angles
 parts of the object to be assembled (location, orientation)

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!

path cost??: time to execute? Number of joints motions (wear and tear)?

Chapter 3 13

Tree search algorithms

Basic idea:
« offline, simulated exploration of state space
* by generating successors of already-explored states (a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Chapter 3 14

Tree search example

=TT N T e——_
— N -
—— N —~—
—— N —-———
- \L T——
{ Sibiu D {Timisoara) { Zerind D
~ —_ ~ —_ ~ —
/// /7 N\ \\\ / '\ AN
_ - / \ ~- / N\ / \\
=7 // \\ T~ // \\ // AN
- ~
e = N e = N P N
C_Arad > { Fagaras_)> ¢ Oradea) /\R.'irmnicu D C_Arad > C_Lugoj D {_Arad > < Oradea_)
ST RaN —~_ Vilegars “~C e < =T
7~ ~N ~N 7~ ~N 7~ ~N
I BN RN RN I BN R BN RN I BN RN

Chapter 3 15

Concepts: states vs. nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
* includes parent, children, depth, path cost > known as g(x)

States do not have parents, children, depth, or path cost!

parent, action
A

State || 5 ||| 4 Node depth =6
g(x) =6
6 1 8
< -\e
7 3|l 2 sta

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

Chapter 3 16

Implementation: general tree search

function Tree-Search(problem, frontier) returns a solution, or failure
frontier « Insert(Make-Node(Initial-State[problem]), frontier) loop do
if frontier is empty then return failure
node < Remove-Front(frontier)
if Goal-Test(problem, State(node)) then return node frontier «—
InsertAll(Expand(node, problem), frontier)

function Expand(node, problem) returns a set of nodes

successors «— the empty set

for each action, result in Successor-Fn(problem, State[node]) do
s «— a new Node
Parent-Node[s] < node; Action[s] « action; State[s] « result
Path-Cost[s] « Path-Cost[node] + Step-Cost(node, action, s)
Depth[s] « Depth[node] + 1 add
s to successors

return successors

Chapter 3

17

Graph search

Q: What will happen is the search space is not a DAG? (a strict tree)
* Bi-directional arcs? (road can be driven both ways!)
* Cycles in the directional graph

function Graph-Search(problem, frontier) returns a solution, or failure

closed < an empty set
frontier < Insert(Make-Node(Initial-State[problem]), frontier)
loop do
if frontier is empty then return failure
node «<— Remove-Front(frontier)
if Goal-Test(problem, State[node]) then return node
if State[node] is not in closed then
add State[node] to closed
frontier < InsertAll(Expand(node, problem), frontier)
end

Chapter 3 18

Search strategies

A strategy is defined by picking the order of node expansion
« Specifically: exact action of InsertAll() fn

Strategies are evaluated along the following dimensions:
 Completeness—
+ time complexity—
e Space complexity—
« Optimality—

Time and space complexity are measured in terms of
¢ h—
¢ g—

Om_

Chapter 3 20

Uninformed search strategies

Uninformed strategies use only the information available in the
problem definition:

« Breadth-first search
« Uniform-cost search
» Depth-first search

* Depth-limited search

« lterative deepening search

Chapter 3 21

Breadth-first search

Plan: Always expand shallowest unexpanded node
« Shallowest = shortest path from root

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

Chapter 3

22

Properties of breadth-first search

Complete??

Time??

Space??

Optimal??

Chapter 3 23

Uniform-cost search

Plan: Expand least-cost unexpanded node
» “least cost” = Having the lowest path cost
« Equivalent to breadth-first if step costs all equal

Implementation:
frontier = queue ordered by path cost, lowest first

Complete??
Time??
Space??

Optimal??

Chapter 3

24

Depth-first search

Plan: Expand deepest unexpanded node
» Deepest= longest path from root

Implementation:
frontier = LIFO queue, i.e., put successors at front

®

Chapter 3 25

Properties of depth-first search

Complete??

Time??

Space??

Optimal??

Chapter 3

26

Depth-limited search

Plan: depth-first search with depth limit /,
* i.e., nodes at depth / have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? « false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do result <

Recursive-DLS(successor, problem, limit) if result = cutoff then
cutoff-occurred? < true

else if result [= failure then return result
if cutoff-occurred? then return cutoff else return failure

Chapter 3

Iterative deepening search

function Iterative-Deepening-Search(problem) returns asolution
inputs: problem, a problem

for depth«— 0to ~ do
result «— Depth-Limited-Search(problem, depth)
if result F cutoff then return result

end

Chapter 3

28

Iterative deepening search /=0

Limit =0 >@ €)

Chapter 3 29

Iterative deepening search /=1

Limit = 1 @ @ @ ./‘\.
20 O 20

Chapter 3 30

Iterative deepening search /=2

et
e

Limit =2 >(@)

Chapter 3 31

Iterative deepening search /=3

Chapter 3 32

Properties of iterative deepening search

Complete??
Time??
Space??

Optimal??

Numerical comparison for » = 10 and d = 5, solution at far right leaf:

N (IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N (BFS) =10+ 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100

Chapter 3 33

Bi-Directional Search

Plan: Standard BFS...but search from both start and goal state
» Goal test: success when they meet (intersect of frontiers)

\ _' \ / N | ,\ »
\ ' 1 L \ \ \\J | /
{ TR |/ . d ¥ \Y1 /4
\ / \f | /L — \ / \ = | .
| \ } V) . ; R RYERTR'R Az | / |
\ \ /| F. \ LN \ Y K J /
. — \ V F ~ L — "N\ 1 \f ‘' Vo
\ Y L 1 f [ot — f e LY \ \| s / v -
A\ /S —d f 1 N/ / g — W [| -~
' | ;) \ / ' - § X | ~ § L~
4 . 1 — " -

»~
- -

- | \ / | / ¥V -
- \ / \ / |] ——
o ! |~ \/ J— f - - o —
. . 1 | | o — - > - i
e e Ny, \ | | f o — < 4 o g
~ ~ 1 [- - . . - g . i
R S -~ e ~—~— " .\ Y A —lig
e —_— . ——— —— gy~ %
e - - —— - —= - ~—
- > - y- — ———) \ -
L e —————— f _ g - JR— W £
- - ~ f —— . —— ; \ . -
- | | — — - — | - | :
_ - y - - -
- ~ h L
/ gy ~ ’ \ ; I \ -
. \ - 1\ / \
7

{) g
{ |

—g \ \ |
Il | -~ X \ -
E— - k ‘
AN —2 N 4 -
| \ \ > - ' - \ 5 o

Advantages:

Concerns:

Chapter 3 34

Summary of uninformed algorithms

Criterion

Complete?|
Time | ;{52

Legend:
* b = branching factor
* d= depth of shallowest solution
* m = maximum depth of tree
e | =depth limit

Superscripts:
a = complete if b is finite
b = complete if step costs >0
c = optimal if step costs all identical
d = if both directions use breadth-first

Chapter 3 35

