

unction Reflex-Vacuum-Agent([location,status])	returns an action
if status = Dirty then return Suck else if	
location = A then return Right else if	
<i>location</i> = <i>B</i> then return <i>Left</i>	
Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
•	· ·
•	· · ·

Reflex Agents = Table-lookup?	Rationality
 Could express as table instead of function. Complete map from percept (histories) to actions Actions "computed" by simply looking up appropriate action in table Percept sequence Action Action Birty] Birty] Suck [A, Clean] [A, Clean] [B, Dirty] Suck [A, Clean], [A, Clean] Right [A, Clean], [A, Dirty] Suck [B, Dirty] Suck [B, Dirty] Suck [A, Clean], [A, Dirty] Suck [B, Clean], [A, Clean] [B, Dirty] Suck [B, Clean], [A, Clean] [B, Clean]<	 Fixed performance measure evaluates the environment sequence one point per square cleaned up in time T? one point per clean square per time step, minus one per move? penalize for > k dirty squares? More? A rational agent chooses whichever action maximizes the expected value of the performance measure given current knowledge Knowledge = initial knowledge + the percept sequence to date Rational ≠ omniscient percepts may not supply all relevant information Rational ≠ clairvoyant about action efficacy action outcomes may not be as expected Hence, rational ≠ guaranteed successful Rationality motivates ⇒ exploration, learning, autonomy

Summary: Rationality

- Remember: rationality is ultimately defined by:
 - Performance measure
 - Agent's prior (initial) knowledge of world
 - Agent's percepts to date (updates to world)
 - Available actions
- · Some thought questions:
 - Is it rational to inspect the street before crossing?
 - Is it rational to try new things?
 - Is it rational to update beliefs?
 - · Is it rational to construct conditional plans of action in advance?
- Could now go into:
 - empirical risk minimization (statistical classification)
 - · Expected return maximization (reinforcement learning)
- Wait till later! Let's get clearer concept of agents first!

PEAS: Specifying Task Environments

- To design a rational agent, we must specify the task environment
 - We've done this informally so far...vague
 - The characteristics of the task environment determine much about agents!
 - Need to formalize...
- PEAS: Dimensions for specifying task environments
 - Performance measure: metrics to measure performance
 - Environment: Descr. of areas/context agent operates in
 - · Actuators: Ways that agent can intervene/act in the world
 - · Sensors: Information channels through which agent gets info about world
- Consider, e.g., the task of designing an automated taxi:
 - Performance measure??
 - Environment??
 - Actuators??
 - Sensors??

PEAS: Specifying Task Environments

- To design a rational agent, we must specify the task environment
 We've done this informally so far...vague
 - The characteristics of the task environment determine much about agents!
 - Need to formalize...
- PEAS: Dimensions for specifying task environments
 - Performance measure: metrics to measure performance
 - Environment: Descr. of areas/context agent operates in
 - Actuators: Ways that agent can intervene/act in the world
 - · Sensors: Information channels through which agent gets info about world
- Consider, e.g., the task of designing an automated taxi:
 - Performance measure?? safety, destination, profits, legality, comfort...
 - Environment?? US streets/freeways, traffic, pedestrians, weather...
 - Actuators?? steering, accelerator, brake, horn, speaker/display...
 - Sensors?? video, accelerometers, gauges, engine sensors,keyboard, GPS...

PEAS: Internet shopping agent

- Performance measure??
- Environment??
- Actuators??
- Sensors??

PEAS: Spam filtering agent

- Performance measure??
- Environment??
- Actuators??
- Sensors??

Environments: A more concise framework

PEAS gave us a framework for outlining key agent features

- One of those was environment...but we just had a general description
- Much more useful to think about the kind of environment it represents
- Need a concise, formal framework classifying kinds of environments!
- Based on six dimensions of difference:

1. Observability: Full vs. Partial

- 1. Fully: An agent's sensors give it access to the complete state of the environment at each point in time.
- 2. Partially observable: An agent's sensors give it access to only some partial slice of the environment at each point in time.

2. Determinism: Deterministic vs. stochastic

- 1. Deterministic: The next state of the environment is completely determined by the current state and the action executed by the agent.
- Stochastic: State and actions are known/succeed based on some statistical model. Knowledge is fallible, as are action outcomes.

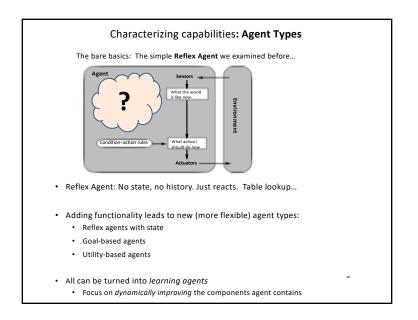
3. Contiguity: Episodic vs. sequential

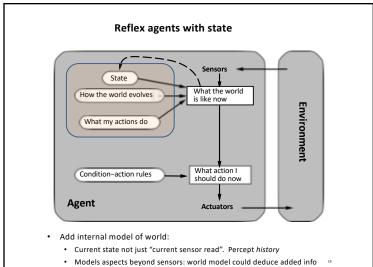
- 1. Episodic: The agent's experience is divided into independent atomic "episodes";
- each episode consists of the agent perceiving and then performing a single action 2. Sequential: The agent's experience is a growing series of states; new action is
 - based not only on actual state, but on state/action in previous episodes.

Environments: A more concise framework

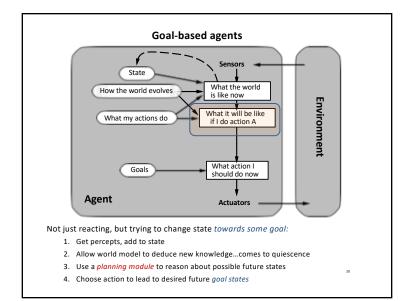
4. Stability: Static vs. Dynamics

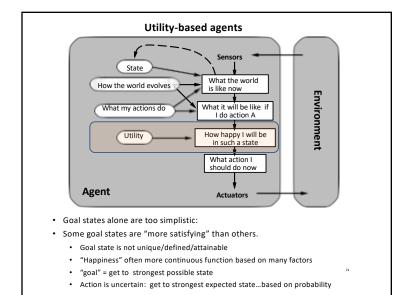
- 1. Static: Environment is unchanging while the agent is deliberating
- 2. Dynamic: Environment is fluid, keeps evolving while agent plans action

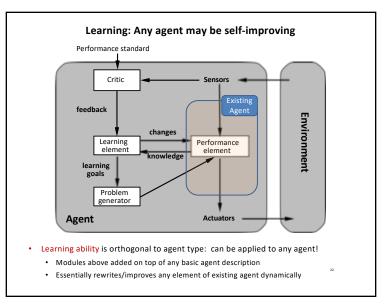

5. Continuity: Discrete vs. Continuous

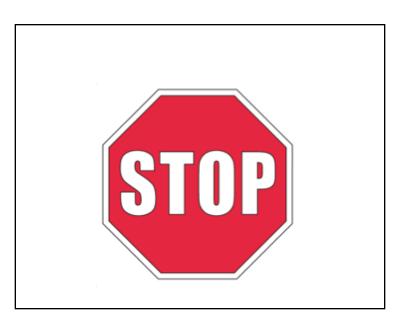

- 1. Discrete: A limited number of distinct, pre-defined percepts and actions possible.
- Continuous: An unlimited number of actions are possible, infinite percepts readings possible.

6. Actors: Single vs. multi-agent


- 1. Single: Agent is operating solo in environment. Sole agent of change
- 2. Multi-agent: There are other agents/actors to consider, take into account, coordinate with...compete against.
- What is the real world like?
 - Depends on how you frame the world
 - What your "world" is. How much detail of it you represent.


Thinking about Environment types					
	Solitaire	Backgammon	Internet shopping	Тахі	
Observable??					
Deterministic??					
Episodic??					
Static??					
Discrete??					
Single-agent??				17	
	I				




Action is still just table lookup: based on configurations of world state

Summary Agents interact with environments through actuators and sensors PEAS descriptions outline task environment and agent's access to it The agent function describes what the agent does in all circumstances f: (initial state + P*) → A For non-reflex agents: Some sort of performance measure evaluates the current (P* → current state) Boolean goal function vs. Utility function A perfectly rational agent maximizes expected performance Agent programs implement (some) agent functions Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent? Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based Learning can be added to any agent type

