Reasoning with Uncertainty

Chapter 13

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes'Rule

The real world is an uncertain place...

Example: I need a plan that will get me to airport on time

- Let action $A_{t}=$ leave for airport t minutes before flight
- Will A_{t} get me there on time?
- Problems:

1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (ADOT/Google traffic reports and estimates)
3. uncertainty in action outcomes (flat tire, detours, etc.)
4. immense complexity of modeling and predicting traffic

- Hence a purely logical approach either:
- Risks falsehood:
- "Plan A_{90} leaves home 90 minutes early and airport is only 5 minutes away; A_{90} will get me there on time"
- Does not take into account any uncertainties \rightarrow is not realistic
- or 2) leads to conclusions that are too weak for decision making:
- "Plan A_{90} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc. etc. etc."
- Takes into account many (infinite?) uncertainties...none of which can be proven \rightarrow no actionable plan.
- Is irrationally cautious:
- Plan A_{1440} leaves 24 hours early; might reasonably be said to get me there on time but l'd have to stay overnight in the airport . . .)

Dealing with Uncertainty

So what can we do? Need tools do we have to deal with this?

Belief States?

- Idea: generate and track all possible states of the world given uncertainty
- Used for Problem-solving Agents (ch4) and Logical Agents (ch7)
- Make a contingency plan that is guaranteed successful for all eventualities
- Nice idea, but not very realistic for complex, variable worlds:
- For partially observable world, must consider every possible explanation for incoming sensor percepts...no matter how unlikely. \rightarrow Huge belief states
- A plan to handle every contingency gets arbitrarily large in a real world with essentially infinite contingencies.
- Sometimes there is no plan that is guaranteed to achieve the goal...and yet we must act...rationally.
- Conclusion: We need some new tools!
- Reasoning rationally under uncertainty. Takes into account:
- Relative importance of various goals (performance measures of agent)
- The likelihood of: contingencies, action success/failure, etc.

Dealing with Uncertainty

So how about building uncertainty into logical reasoning?

- Example: diagnosing a toothache
- Diagnosis: classic example of a problem with inherent uncertainty
- Attempt 1: Toothache \Rightarrow HasCavity
- But: not all toothaches are caused by cavities. Not true!
- Attempt 2: Toothache \Rightarrow Cavity \vee GumDisease \vee Abscess \vee etc \vee etc
- To be true: would need nearly unlimited list of options...some unknown.
- Attempt 3: Try make causal: Cavity \Rightarrow Toothache
- Nope: not all cavities cause toothaches!
- Fundamental problems with using logic in uncertain domains:
- Laziness: It's too much work to generate complete list of antecedents/consequents to cover all possibilities
- Ignorance: You may not even know all of the possibilities.
- Incomplete domain model. Common in real world...
- Practical Ignorance: Even if domain model complete, I may not have all necessary percepts on hand
- The connection between toothaches-cavities is just not a logical consequence!
- Need a new solution: Probability theory
- Allow stating a degree of belief in various statements in the KB

Probability

- Probabilistic assertions (sentences in KB) essentially summarize effects of
- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.
- Clearly a subjective technique!
- Extensive familiarity with domain required to accurately state probabilities
- Need for extensive fine-tuning. Probabilities are conditional on evolving facts
- Subjective or Bayesian probability:
- Probabilities relate propositions to one's own current state of knowledge
- e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents $)=0.06$
- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- Probabilities of propositions change with new evidence:

- Interesting: Analogous to logical entailment status
- KB |= $\alpha \rightarrow$ means α entailed by KB...which represents what you currently know.
- Analogously: $\mathrm{KB}=$ "no reported accidents, time=5 a.m." $\rightarrow \mathrm{KB} \mid={ }_{(0.15)}$ a

Making Decisions under Uncertainty

- Probability theory seems effective at expressing uncertainty.
- But how do I actually reason (make decisions) in an uncertain world?
- Suppose I believe the following:
$-P\left(A_{25}\right.$ gets me there on time \mid etc etc etc $)=0.04$
$-P\left(A_{90}\right.$ gets me there on time | etc etc etc $)=0.70$
$-P\left(A_{120}\right.$ gets me there on time | etc etc etc $)=0.95$
$-P\left(\mathrm{~A}_{1440}\right.$ gets me there on time \mid etc etc etc $)=0.9999$
- Accurately expresses uncertainty with probabilities. But which plan should I choose?
- Depends on my preferences for:
- missing flight risk vs. wait time in airport vs. (pro/con) vs. (pro/con) vs. etc.
- Utility theory is used to represent and infer preferences
- Reasons about how useful/valued various outcomes are to an agent
- Decision Theory = Utility Theory + Probability Theory
- Complete basis for reasoning in an uncertain world!

Probability Theory Basics

- Like logic assertions, probabilistic assertions are about possible worlds
- Logical assertion α : all possible worlds in which α is false ruled out.
- Probabilistic assertion α : states how probable various worlds are given α.
- Defn: Sample space: a set $\Omega=$ all possible worlds that might exist
- e.g., after two dice roll: 36 possible worlds (assuming distinguishable dice)
- Possible worlds are exclusive and mutually exhaustive
- Only one can be true (the actual world); at least one must be true
$-\omega \in \Omega$ is a sample point (possible world)
- Defn: probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ such that:
$-0 \leq P(\omega) \leq 1$
$-\Sigma_{\omega} P(\omega)=1$
- e.g. for die roll: $P(1,1)=P(1,2)=P(1,3)=\ldots=P(6,6)=1 / 36$.
- An event A is any subset of Ω
- Allows us to group possible worlds, e.g., "doubles rolled with dice"
- $P(A)=\sum_{\{\omega \in A\}} P(\omega)$
- e.g., $P($ doubles rolled $)=P(1,1)+P(2,2)+\ldots+P(6,6)$

Probability Theory Basics

- A proposition in the probabilistic world is then simply an assertion that some event (describing a set of possible worlds) is true.
- $\theta=$ "doubles rolled" \rightarrow asserts event "doubles" is true \rightarrow asserts $\{[1,1] \vee$ $[2,2] \vee \ldots . . \vee[6,6]\}$ is true.
- Propositions can be compound: $\theta=($ doubles \wedge (total>4))
$-P(\theta)=\Sigma_{\omega \in \theta} P(\omega) \quad \rightarrow$ probability of proposition is sum of its parts
- Nature of probability of some proposition θ being true can vary, depending:
- Unconditional or prior probability = a priori belief in truth of some proposition in the absence of other info.
- e.g. $P($ doubles $)=6 *(1 / 36)=1 / 6 \rightarrow$ odds given no other info.
- But what if one die has already rolled a 5 ? Or I now know dice are loaded?
- Conditional or posterior probability = probability given certain information
- Maybe P (cavity) $=0.2$ (the prior)... but P (cavity | toothache) $=0.6$
- Or could be: $\mathrm{P}($ cavity \mid toothache $\wedge($ dentist found no cavity $))=0$

Probability Theory Basics

- Syntax: how to actually write out a proposition
- A factored representation: states all of the "things" that are asserted true.
- "Things" = random variables (begin with upper case)
- The features that together define a possible world by taking on values
- E.g. "Cavity", "Total-die-value", "Die ${ }_{1}$ "
- Every variable has domain = set of possible values
- domain $\left(\operatorname{Die}_{1}\right)=\{1,2,3,4,5,6\}$; domain(Total-die-value) $=\{1,2, \ldots, 12\}$
- Variables with a boolean domain can (syntactic sugar) be compacted:
- domain(Cavity) $=\{$ true, false $\} \rightarrow$ instead of "Cavity=true", just write "cavity"
- conversely for Cavity=false $\rightarrow \neg$ cavity
- Probability of proposition = summed probability of atomic events
- $P($ DieSum $=7)=P(6,1)+P(2,5)+P(5,2)+P(3,4)+$ etc etc

Probability Distributions

- So we can now express the probability of a proposition:
- $P($ Weather=sunny $)=0.6 ; \quad P($ Cavity $=$ false $)=P(\neg$ cavity $)=0.1$
- Probability Distribution expresses all possible probabilities for some event
- So for: $P($ Weather=sunny $)=0.6 ; P($ Weather=rain $)=0.1$; etc etc \rightarrow
- $\mathbf{P}($ Weather $)=\{0.72,0.1,0.29,0.01\}$ for Weather=\{sun, rain, clouds, snow\}
- Can be seen as total function that returns probabilities for all values of Weather
- Is normalized, i.e., sum of all probabilities adds up to 1 .
- Note that bold P means prob. distr.; plain P means plain probability
- Joint Probability Distribution: for a set of random variables, gives probability for every combo of values of every variable.
- Gives probability for every event within the sample space
- P(Weather, Cavity) $=\mathrm{a} 4 \times 2$ matrix of values:

\quad Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Full Joint Probability Distribution = joint distribution for all random variables in domain
- Every probability question about a domain can be answered by full joint distribution
- because every event is a sum of sample points (variable/value pairs)

Probability Distributions: for continuous variables

- What about continuous random variables?
- Some variables are continuous, e.g. $P($ Temp=82.3 $=0.23 ; P(T e m p=82.5)=0.24$; etc.
- Also could assert ranges: $\mathrm{P}($ Temp<85) ; $\mathrm{P}(40<$ Temp<67)
- We can express distributions as a parameterized function of value:
- $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26
- Known as a probability density function (pdf)

- Here P is a really a density distribution; the whole range integrates to 1 .
- Probability of falling in 67-75 range is 100%
- Probability of NoonTemp at any single value is actually zero!
- $\mathrm{P}(\mathrm{X}=20.5)=0.125$ really means $\operatorname{Lim}_{\mathrm{dx} \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125$

Probability Distributions

Another example: simple Gaussian distribution: $\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$

Conditional Probability

- Let's take a closer look now...
- Precise meaning of: P (cavity | toothache) $=0.8$?
- Not: "if toothache, then 80\% chance of cavity" !
- That would be a hard fact: "whenever toothache, P (cavity) is 80% "
- Yes: "P(cavity)=80\% given that all I know is toothache"
- Leaves room for $P($ cavity \mid (toothache \wedge fist-fight) $)=0.01$
- Less specific belief P (cavity | toothache) $=0.8$ remains true after more evidence arrives....but is less useful.
- Some evidence may be "irrelevant", allowing simplification:
- $P($ cavity \mid toothache, NAUjacksWin $)=P($ cavity \mid toothache $)=0.8$
- "Irrelevance" determined by detailed domain knowledge. We'll come back to this...
- Conditional Distributions
- Concept of distributions can also by used for conditional probability
$-\mathbf{P}($ Cavity \mid Toothache $)=$ probabilities for all values in range of Cavity, Toothache
- $=\{P($ cavity \mid toothache $), \mathrm{P}(\neg$ cavity \mid toothache $), \mathrm{P}$ (cavity | \neg toothache), $P(\neg$ cavity | \neg toothache $)\}$
- So: $P(X \mid Y)=$ gives values of $P\left(X=x_{i} \mid Y=y_{i}\right)$ for all possible i, j in ranges of X, Y

Computing with Conditional Probability

- Conditional probability can be defined in terms of unconditional probability:

$$
\left.P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \quad \text { E.g.: } \quad P(\text { doubles }) \mid \text { Die }_{1}=5\right)=\frac{P\left(\text { doubles } \wedge \text { Die }_{1}=5\right)}{P\left(\text { Die }_{1}=5\right)}
$$

- can be rewritten, giving the product rule:
- $P(a \wedge b)=P(a \mid b) P(b)$
- Makes sense:
- For $(a \wedge b)$ to be true, we need b to be true...and need a to be true given b
- Also works for distributions:
- \mathbf{P} (Weather, Cavity) $=\mathbf{P}$ (Weather|Cavity) \mathbf{P} (Cavity)
- Stands for a (4 values for Weather) x (2 values for Cavity) $=8$ product equations
- The chain rule is derived by successive application of product rule:

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}, \ldots, X_{n}\right)=\mathrm{P}\left(X_{1}, \ldots, X_{n-1}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =P\left(X_{1}, \ldots, X_{n-2}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-2}\right) P\left(X_{n} x_{1}, \ldots, X_{n-1}\right) \\
& =\ldots \\
& \prod_{i=1}^{n} P\left(X_{i} \mid X_{1} \ldots X_{i-1}\right)
\end{aligned}
$$

- Note the recursive reduction joint P into a chained product of conditional P's

Inference in a probabilistic world

- Just need a couple more probabilistic rules:
- Obvious: $\mathrm{P}(\neg a)=1-\mathrm{P}(\mathrm{a})$
- Inclusion-Exclusion Principle: $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$
- So how to do Inference?
- Logical Inference = asking whether something is true (entailed), given the KB
- Probabilistic Inference = asking how likely something is, given the KB
- Just compute the posterior probability for query proposition, given KB!
- We use the full joint probability distribution as the KB!
- Contains the probability of all possible worlds!
- Inference = look up the probability of a query proposition
- Extract and sum up the appropriate "slice" of the joint distribution
- Example: Consider a world with just three boolean variables
- Toothache (has one or not)
- Cavity (has or not)
- Catch (dentists tool catches or not)

Inference using full joint distribution

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ, the $\mathrm{P}(\varphi)=$ sum the atomic events where it is true:

$$
P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega)
$$

Inference using full joint distribution

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ, the $\mathrm{P}(\varphi)=$ sum the atomic events where it is true:

$$
\begin{aligned}
& P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega) \\
& P(\text { toothache })=0.108+0.012+0.016+0.064=0.2
\end{aligned}
$$

This process is called summing out or marginalization

- Sum up probabilities across values of other (non-specified) variables
- In this case: Cavity and Catch
- Generally: $P(Y)=\Sigma_{z \in Z} P(Y, z)$, or also, by product rule: $P(Y)=\Sigma_{z \in Z} P(Y \mid z) P(z)$

Inference using full joint distribution

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ, the $\mathrm{P}(\varphi)=$ sum the atomic events where it is true:
$P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega)$
Can also easily do compound propositional queries:
$P($ cavity \vee toothache $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$

Inference using full joint distribution

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \quad \text { (Product rule) } \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064} \\
& =0.4
\end{aligned}
$$

Normalization

	toothache			-toothache	
	catch	_catch	catch	-catch	
cavity	.108	.012	.072	.008	
-cavity	.016	.064	.144	.576	

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity } \wedge \text { toothache })}{P(\text { toothache })}
$$

- Denominator can be viewed as a normalization constant α for the distribution $\mathbf{P (C a v i t y |}$ toothache)
- Ensures that the probability of the distribution adds up to 1 .

```
\(\mathbf{P}\) (Cavity|toothache) \(=\alpha \mathbf{P}\) (Cavity, toothache)
\(=\alpha[\mathbf{P}(\) Cavity, toothache, catch \()+\mathbf{P}(\) Cavity, toothache, \(ᄀ\) catch \()]\)
\(=\alpha[(0.108,0.016)+(0.012,0.064)]\)
\(=\alpha(0.12,0.08)=(0.6,0.4)\)
```

- Note that proportions between $(0.12,0.08)$ and $(0.6,0.4)$ are same
- Latter are just normalized by application of α to add up to 1 .
- So if α just normalizes, I could also normalize "manually" \rightarrow divide by sum of two.
- Wow: I don't need to actually know P (toothache) \rightarrow can just normalize manually!

Inference using full joint distribution

- In Summary: Compute distribution of query variable by fixing evidence variables (those in the "given" part) and summing over hidden (all other) variables
- Let's analyze the implications more closely...
- Let X be all the variables.
- Typically, we want the conditional joint distribution of the query variables Y given specific values e for the evidence variables E
- Then the hidden variables are $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$
- Then the required summation of joint entries is done by summing out the hidden variables:
$-P(Y \mid E=e)=\alpha P(Y, E=e)=\alpha \sum_{h \in H} P(Y, E=e, H=h)$
- Problem: works great, can answer all queries...but exponential complexity:
- For world with n boolean variables:
- Requires $\mathrm{O}\left(2^{n}\right)$ to create store joint distribution table; $\mathrm{O}\left(2^{n}\right)$ to process table lookup
- Jumps to $O\left(d^{n}\right)$ for random variables with a range of d values!
- Fine for toy worlds with three variables. Real worlds $\rightarrow>100$ variables!
- Inefficiency! How to even find/define the probabilities for $\mathrm{O}\left(\mathrm{d}^{n}\right)$ table entries!
- Especially given that you may never consult most of them!
- We need some more tools!

Independence of variables

- The problem: full joint distribution get huge fast
- the cross-product of all variables, all values in their range.
- Different probability for every variables...conditional on all values of all other variables.
- But are all of these variables really related? Is every variable really related to all others?
- Consider P(toothache, catch, cavity, cloudy) $\rightarrow 2 \times 2 \times 2 \times 4$ joint distr. $=32$ entries
- By product rule: P (toothache, catch, cavity, cloudy)
$=P$ (cloudy|toothache,catch, cavity) P (touchache,catch, cavity)
- But it the weather really conditional on toothaches, cavities and dentist's tools? No!
- So realistically: P (cloudy|toothache,catch, cavity) $=\mathrm{P}$ (cloudy)
- So then actually: P (toothache, catch, cavity, cloudy) = P(cloudy) P(touchache, catch, cavity)
- We say that cloudy and dental variables are independent (also absolute independence)
- \rightarrow probabilities separate \rightarrow just multiplied simply.
- Effectively: the 32-element joint distribution table becomes one 8 -element table + 4-element table

Independence of variables

- Graphically:

- Much easier to build/access 8 -table +4 -table than 32 -table!
- 32 entries reduced to 12 !
- Generally: N dependent variables $=2^{\mathrm{n}}$ vs. N independent variables $=\mathrm{n} \quad$ Wow!
- Math: for independent variables X and Y :
- $\mathbf{P}(A \mid B)=\mathbf{P}(A)$ or $\mathbf{P}(B \mid A)=\mathbf{P}(B)$ or $\mathbf{P}(X, Y)=\mathbf{P}(X) \mathbf{P}(Y)$
- Independence assertions based on judgment, specific knowledge of domain
- Can dramatically reduce information needed for full joint distribution ($2^{n} \rightarrow n$)
- Sadly: absolute independence is quite rare in real world
- Even an indirect connection must be accounted for as a conditional
- Plus: even independent subset can still be large, e.g., real dentistry $=100$'s of variables
- Need more power!

Conditional Independence

- Consider again: Toothache, Catch, Cavity
- Clearly not independent: toothache and tool and cavity obviously related
- But what is the relationship?
- Truly interconnected? No!

- Catch and Toothache are actually halfway independent of each other
- They are related only via cavity. \rightarrow they are both caused by the cavity
- Formally: they are conditionally independent given cavity
- Math notation: P (toothache \wedge catch | cavity) $=P$ (toothache|cavity) P (catch|cavity)
- Generally: given conditionally independent X, Y given some Z
- $\mathbf{P}(X, Y \mid Z)=\mathbf{P}(X \mid Z) \mathbf{P}(Y \mid Z)$ and also $\mathbf{P}(X \mid Y, Z)=\mathbf{P}(X \mid Z)$ and $\mathbf{P}(Y \mid X, Z)=\mathbf{P}(Y \mid Z)$
- Allows same decomposition of large joint table to smaller ones as before:

```
P(Toothache, Catch,Cavity)
= P(Toothache,Catch|Cavity) P(Cavity)(prod. rule)
= P(Toothache|Cavity) P(Catch|Cavity) P(Cavity) (using above)
```

- One large table decomposed to three smaller ones. \#entries: $O\left(2^{n}\right) \rightarrow O(n)$!

Conditional Independence

- Conditional independence is very common in real world!
- Our basic and most robust form of knowledge about uncertain environments!
- A single cause often influences many conditionally independent effects
- \mathbf{P} (Cause, Effect ${ }_{1}$, Effect ${ }_{2}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}$ (Cause) $\Pi_{i} \mathbf{P}$ (Effect ${ }_{i} \mid$ Cause $)$
- This probability distribution is a naive Bayes model
- Naive: because it's often applied for simplicity...
- Even when the effects are not strictly conditionally independent give the cause
- Often works surprisingly well (i.e. "close enough" for good reasoning)
- Let's look at how we leverage conditional independence to reason...

Bayes Rule

- Recall the product rule:

$$
P(a \wedge b)=P(a \mid b) P(b) \quad \text { or, conversely: } P(a \wedge b)=P(b \mid a) P(a)
$$

- equate and divide by $P(a)$:

$$
\text { Bayes rule: } P(b \mid a)=\frac{P(a \mid b) P(b)}{P(a)}
$$

- The basis for probabilistic inference in all modern AI systems!
- More generally, applied to probability distributions, we have:

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}
$$

- As always, this represents a whole set of equations: every combo of var values
- And even more generally, conditioned on additional background info e :

$$
P(Y \mid X, e)=\frac{P(X \mid Y, e) P(Y \mid e)}{P(X \mid e)}
$$

Using Bayes Rule

- So: \square
- Doesn't seem super useful at first?
- To calculate $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$, I need $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$--- is that likely? Yes!
- Very useful for cause-effect reasoning, e.g., diagnosis problems

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause) } P(\text { cause })}{P(\text { effect })}
$$

- Example:

A patient comes in with a stiff neck; one possible and very serious cause is meningitis. Epidemiological studies have shown that meningitis causes a stiff neck 70% of the time. It's also known that meningitis strikes about 1/50,000 people in general, and that about 1% of people have a stiff neck on any given day.

- So:
- $\mathrm{P}($ stiff $\mid m e n)=0.7$
- $P(m)=1 / 50,000$ and $P($ stiff $)=1 / 100$
- $P($ men \mid stiff $)=P($ stiff \mid men $) P($ men $) / P($ stiff $)=(0.7 * 1 / 50 k) / 0.01=0.0014$
- We often have probabilities in the causal direction...can compute probability in the diagnostic direction

Using Bayes Rule: a typical example

- Let's try this out:
- Your doctor says you tested positive for a serious disease; test is 99% accurate. It's a rare disease though: only 1 in 10,000 people have it. Why should you be happy?

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Provide an entire mathematics for quantifying and calculating uncertainty
- Joint probability distribution specifies probability of every atomic event
- Every combination of every variables across its whole range
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint table size
- Size of joint distribution is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for n variables. Intractable.
- Independence and conditional independence provide the tools
- Bayes Rule focuses probability calculus on forward diagnostic problems
- Probability of a cause, given a set of conditionally independent effects
- Useful for many "diagnosis" tasks
- How likely is it that some event has occurred, given a set of observed evidence.
- Bayes rule provides the basis of probabilistic reasoning in Al
- Basis for Bayesian networks (next chapter)

$$
\alpha \beta \subseteq \neg \Rightarrow \mid=\wedge \vee
$$

Extra slides...maybe next time...

Wumpus World			
1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
	2,2	3,2	4,2
OK			
	${ }^{2,1} \mathbf{B}$	3,1	4,1
OK	OK		

$P_{i j}=$ true iff $[i, j]$ contains a pit
$B_{i j}=$ true iff $[i, j]$ is breezy
Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

The full joint distribution is $\mathrm{P}\left(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}\right)$
Apply product rule: $\mathrm{P}\left(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4}\right) \mathrm{P}\left(P_{1,1}, \ldots, P_{4,4}\right)$
(Do it this way to get P (Effect|Cause).)
First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathrm{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\Pi_{i, j=1,1}^{4,4} \mathrm{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.

Observations and query

We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

Query is $\mathrm{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
Define Unknown $=P_{i j}$ s other than $P_{1,3}$ and Known
For inference by enumeration, we have

$$
\mathrm{P}\left(P_{1,3} \mid \text { known, } b\right)=\alpha \sum_{\text {unknown }} \mathrm{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

Grows exponentially with number of squares!

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

1,4	2,4	3,4	4,4
$1,3$ QUERY	2,3	$\begin{aligned} & \hline 3,3 \\ & \text { OTHER } \end{aligned}$	4,3
	2,2	3,2	4,2
		NST,	4,1

Define Unknown $=$ Fringe \cup Other $\mathrm{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathrm{P}\left(b \mid P_{1,3}\right.$, Known, Fringe)

Manipulate query into a form where we can use this!

Using conditional independence contd.

$$
\begin{aligned}
& \mathrm{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \quad \mathrm{P}\left(P_{1,3}\right. \text {, unknown, known, } \\
& =\alpha \quad \mathrm{P}\left(b \mid P_{1,3}, \text { known, unknown }\right) \mathrm{P}\left(P_{1,3},\right. \text { known, }
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha^{\text {fringe other other) }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { fringe } \quad \text { other }\left({ }^{1,3}, 1,\right. \\
& =a_{\text {fringe }} P\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right){ }_{\text {other }}^{\text {ofher }} \mathrm{P}\left(P_{1,3}\right) P(\text { known }) P(\text { fringe }) P \text { (other) } \\
& \left.=\alpha P(\text { known }) P\left(P_{1,3}\right)_{\text {fringe }} P\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right) P(\text { fringe }) \underset{\text { other }}{ } P \text { (other }\right) \\
& \begin{array}{lr}
=a^{t} & \mathrm{P}\left(b \mid \text { known, } P_{1,3} \text {, fringe }\right) P(\text { fringe })
\end{array}
\end{aligned}
$$

Using conditional independence contd.

$$
\begin{aligned}
\mathrm{P}\left(P_{1,3} \mid \text { known, } b\right) & =a^{\mathrm{t}}(0.2(0.04+0.16+0.16), 0.8(0.04+0.16)) \\
& \approx(0.31,0.69)
\end{aligned}
$$

$\mathrm{P}\left(P_{2,2} \mid\right.$ known, $\left.b\right) \approx(0.86,0.14)$

