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Intelligent Agents

Chapter 2
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(Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!)  
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Outline

♦ Agents and environments

♦ Rationality

♦ PEAS (Performance measure, Environment, Actuators, Sensors)

♦ Environment types

♦ Agent types

Agents	and	Environments

• Agents include:
• Humans
• Robots
• Softbots
• Thermostats
• More…

• The agent function represents the 
“intelligence”
• Map from percept histories to 

actions:

f  : P∗ → A

• An agent program running on 
physical architecture 
implements the agent function

The line between agent and environment 
depends on the level of abstraction. 

Environment considered as a black box, 
completely external to the agent 
• even if it’s simulated by local code.
• Agent has accept to world only via 

percepts. 

Environm
ent

Agent Sensors

Actuators

Percepts

Actions

?

Vacuum-cleaner world

A B
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Percepts:  location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

So: super simple world!
• 1-D environment, just two locations
• Only four possible actions, uniformly available in all locations
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A (reflex) vacuum-cleaner agent

Percept sequence
[A, Clean]
[A, Dirty]
[B, Clean]
[B, Dirty]
[A, Clean], [A, Clean]
[A, Clean], [A, Dirty]
.
.
.

Action
Right  
Suck  
Left  
Suck  
Right  
Suck
.
.
.

function Reflex-Vacuum-Agent( [location,status]) returns an action
if status = Dirty then return Suck  else if 
location = A then return Right  else if 
location = B then return Left
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• What is the right function?

A first example: Simple reflex agents

Agent

Environm
ent

Sensors

What the world  
is like now

What action I  
should do nowCondition−action rules

Actuators
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• Focus on now.  No state, no history. Just reacts.  True Zen  machine!
• Does this ever make sense as a design?

Reflex	Agents	=	Table-lookup?	

• Could express as table instead of function.
• Complete map from percept (histories) to actions
• Actions “computed” by simply looking up appropriate action in table

• Drawbacks: 
• Huge table! 
• Rigid, no autonomy, flexibility
• Even with learning, need a long time to ”learn” all entries in complex world.

• Better agent programs: produce complex behaviors from compact 
specifications (programs)

Percept sequence
[A, Clean]
[A, Dirty]
[B, Clean]
[B, Dirty]
[A, Clean], [A, Clean]
[A, Clean], [A, Dirty]
..

Action
Right  
Suck  
Left  
Suck  
Right  
Suck
..
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Rationality

Fixed performance measure evaluates the environment  sequence
– one point per square cleaned up in time  T ?
– one point per clean square per time step, minus one per move?
– penalize for > k dirty squares?
– More?

A rational agent chooses whichever action maximizes the expected 
value of  the performance measure given current knowledge
• Knowledge = initial knowledge + the percept sequence to date

Rational ≠ omniscient
• percepts may not supply all relevant information  

Rational ≠ clairvoyant about action efficacy
• action outcomes may not be as expected 

Hence, rational ≠ guaranteed successful

Rationality motivates ⇒ exploration, learning, autonomy
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Rationality	and	Goals

• ”to maximize expected outcome”.  What does that mean?
• Rationality is inherently based on having some goal that we want to achieve
• Performance measure:  expresses extend of satisfaction, progress towards

• Suppose:  We have a game:
• Flip a biased coin (probability of heads is h…not necessarily 50%)
• Tails = loose $1;   Heads= win $1

• What is the expected winnings in a series of flips?
• (1)h + (-1)(1-h) = 2h-1

• Rational to play?  Depends…
• What if performance measure is total money? 
• What if performance measure is spending rate?
• Why might a human play this game at expected loss? 

• Vegas, baby! 

Summary:		Rationality

• Remember:  rationality is ultimately defined by:
• Performance measure
• Agent’s prior (initial) knowledge of world
• Agent’s percepts to date (updates to world)
• Available actions

• Some thought questions:
• Is it rational to inspect the street before crossing?
• Is it rational to try new things?
• Is it rational to update beliefs?  
• Is it rational to construct conditional plans of action in advance?

• Could now go into: 
• empirical risk minimization (statistical classification)
• Expected return maximization (reinforcement learning)

• Wait till later!  Let’s get clearer concept of agents first!  

PEAS:		Specifying	Task	Environments

• To design a rational agent, we must specify the task environment
• We’ve done this informally so far…vague
• The characteristics of the task environment determine much about agents!
• Need to formalize…

• PEAS:  Dimensions for specifying task environments
• Performance measure:    metrics to measure performance
• Environment:  Descr. of areas/context agent operates in
• Actuators:   Ways that agent can intervene/act in the world
• Sensors:   Information channels through which agent gets info about world

• Consider, e.g., the task of designing an automated taxi:  
• Performance measure??

• Environment??  

• Actuators??

• Sensors??

PEAS:		Specifying	Task	Environments

• To design a rational agent, we must specify the task environment
• We’ve done this informally so far…vague
• The characteristics of the task environment determine much about agents!
• Need to formalize…

• PEAS:  Dimensions for specifying task environments
• Performance measure:    metrics to measure performance
• Environment:  Descr. of areas/context agent operates in
• Actuators:   Ways that agent can intervene/act in the world
• Sensors:   Information channels through which agent gets info about world

• Consider, e.g., the task of designing an automated taxi:  
• Performance measure?? safety, destination, profits, legality, comfort...

• Environment?? US streets/freeways, traffic, pedestrians,weather...

• Actuators?? steering, accelerator, brake, horn, speaker/display...

• Sensors?? video, accelerometers, gauges, engine sensors,keyboard, GPS...
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PEAS:		Internet	shopping	agent

• Performance measure??  

• Environment??

• Actuators??  

• Sensors??

PEAS:		Spam	filtering	agent

• Performance measure??  

• Environment??

• Actuators??  

• Sensors??

Environments:	A	more	concise	framework

• PEAS gave us a framework for outlining key agent features
• One of those was environment…but we just had a general description
• Much more useful to think about the kind of environment it represents
• Need a concise, formal framework classifying kinds of environments! 
• Based on six dimensions of difference: 

1. Observability:  Full vs. Partial
1. Fully: An agent's sensors give it access to the complete state of the environment 

at each point in time. 
2. Partially observable: An agent's sensors give it access to only some partial slice of 

the environment at each point in time.  

2. Determinism: Deterministic vs. stochastic
1. Deterministic: The next state of the environment is completely determined by the 

current state and the action executed by the agent.  
2. Stochastic:  State and actions are known/succeed based on some statistical 

model.  Knowledge is fallible, as are action outcomes.

3. Contiguity:  Episodic  vs. sequential
1. Episodic: The agent's experience is divided into independent atomic "episodes”; 

each episode consists of the agent perceiving and then performing a single action
2. Sequential:  The agent’s experience is a growing series of states; new action is 

based not only on actual state, but on state/action in previous episodes.

Environments:	A	more	concise	framework

4. Stability: Static vs. Dynamics
1. Static: Environment is unchanging while the agent is deliberating 
2. Dynamic: Environment is fluid, keeps evolving while agent plans action

5. Continuity: Discrete vs. Continuous
1. Discrete: A limited number of distinct, pre-defined percepts and actions possible.  
2. Continuous:  An unlimited number of actions are possible, infinite percepts 

readings possible.

6. Actors:  Single vs. multi-agent
1. Single: Agent is operating solo in environment. Sole agent of change
2. Multi-agent:  There are other agents/actors to consider, take into account, 

coordinate with…compete against.

• What is the real world like?  
• Depends on how you frame the world
• What your “world” is.  How much detail of it you represent.
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Thinking	about	Environment	types

Solitaire Backgammon Internet shopping Taxi

Observable??  

Deterministic?? 

Episodic??

Static??

Discrete??  

Single-agent??
17

Characterizing capabilities: Agent Types

Agent

Environm
ent

Sensors

What the world  
is like now

What action I  
should do now

Condition−action rules

Actuators
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• Reflex Agent: No state, no history. Just reacts.  Table lookup…

• Adding functionality leads to new (more flexible) agent types:

• Reflex agents with state

• Goal-based agents

• Utility-based agents

• All can be turned into learning agents
• Focus on dynamically improving the components agent contains

The bare basics:  The simple Reflex Agent we examined before…

?

Reflex agents with state

Agent
Environm

ent

Sensors

What action I  
should do nowCondition−action rules

Actuators

What the world  
is like now
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State

How the world evolves

What my actions do

• Add internal model of world:
• Current state not just “current sensor read”.  Percept history
• Models aspects beyond sensors: world model could deduce added info
• Action is still just table lookup:  based on configurations of world state

Goal-based agents

Environm
ent

Sensors

What it will be like  
if I do action A

What action I  
should do now

State

How the world evolves

What my actions do

Goals

Agent Actuators

What the world  
is like now
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Not just reacting, but trying to change state towards some goal:
1. Get percepts, add to state
2. Allow world model to deduce new knowledge…comes to quiescence
3. Use a planning module to reason about possible future states
4. Choose action to lead to desired future goal states
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Utility-based agents

Agent

Environm
ent

Sensors

What it will be like  if 
I do action A

How happy I will be  
in such a state

What action I  
should do now

State

How the world evolves

What my actions do  

Utility

Actuators

What the world  
is like now
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• Goal states alone are too simplistic:

• Some goal states are “more satisfying” than others.  

• Goal state is not unique/defined/attainable 

• “Happiness” often more continuous function based on many factors

• “goal” = get to  strongest possible state

• Action is uncertain:  get to strongest expected state…based on probability

Learning: Any agent may be self-improving
Performance standard

Agent

Environm
ent

Sensors

Performance  
element

changes

knowledge
learning  

goals

Problem  
generator

feedback

Learning  
element

Critic
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Actuators

• Learning ability is orthogonal to agent type:  can be applied to any agent!
• Modules above added on top of any basic agent description
• Essentially rewrites/improves any element of existing agent dynamically

Existing
Agent
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Summary

• Agents interact with environments through actuators and  sensors

• PEAS descriptions outline task environment and agent’s access to it

• The agent function describes what the agent does in all circumstances

f: (initial state + P*) à A

• For non-reflex agents: Some sort of performance measure 

• evaluates the current (P* à current state)

• Boolean goal function vs. Utility function 

• A perfectly rational agent maximizes expected performance
• Agent programs implement (some) agent  functions

• Environments are categorized along several  dimensions:

• observable?  deterministic?  episodic?  static? discrete? single-agent?

• Several basic agent architectures exist:

• reflex, reflex with state, goal-based,  utility-based

• Learning can be added to any agent type


