Intelligent Agents

Chapter 2

(Adapted from Stuart Russell, Sanjoy, and others. Thanks guys!)

Outline

♦ Agents and environments
♦ Rationality
♦ PEAS (Performance measure, Environment, Actuators, Sensors)
♦ Environment types
♦ Agent types

Agents and Environments

- Agents include:
 - Humans
 - Robots
 - Softbots
 - Thermostats
 - More...

- The agent function represents the "intelligence"
 - Map from percept histories to actions:
 \[f: \mathbb{P}^* \rightarrow \mathbb{A} \]

- An agent program running on physical architecture implements the agent function

Vacuum-cleaner world

Percepts: location and contents, e.g., \([A, Dirty]\)

Actions: Left, Right, Suck, NoOp

So: super simple world!
 - 1-D environment, just two locations
 - Only four possible actions, uniformly available in all locations
A (reflex) vacuum-cleaner agent

```plaintext
function Reflex-Vacuum-Agent([location, status]) returns an action
if status = Dirty then return Suck else if
location = A then return Right else if
location = B then return Left
```

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td></td>
<td>Left</td>
</tr>
<tr>
<td></td>
<td>Suck</td>
</tr>
</tbody>
</table>

• What is the right function?

Reflex Agents = Table-lookup?

• Could express as table instead of function.
 • Complete map from percept (histories) to actions
 • Actions “computed” by simply looking up appropriate action in table

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
</tbody>
</table>

• Drawbacks:
 • Huge table!
 • Rigid, no autonomy, flexibility
 • Even with learning, need a long time to “learn” all entries in complex world.
• Better agent programs: produce complex behaviors from compact specifications (programs)

A first example: Simple reflex agents

- Focus on now. No state, no history. Just reacts. True Zen machine!
- Does this ever make sense as a design?

Rationality

- Fixed performance measure evaluates the environment sequence
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - penalize for $> k$ dirty squares?
 - More?
- A rational agent chooses whichever action maximizes the expected value of the performance measure given current knowledge
 • Knowledge = initial knowledge + the percept sequence to date

Rational ≠ omniscient
• percepts may not supply all relevant information

Rational ≠ clairvoyant about action efficacy
• action outcomes may not be as expected

Hence, rational ≠ guaranteed successful

Rationality motivates ⇒ exploration, learning, autonomy
Rationality and Goals

- "to maximize expected outcome". What does that mean?
 - Rationality is inherently based on having some goal that we want to achieve
 - Performance measure: expresses extent of satisfaction, progress towards

- Suppose: We have a game:
 - Flip a biased coin (probability of heads is h, not necessarily 50%)
 - Tails = lose $1; Heads= win $1

- What is the expected winnings in a series of flips?
 - $(1)h + (-1)(1-h) = 2h-1$

- Rational to play? Depends...
 - What if performance measure is total money?
 - What if performance measure is spending rate?
 - Why might a human play this game at expected loss?
 - Vegas, baby!

Summary: Rationality

- Remember: rationality is ultimately defined by:
 - Performance measure
 - Agent’s prior (initial) knowledge of world
 - Agent’s percepts to date (updates to world)
 - Available actions

- Some thought questions:
 - Is it rational to inspect the street before crossing?
 - Is it rational to try new things?
 - Is it rational to update beliefs?
 - Is it rational to construct conditional plans of action in advance?

- Could now go into:
 - Empirical risk minimization (statistical classification)
 - Expected return maximization (reinforcement learning)

- Wait till later! Let’s get clearer concept of agents first!

PEAS: Specifying Task Environments

- To design a rational agent, we must specify the task environment
 - We’ve done this informally so far...vague
 - The characteristics of the task environment determine much about agents!
 - Need to formalize...

- PEAS: Dimensions for specifying task environments
 - Performance measure: metrics to measure performance
 - Environment: Descr. of areas/context agent operates in
 - Actuators: Ways that agent can intervene/act in the world
 - Sensors: Information channels through which agent gets info about world

- Consider, e.g., the task of designing an automated taxi:
 - Performance measure??
 - Environment??
 - Actuators??
 - Sensors??

PEAS: Specifying Task Environments

- To design a rational agent, we must specify the task environment
 - We’ve done this informally so far...vague
 - The characteristics of the task environment determine much about agents!
 - Need to formalize...

- PEAS: Dimensions for specifying task environments
 - Performance measure: metrics to measure performance
 - Environment: Descr. of areas/context agent operates in
 - Actuators: Ways that agent can intervene/act in the world
 - Sensors: Information channels through which agent gets info about world

- Consider, e.g., the task of designing an automated taxi:
 - Performance measure?? safety, destination, profits, legality, comfort...
 - Environment?? US streets/freeways, traffic, pedestrians, weather...
 - Actuators?? steering, accelerator, brake, horn, speaker/display...
 - Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS...
Environments: A more concise framework

- **PEAS gave us a framework for outlining key agent features**
 - One of those was environment... but we just had a general description
 - Much more useful to think about the kind of environment it represents
 - Need a concise, formal framework classifying kinds of environments!
 - Based on six dimensions of difference:

 1. **Observability: Full vs. Partial**
 1. Fully: An agent’s sensors give it access to the complete state of the environment at each point in time.
 2. Partially observable: An agent’s sensors give it access to only some partial slice of the environment at each point in time.

 2. **Determinism: Deterministic vs. stochastic**
 1. Deterministic: The next state of the environment is completely determined by the current state and the action executed by the agent.
 2. Stochastic: State and actions are known/succeed based on some statistical model. Knowledge is fallible, as are action outcomes.

 3. **Continuity: Episodic vs. sequential**
 1. Episodic: The agent’s experience is divided into independent atomic “episodes”; each episode consists of the agent perceiving and then performing a single action
 2. Sequential: The agent’s experience is a growing series of states; new action is based not only on actual state, but on state/action in previous episodes.

 4. **Stability: Static vs. Dynamics**
 1. Static: Environment is unchanging while the agent is deliberating
 2. Dynamic: Environment is fluid, keeps evolving while agent plans action

 5. **Continuity: Discrete vs. Continuous**
 1. Discrete: A limited number of distinct, pre-defined percepts and actions possible.
 2. Continuous: An unlimited number of actions are possible, infinite percepts readings possible.

 6. **Actors: Single vs. multi-agent**
 1. Single: Agent is operating solo in environment. Sole agent of change
 2. Multi-agent: There are other agents/actors to consider, take into account, coordinate with... compete against.

- **What is the real world like?**
 - Depends on how you frame the world
 - What your “world” is. How much detail of it you represent.
Thinking about Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
</tr>
</thead>
</table>

Characterizing capabilities: Agent Types

The bare basics: The simple Reflex Agent we examined before...

- Reflex Agent: No state, no history. Just reacts. Table lookup...
- Adding functionality leads to new (more flexible) agent types:
 - Reflex agents with state
 - Goal-based agents
 - Utility-based agents
- All can be turned into learning agents
 - Focus on dynamically improving the components agent contains

Reflex agents with state

- Add internal model of world:
 - Current state not just "current sensor read”. Percept history
 - Models aspects beyond sensors: world model could deduce added info
 - Action is still just table lookup: based on configurations of world state

Goal-based agents

Not just reacting, but trying to change state towards some goal:
1. Get percepts, add to state
2. Allow world model to deduce new knowledge...comes to quiescence
3. Use a planning module to reason about possible future states
4. Choose action to lead to desired future goal states
Utility-based agents

- Goal states alone are too simplistic:
 - Some goal states are “more satisfying” than others.
 - Goal state is not unique/defined/attainable
 - “Happiness” often more continuous function based on many factors
 - “goal” = get to strongest possible state
 - Action is uncertain: get to strongest expected state…based on probability

Learning: Any agent may be self-improving

- Learning ability is orthogonal to agent type: can be applied to any agent!
 - Modules above added on top of any basic agent description
 - Essentially rewrites/improves any element of existing agent dynamically

Summary

- Agents interact with environments through actuators and sensors
- PEAS descriptions outline task environment and agent’s access to it
- The agent function describes what the agent does in all circumstances
 \[f: (\text{initial state} + P^*) \rightarrow A \]
- For non-reflex agents: Some sort of performance measure
 - evaluates the current \(P^* \rightarrow \text{current state} \)
 - Boolean goal function vs. Utility function
- A perfectly rational agent maximizes expected performance
- Agent programs implement (some) agent functions
- Environments are categorized along several dimensions:
- Several basic agent architectures exist:
 - reflex, reflex with state, goal-based, utility-based
 - Learning can be added to any agent type