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The real world is an uncertain place...

Example: | need a plan that will get me to airport on time
« Let action A, = leave for airport t minutes before flight

— WIll A, get me there on time?

* Problems:

1.  partial observability (road state, other drivers’ plans, etc.)

2. noisy sensors (ADOT/Google traffic reports and estimates)
3. uncertainty in action outcomes (flat tire, detours, etc.)

4. immense complexity of modeling and predicting traffic

« Hence a purely logical approach either:

— Risks falsehood:

+ “Plan Ay, leaves home 90 minutes early and airport is only 5 minutes away; Ag, will get
me there on time”

« Does not take into account any uncertainties - is not realistic

— or 2) leads to conclusions that are too weak for decision making:

+ “Plan Ag, will get me there on time if there’s no accident on the bridge and it doesn’t rain
and my tires remain intact etc. etc. etc.”

» Takes into account many (infinite?) uncertainties...none of which can be proven - no
actionable plan.

— Is irrationally cautious:

« Plan A,,,, leaves 24 hours early; might reasonably be said to get me there on time but I'd
have to stay overnight in the airport .. .)



Dealing with Uncertainty

So what can we do? Need tools do we have to deal with this?

Belief States?

« |dea: generate and track all possible states of the world given uncertainty
— Used for Problem-solving Agents (ch4) and Logical Agents (ch7)
— Make a contingency plan that is guaranteed successful for all eventualities

« Nice idea, but not very realistic for complex, variable worlds:

— For partially observable world, must consider every possible explanation for
incoming sensor percepts...no matter how unlikely. - Huge belief states

— A plan to handle every contingency gets arbitrarily large in a real world with
essentially infinite contingencies.

— Sometimes there is no plan that is guaranteed to achieve the goal...and yet we
must act...rationally.

e Conclusion: We need some new tools!

— Reasoning rationally under uncertainty. Takes into account:
* Relative importance of various goals (performance measures of agent)
» The likelihood of. contingencies, action success/failure, etc.



Dealing with Uncertainty

So how about building uncertainty into logical reasoning?
 Example: diagnosing a toothache
— Diagnosis: classic example of a problem with inherent uncertainty
— Attempt 1: Toothache = HasCavity
« But: not all toothaches are caused by cavities. Not true!

— Attempt 2: Toothache = Cavity V GumbDisease V Abscess V etc V etc
* To be true: would need nearly unlimited list of options...some unknown.

— Attempt 3: Try make causal: Cavity = Toothache
* Nope: not all cavities cause toothaches!

« Fundamental problems with using logic in uncertain domains:

« Laziness: It's too much work to generate complete list of antecedents/consequents to
cover all possibilities

* Ignorance: You may not even know all of the possibilities.
— Incomplete domain model. Common in real world...

» Practical Ignorance: Even if domain model complete, | may not have all necessary
percepts on hand

— The connection between toothaches-cavities is just not a logical consequence!

* Need a new solution: Probability theory
— Allow stating a degree of belief in various statements in the KB



Probability

* Probabilistic assertions (sentences in KB) essentially summarize effects of
— laziness: failure to enumerate exceptions, qualifications, etc.
— ignorance: lack of relevant facts, initial conditions, etc.

« Clearly a subjective technique!
— Extensive familiarity with domain required to accurately state probabilities

— Need for extensive fine-tuning. Probabilities are conditional on evolving facts

« Subjective or Bayesian probability:
— Probabilities relate propositions to one’s own current state of knowledge

* e.g., P (Ay|no reported accidents) = 0.06

» These are not claims of a “probabilistic tendency” in the current situation (but might
be learned from past experience of similar situations)

— Probabilities of propositions change with new evidence:
* e.g., P (Ay|no reported accidents, time=5a.m.) =0.15

— Interesting: Analogous to logical entailment status
« KB |= a - means a entailed by KB...which represents what you currently know.
* Analogously: KB = "no reported accidents, time=5a.m.” 2> KB |= 5 O



Making Decisions under Uncertainty

Probability theory seems effective at expressing uncertainty.
— But how do | actually reason (make decisions) in an uncertain world?

Suppose | believe the following:

— P(A,5 gets me there on time | etc etc etc) = 0.04
P(Aq, gets me there on time | etc etc etc) = 0.70
P(A,,, gets me there on time | etc etc etc) = 0.95

— P(A4440 9ets me there on time | etc etc etc) = 0.9999

Accurately expresses uncertainty with probabilities. But which plan should
| choose?

— Depends on my preferences for:
« missing flight risk vs. wait time in airport vs. (pro/con) vs. (pro/con) vs. etc.

— Utility theory is used to represent and infer preferences
* Reasons about how useful/valued various outcomes are to an agent

Decision Theory = Utility Theory + Probability Theory
— Complete basis for reasoning in an uncertain world!



Probability Theory Basics

Like logic assertions, probabilistic assertions are about possible worlds
— Logical assertion a: all possible worlds in which a is false ruled out.
— Probabilistic assertion a: states how probable various worlds are given a.

Defn: Sample space: a set Q) = all possible worlds that might exist
— e.g., after two dice roll: 36 possible worlds (assuming distinguishable dice)

— Possible worlds are exclusive and mutually exhaustive
* Only one can be true (the actual world); at least one must be true

— w € Qis a sample point (possible world)

Defn: probability space or probability model is a sample space with an
assignment P(w) for every w€ Q such that:

~ 0<P(w)<1
~ 5, Pw)=1
— e.g. for die roll: P(1,1) = P(1,2) = P(1,3) =... = P(6,6) = 1/36.

An event A is any subset of Q
— Allows us to group possible worlds, e.g., “doubles rolled with dice”
— P(A) = Ziyep P(w)
— e.g., P(doubles rolled) =P (1,1)+ P (2,2) + ... + P (6,6)



Probability Theory Basics

« A proposition in the probabilistic world is then simply an assertion that
some event (describing a set of possible worlds) is true.

— B="doubles rolled” - asserts event “doubles” is true > asserts {[1,1] V
[2,2] V...V [6,6]} is true.

— Propositions can be compound: 8=(doubles A (total>4))
- P(@)=2,c P(W) —> probability of proposition is sum of its parts

« Nature of probability of some proposition 8 being true can vary, depending:

— Unconditional or prior probability = a priori belief in truth of some proposition in
the absence of other info.
* e.g. P(doubles) =6 * (1/36) = 1/6 > odds given no other info.

« But what if one die has already rolled a 5? Or | now know dice are loaded?

— Conditional or posterior probability = probability given certain information
« Maybe P(cavity) = 0.2 (the prior)... but P(cavity | toothache) = 0.6

« Or could be: P(cavity | toothache A (dentist found no cavity) ) =0



Probability Theory Basics

« Syntax: how to actually write out a proposition

— Afactored representation: states all of the “things” that are asserted true.

— “Things” = random variables (begin with upper case)
» The features that together define a possible world by taking on values
« E.g. “Cavity”, “Total-die-value”, “Die,”

— Every variable has domain = set of possible values
« domain(Die,) = {1,2,3,4,5,6} ; domain(Total-die-value)={1,2,...,12}

— Variables with a boolean domain can (syntactic sugar) be compacted:
« domain(Cavity) = {true, false} - instead of “Cavity=true”, just write “cavity”
» conversely for Cavity=false - —cavity

— Probability of proposition = summed probability of atomic events
. P(DieSum=7) = P(6,1) + P(2,5) + P(5,2) + P(3,4) + efc etc



Probability Distributions

So we can now express the probability of a proposition:
— P(Weather=sunny) = 0.6 ; P(Cavity=false) = P(~cavity)=0.1

Probability Distribution expresses all possible probabilities for some event
— So for: P(Weather=sunny) = 0.6; P(Weather=rain) = 0.1; etc etc -

— P(Weather) ={0.72, 0.1, 0.29, 0.01} for Weather={sun, rain, clouds, snow}
» Can be seen as total function that returns probabilities for all values of Weather
* Is normalized, i.e., sum of all probabilities adds up to 1.
* Note that bold P means prob. distr.; plain P means plain probability

Joint Probability Distribution: for a set of random variables, gives probability for
every combo of values of every variable.

— Gives probability for every event within the sample space
— P(Weather, Cavity) = a 4x2 matrix of values:
Weather = sunny rain cloudy  snow

Cavity =true 0.144 002 0016 0.02
Cavity =false 0.576 008 0064 0.08

Full Joint Probability Distribution = joint distribution for all random variables in
domain

— Every probability question about a domain can be answered by full joint distribution
* Dbecause every event is a sum of sample points (variable/value pairs)



Probability Distributions: for continuous variables

« What about continuous random variables?
« Some variables are continuous, e.g. P(Temp=82.3) = 0.23; P(Temp=82.5)= 0.24; etc.
» Also could assert ranges: P(Temp<85) ; P(40<Temp<67)
« We can express distributions as a parameterized function of value:
« P (X =x)=U][18, 26](x) = uniform density between 18 and 26
* Known as a probability density function (pdf)

0.125—

18 dx 26

— Here P is a really a density distribution; the whole range integrates to 1.
* Probability of falling in 67-75 range is 100%
» Probability of NoonTemp at any single value is actually zero!
« P (X=20.5)=0.125 really means Limy, 5, P (20.5 < X < 20.5 + dx)/dx = 0.125



Probability Distributions

Another example: simple Gaussian distribution:

1

V2Tmo

e~ (x—w?/20*
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Conditional Probability

Let’s take a closer look now...

— Precise meaning of: P(cavity | toothache) = 0.8 ?
* Not: “if toothache, then 80% chance of cavity” !
« That would be a hard fact: “whenever toothache, P(cavity) is 80%”
* Yes: “P(cavity)=80% given that all | know is toothache”
» Leaves room for P(cavity | (toothache A fist-fight) ) = 0.01

» Less specific belief P(cavity | toothache)=0.8 remains true after more evidence
arrives....but is less useful.

— Some evidence may be “irrelevant”, allowing simplification:
» P(cavity | toothache, NAUjacksWin) = P(cavity | toothache) = 0.8
* “Irrelevance” determined by detailed domain knowledge. We’'ll come back to this...

Conditional Distributions
— Concept of distributions can also by used for conditional probability

— P(Cavity | Toothache) = probabilities for all values in range of Cavity, Toothache

« ={P(cavity | toothache), P(~cavity | toothache), P(cavity | "toothache),
P(~cavity | "toothache) }

— So: P(X | Y) = gives values of P(X=x; | Y=y,) for all possible i,j in ranges of X,Y



Computing with Conditional Probability

Conditional probability can be defined in terms of unconditional probability:

: P(doubles A Die,=5)
P(a|b)= P(s({o\)b) E.g.: P(doubles)|Die;=5)= P(Die,=5)

— can be rewritten, giving the product rule:
« P(a/Ab)=P(alb) P(b)

+ Makes sense:
— For (a/Ab) to be true, we need b to be true...and need a to be true given b

Also works for distributions:

— P(Weather, Cavity) = P(Weather|Cavity) P(Cavity)
« Stands for a (4 values for Weather) x (2 values for Cavity) = 8 product equations

The chain rule is derived by successive application of product rule:

=P(Xy, ..., Xi—o) POX Xy, - o Xn—o) POGIXy, - e Xn-1)

?=1P(Xi |X1 Xi—l)

— Note the recursive reduction joint P into a chained product of conditional P’s



Inference in a probabilistic world

« Just need a couple more probabilistic rules:
— Obvious: P(ma) = 1- P(a)
— Inclusion-Exclusion Principle: P(aVb) = P(a) + P(b) — P(aAb)

* So how to do Inference?
— Logical Inference = asking whether something is true (entailed), given the KB

— Probabilistic Inference = asking how likely something is, given the KB
» Just compute the posterior probability for query proposition, given KB!

— We use the full joint probability distribution as the KB!
« Contains the probability of all possible worlds!

— Inference = look up the probability of a query proposition
» Extract and sum up the appropriate “slice” of the joint distribution

« Example: Consider a world with just three boolean variables
— Toothache (has one or not)
— Cavity (has or not)

— Catch (dentists tool catches or not)



Inference using full joint distribution

Start with the full joint distribution for this world:

toothache ~toothache

catch | -catch Vcatch| -catch

cavity] .108 | .012 .072] .008
~cavity| .016 | .064 144 | .576

For any proposition ¢, the P(¢) = sum the atomic events
where it is true:

P(p) = Zw:w|:q0'D (w)



Inference using full joint distribution

Start with the full joint distribution for this world:

toothache ~toothache

catch | -catch Y catch| -catch

cavity | .108 | .012 .072] .008
~cavity| .016 | .064 144 | .576

For any proposition ¢, the P(¢) = sum the atomic events
where it is true:

P(p) = zcu:cu|=<p":) (w)
P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

This process is called summing out or marginalization
« Sum up probabilities across values of other (non-specified) variables
In this case: Cavity and Catch
« Generally: P(Y)=%,., P(Y,z) ,or also, by product rule: P(Y)=2,., P(Y|z) P(z)

zeZ
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Inference using full joint distribution

Start with the full joint distribution for this world:

toothache ~toothache

catch | -catch | catch| -catch

cavity| .108 | .012 .072 | .008
~cavity| .016 | .064 144 | .576

For any proposition ¢, the P(¢) = sum the atomic events where it is true:
P(p) = Zw:w|=<,0'D (w)
Can also easily do compound propositional queries:

P (cavityV toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

19



Inference using full joint distribution

Start with the full joint distribution for this world:

toothache ~toothache
catch | -catch | catch | -catch
cavity| .108 | .012 .072 | .008
ﬂcavityl .016 | .064 | 144 | .576
Can also compute conditional probabilities:
P (—cavity|toothache) = P (—cavity A toothache)
P (toothache)
_ 0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4

(Product rule)

20



Normalization

toothache ~toothache

catch | ~catch Y catch | -catch
cavity]!.108; 1.012 .072] .008
~cavity || .016  |.064 144 | .576

P (cavity A toothache)
P (toothache)

P(cavity|toothache) =

« Denominator can be viewed as a normalization constant a for the distribution P(Cavity|
toothache)

— Ensures that the probability of the distribution adds up to 1.

P(Cavity|toothache) = a P(Cavity, toothache)
= a [P(Cavity, toothache, catch) + P(Cavity, toothache, ~catch)]
= a [(0.108, 0.016) + (0.012, 0.064)]
=a(0.12,0.08) =(0.6,0.4)
* Note that proportions between (0.12, 0.08) and (0.6, 0.4) are same

— Latter are just normalized by application of a to add up to 1.
— Soif ajust normalizes, | could also normalize “manually” - divide by sum of two.
— Wow: | don’t need to actually know P(toothache) - can just normalize manually!



Inference using full joint distribution

In Summary: Compute distribution of query variable by fixing evidence variables
(those in the “given” part) and summing over hidden (all other) variables

— Let’s analyze the implications more closely...

Let X be all the variables.

— Typically, we want the conditional joint distribution of the query variables Y given specific
values e for the evidence variables E

— Then the hidden variablesare H=X-Y - E

Then the required summation of joint entries is done by summing out the hidden
variables:

- P(Y[E=e)= aP(Y,E=e)= a2,c4P(Y,E=€,H=h)

Problem: works great, can answer all queries...but exponential complexity:

— For world with n boolean variables:
* Requires O(2") to create store joint distribution table; O(2") to process table lookup

— Jumps to O(d") for random variables with a range of d values!
— Fine for toy worlds with three variables. Real worlds - >100 variables!

Inefficiency! How to even find/define the probabilities for O(d") table entries!
— Especially given that you may never consult most of them!
— We need some more tools!



Independence of variables

The problem: full joint distribution get huge fast
— the cross-product of all variables, all values in their range.

— Different probability for every variables...conditional on all values of all other
variables.

But are all of these variables really related? |s every variable really related to all
others?

— Consider P(toothache, catch, cavity, cloudy) 2> 2 x 2 x 2 x 4 joint distr. = 32 entries

— By product rule: P(toothache, catch, cavity, cloudy)
= P(cloudy|toothache,catch,cavity) P(touchache,catch,cavity)

— But it the weather really conditional on toothaches, cavities and dentist’s tools? No!
— So realistically: P(cloudy|toothache,catch,cavity) = P(cloudy)

— So then actually: P(toothache, catch, cavity, cloudy) =
P(cloudy) P(touchache,catch,cavity)

— We say that cloudy and dental variables are independent (also absolute independence)
« —>probabilities separate = just multiplied simply.

Effectively: the 32-element joint distribution table becomes one 8-element
table + 4-element table



Independence of variables

Graphically:

decomposes to

—

Cavity Cavity

Toothache Toothache

Catch

Weather

Much easier to build/access 8-table + 4-table than 32-table!
— 32 entries reduced to 12!

— Generally: N dependent variables = 2" vs. N independent variables=n Wow!

Math: for independent variables X and Y:
P(AIB) =P(A) or P(B|A) =P(B) or P(X,Y)=P(X)P(Y)

Independence assertions based on judgment, specific knowledge of domain

— Can dramatically reduce information needed for full joint distribution (2" = n)
— Sadly: absolute independence is quite rare in real world

Even an indirect connection must be accounted for as a conditional

— Plus: even independent subset can still be large, e.g., real dentistry = 100’s of variables

Need more power!



Conditional Independence

« Consider again: Toothache, Catch, Cavity
— Clearly not independent. toothache and tool and cavity obviously related

— But what is the relationship?

) Toothache Cavity
* Truly interconnected? No! :

Or

Cavity Catch Catch Toothache

— Catch and Toothache are actually halfway independent of each other
» They are related only via cavity. - they are both caused by the cavity
« Formally: they are conditionally independent given cavity
« Math notation: P(toothache A catch | cavity) = P(toothache|cavity) P(catch|cavity)

— Generally: given conditionally independent X, Y given some Z
« P(X)Y|Z)=P(X|Z) P(Y|Z) and also P(X|Y,Z) = P(X|Z) and P(Y|X,Z2)= P(Y|2)
+ Allows same decomposition of large joint table to smaller ones as before:
P(Toothache, Catch,Cavity)

= P(Toothache,Catch|Cavity) P(Cavity) (prod. rule)
= P(Toothache|Cavity) P(Catch|Cavity) P(Cavity) (using above)

— One large table decomposed to three smaller ones. #entries: O(2") = O(n) !



Conditional Independence

« Conditional independence is very common in real world!

— Our basic and most robust form of knowledge about uncertain environments!

« Asingle cause often influences many conditionally independent effects
— P(Cause, Effect,, Effect,,...,Effect,) = P(Cause) 1, P(Effect, | Cause)
— This probability distribution is a naive Bayes model

— Naive: because it's often applied for simplicity...
« Even when the effects are not strictly conditionally independent give the cause
« Often works surprisingly well (i.e. “close enough” for good reasoning)

« Let's look at how we leverage conditional independence to reason...



Bayes Rule

Recall the product rule:
P(a A b) =P(alb) P(b) or, conversely: P (a A b)=P(bla)P(a)
equate and divide by P(a):

Bayes rule: p(bla)= _P(alb) P(b)
P(a)

The basis for probabilistic inference in all modern Al systems!

More generally, applied to probability distributions, we have:

P(Y|X) =_P(X]Y) P(Y)
P(X)

» As always, this represents a whole set of equations: every combo of var values

And even more generally, conditioned on additional background info e :

P(Y|X,e)= _P(X]Y,e) P(Y]e)
P(X]e)

27



Using Bayes Rule

e So: P(Y|X) = P(XLT))()P(Y)

— Doesn’t seem super useful at first?
» To calculate P(Y|X), | need P(X|Y) ---is that likely? Yes!

— Very useful for cause-effect reasoning, e.g., diagnosis problems

P(cause | effect) =_P(effect|cause) P(cause)
P(effect)

 Example:

A patient comes in with a stiff neck; one possible and very serious cause is
meningitis. Epidemiological studies have shown that meningitis causes a stiff neck
70% of the time. It’s also known that meningitis strikes about 1/50,000 people in
general, and that about 1% of people have a stiff neck on any given day.

¢ So:
» P(stiffimen) =0.7
« P(m)=1/50,000 and P(stiff) =1/100
* P(men|stiff) = P(stifffmen) P(men) / P(stiff) = (0.7 * 1/50k)/0.01 = 0.0014

» We often have probabilities in the causal direction...can compute probability in the
diagnostic direction

28



Using Bayes Rule: a typical example

Let’s try this out:

— Your doctor says you tested positive for a serious disease; test is 99%
accurate. It's a rare disease though: only 1 in 10,000 people have it. Why
should you be happy?



Summary

Probability is a rigorous formalism for uncertain knowledge
— Provide an entire mathematics for quantifying and calculating uncertainty

Joint probability distribution specifies probability of every atomic event
— Every combination of every variables across its whole range
— Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint table size
— Size of joint distribution is O(n?) for n variables. Intractable.
— Independence and conditional independence provide the tools

Bayes Rule focuses probability calculus on forward diagnostic problems
— Probability of a cause, given a set of conditionally independent effects

— Useful for many “diagnosis” tasks
* How likely is it that some event has occurred, given a set of observed evidence.

Bayes rule provides the basis of probabilistic reasoning in Al
— Basis for Bayesian networks (next chapter)






Extra slides...maybe next time...



Wumpus World

1,4 2,4 34 4.4
1,3 2,3 33 43
12 2,2 32 42
B

OK

1,1 21 3,1 41
B
OK OK

Pi; = true iff [i, j] contains a pit

Bij =true iff [i, ] is breezy
Include only B1 1, Bi12, B> 1 in the probability model

Chapter 13 33



Specifying the probability model

The full joint distribution is P(P1.1, ..., P44, B1.1, B12, B2 1)

Apply product rule: P(B1.1,B12,B21|P11,...,P44)P(P1i1,...,P4a4)

(Do it this way to get P (Effect| Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:
P(Pit, ..., Pas) =T177_ [P(P;) = 02" x 081"

for n pits.

Chapter 13 34



Observations and query

We know the following facts:
b= —bi1 Ab12 Ab21
Known = —pi1 A P12 A =21

Query is P(P1 3| known, b)
Define Unknown = Pjs other than P;3 and Known
Forinference by enumeration, we have

P(P1 31known, b) = a2 unknownP (P13, unknown, known, b)

Grows exponentially with number of squares!

Chapter 13 35



Using conditional independence

Basic insight: observations are conditionally independent of other hidden
squares given neighbouring hidden squares

1,4 2,4 3,4 4,4
1,3 2,3 3,3 4,3
QUERY OTHER

1,2 2,2 3,2 4.2
AN

| \

| \\

|

11 2N N TR 41
I KNOWN N

| NN

| \

. 7

Define Unknown = Fringe UOther
P(b|P1 3, Known, Unknown) = P(b|P1 3, Known,
Fringe)

Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P13|known, b)=a P(P1,3, unknown, known,
unknown b

= q P(b|P1 3, known, )unknown)P(Pl, 3, known,

unknown

= a unlgflg I‘%m)wn, P13, fringe, other)P(P1 3, known, fringe,

= q fringe other Other)

= a ffrl_'ngs%(lféjrﬁrgg‘lvlg?%{g’# Mggsnge}f(ﬁlf’k%%m?f; I%%?’ Other)

ringe other

= a P(b|known, P13, fringe) Ogﬁqg,)P(known)P(fringe)P(other)

fringe other
= a P(known)P(P13) P(b|known, P13, fringe)P(fringe)
fringe other
= at P(blknown, P13, fringe)P(fringe)

P(P1,3) fringe

Chapter 13 37
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Using conditional independence contd.

1,3 1,3 1,3 1,3 1.3

(1) (P (P

1,2 2,2 1.2 2,2 1,2 2,2 1,2 2,2 1,2 2,2
w | D w U] | @ | @

1.1 2,1 3,1 1.1 2,1 3,1 1.1 2,1 3.1 1.1 2,1 3,1 1.1 2,1 3.1
w | o | @ | ]« w | o | @ | o | @ |«
0.2x0.2=0.04 0.2x0.8=0.16 0.8x0.2=0.16 0.2x0.2=0.04 0.2x0.8=0.16

P(P1 3| known, b)

at(0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16))
(0.31, 0.69)

U

P(P,2|known, b) ~ (0.86,0.14)
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