Reasoning with Uncertainty

Chapter 13

Outline

- ♦ Uncertainty
- Probability
- ♦ Syntax and Semantics
- ♦ Inference
- ◆ Independence and Bayes' Rule

The real world is an uncertain place...

Example: I need a plan that will get me to airport on time

- Let action A_t = leave for airport t minutes before flight
 - Will A_t get me there on time?
- Problems:
 - 1. partial observability (road state, other drivers' plans, etc.)
 - 2. noisy sensors (ADOT/Google traffic reports and estimates)
 - 3. uncertainty in action outcomes (flat tire, detours, etc.)
 - 4. immense complexity of modeling and predicting traffic
- Hence a purely logical approach either:
 - Risks falsehood:
 - "Plan A₉₀ leaves home 90 minutes early and airport is only 5 minutes away; A₉₀ will get me there on time"
 - Does not take into account **any** uncertainties \rightarrow is not realistic
 - or 2) leads to conclusions that are too weak for decision making:
 - "Plan A₉₀ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc. etc. etc."
 - Takes into account *many* (infinite?) uncertainties...none of which can be proven → no actionable plan.
 - Is irrationally cautious:
 - Plan A₁₄₄₀ leaves 24 hours early; might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Dealing with Uncertainty

So what can we do? Need tools do we have to deal with this?

Belief States?

- Idea: generate and track all possible states of the world given uncertainty
 - Used for Problem-solving Agents (ch4) and Logical Agents (ch7)
 - Make a contingency plan that is guaranteed successful for all eventualities
- Nice idea, but not very realistic for complex, variable worlds:
 - For partially observable world, must consider every possible explanation for incoming sensor percepts...no matter how unlikely. → Huge belief states
 - A plan to handle *every* contingency gets arbitrarily large in a real world with essentially *infinite* contingencies.
 - Sometimes there is no plan that is guaranteed to achieve the goal...and yet we must act...rationally.
- Conclusion: We need some new tools!
 - Reasoning *rationally* under uncertainty. Takes into account:
 - *Relative importance* of various goals (performance measures of agent)
 - The *likelihood* of: contingencies, action success/failure, etc.

Dealing with Uncertainty

So how about building uncertainty into logical reasoning?

- Example: diagnosing a toothache
 - Diagnosis: classic example of a problem with inherent uncertainty
 - Attempt 1: Toothache \Rightarrow HasCavity
 - But: not all toothaches are caused by cavities. Not true!
 - Attempt 2: Toothache \Rightarrow Cavity V GumDisease VAbscess V etc V etc
 - To be true: would need nearly unlimited list of options...some unknown.
 - Attempt 3: Try make causal: Cavity \Rightarrow Toothache
 - Nope: not all cavities cause toothaches!
- Fundamental problems with using logic in uncertain domains:
 - Laziness: It's too much work to generate complete list of antecedents/consequents to cover all possibilities
 - Ignorance: You may not even *know* all of the possibilities.
 - Incomplete domain model. Common in real world...
 - Practical Ignorance: Even if domain model complete, I may not have all necessary percepts on hand
 - The connection between toothaches-cavities is just not a logical consequence!
- Need a new solution: Probability theory
 - Allow stating a *degree of belief* in various statements in the KB

Probability

- Probabilistic assertions (sentences in KB) essentially summarize effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
- Clearly a *subjective* technique!
 - Extensive familiarity with domain required to accurately state probabilities
 - Need for extensive fine-tuning. Probabilities are *conditional* on evolving facts
- Subjective or Bayesian probability:
 - Probabilities relate propositions to one's own current state of knowledge
 - e.g., P (A_{25} |no reported accidents) = 0.06
 - These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
 - Probabilities of propositions change with new evidence:
 - e.g., P (A_{25} |no reported accidents, time=5 a.m.) = 0.15
 - Interesting: Analogous to logical entailment status
 - KB |= $\alpha \rightarrow$ means α entailed by KB...which represents what you currently know.
 - Analogously: KB = "no reported accidents, time=5 a.m." \rightarrow KB |=_(0.15) α

Making Decisions under Uncertainty

- Probability theory seems effective at expressing uncertainty.
 - But how do I actually reason (make decisions) in an uncertain world?
- Suppose I believe the following:
 - $P(A_{25} \text{ gets me there on time } | \text{ etc etc etc}) = 0.04$
 - $P(A_{90} \text{ gets me there on time } | \text{ etc etc etc}) = 0.70$
 - $P(A_{120} \text{ gets me there on time } | \text{ etc etc etc}) = 0.95$
 - $P(A_{1440} \text{ gets me there on time } | \text{ etc etc etc}) = 0.9999$
- Accurately expresses uncertainty with probabilities. But which plan should I choose?
 - Depends on my preferences for:
 - missing flight risk vs. wait time in airport vs. (pro/con) vs. (pro/con) vs. etc.
 - Utility theory is used to represent and infer preferences
 - Reasons about how useful/valued various outcomes are to an agent
- **Decision Theory = Utility Theory + Probability Theory**
 - Complete basis for reasoning in an uncertain world!

Probability Theory Basics

- Like logic assertions, probabilistic assertions are about possible worlds
 - Logical assertion α : all possible worlds in which α is false ruled out.
 - Probabilistic assertion α : states how *probable* various worlds are given α .
- Defn: Sample space: a set Ω = all possible worlds that might exist
 - e.g., after two dice roll: 36 possible worlds (assuming distinguishable dice)
 - Possible worlds are exclusive and mutually exhaustive
 - Only one *can* be true (the actual world); at least one *must* be true
 - $-\omega \in \Omega$ is a sample point (possible world)
- Defn: probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ such that:
 - $0 \le P(\omega) \le 1$
 - $-\Sigma_{\omega} P(\omega) = 1$
 - e.g. for die roll: P(1,1) = P(1,2) = P(1,3) = ... = P(6,6) = 1/36.
- An event A is any subset of Ω
 - Allows us to group possible worlds, e.g., "doubles rolled with dice"

$$- P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

- e.g., P(doubles rolled) = P (1,1) + P (2,2) + ... + P (6,6)

Probability Theory Basics

- A proposition in the probabilistic world is then simply an assertion that some event (describing a set of possible worlds) is true.
 - θ="doubles rolled" → asserts event "doubles" is true → asserts {[1,1] ∨
 [2,2] ∨...∨ [6,6]} is true.
 - Propositions can be compound: θ =(doubles \land (total>4))
 - $P(\theta) = \Sigma_{\omega \in \theta} P(\omega) \rightarrow \text{ probability of proposition is sum of its parts}$
- Nature of probability of some proposition θ being true can vary, depending:
 - Unconditional or prior probability = a priori belief in truth of some proposition in the absence of other info.
 - e.g. $P(\text{doubles}) = 6 * (1/36) = 1/6 \rightarrow \text{odds given no other info.}$
 - But what if one die has already rolled a 5? Or I now know dice are loaded?
 - Conditional or posterior probability = probability given certain information
 - Maybe P(cavity) = 0.2 (the prior)... but P(cavity | toothache) = 0.6
 - Or could be: $P(cavity | toothache \land (dentist found no cavity)) = 0$

Probability Theory Basics

- Syntax: how to actually write out a proposition
 - A factored representation: states all of the "things" that are asserted true.
 - "Things" = random variables (begin with upper case)
 - The features that together define a possible world by taking on values
 - E.g. "Cavity", "Total-die-value", "Die₁"
 - Every variable has domain = set of possible values
 - domain(Die₁) = {1,2,3,4,5,6} ; domain(Total-die-value)={1,2,...,12}
 - Variables with a boolean domain can (syntactic sugar) be compacted:
 - domain(Cavity) = {true, false} → instead of "Cavity=true", just write "cavity"
 - conversely for Cavity=false → ¬cavity
 - Probability of proposition = summed probability of atomic events
 - P(DieSum=7) = P(6,1) + P(2,5) + P(5,2) + P(3,4) + etc etc

Probability Distributions

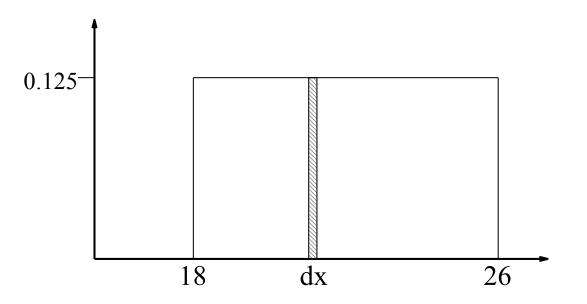
- So we can now express the probability of a proposition:
 - P(Weather=sunny) = 0.6 ; P(Cavity=false) = P(¬cavity)=0.1
- Probability Distribution expresses *all possible probabilities* for some event
 - So for: P(Weather=sunny) = 0.6; P(Weather=rain) = 0.1; etc etc \rightarrow
 - **P**(Weather) = {0.72, 0.1, 0.29, 0.01} for Weather={sun, rain, clouds, snow}
 - Can be seen as total function that returns probabilities for all values of Weather
 - Is normalized, i.e., sum of all probabilities adds up to 1.
 - Note that bold **P** means prob. distr.; plain P means plain probability
- Joint Probability Distribution: for a set of random variables, gives probability for every combo of values of every variable.
 - Gives probability for every event within the sample space
 - **P**(Weather, Cavity) = a $4x^2$ matrix of values:

Weather =	sunny	rain	cloudy	snow
Cavity=true	0.144	0.02	0.016	0.02
Cavity=false	0.576	0.08	0.064	0.08

- Full Joint Probability Distribution = joint distribution for all random variables in domain
 - Every probability question about a domain can be answered by full joint distribution
 - because every event is a sum of sample points (variable/value pairs)

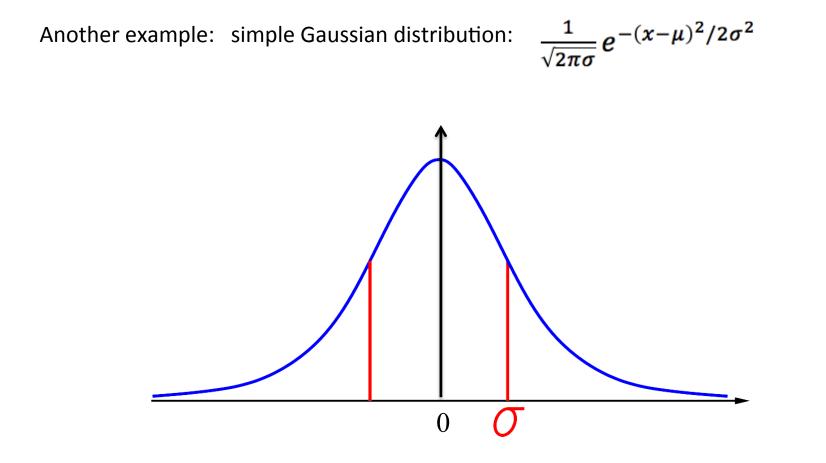
Probability Distributions: for continuous variables

- What about continuous random variables?
 - Some variables are continuous, e.g. P(Temp=82.3) = 0.23; P(Temp=82.5)= 0.24; etc.
 - Also could assert ranges: P(Temp<85) ; P(40<Temp<67)
- We can express distributions as a parameterized function of value:
 - P (X = x) = U [18, 26](x) = uniform density between 18 and 26
 - Known as a probability density function (pdf)



- Here P is a really a density distribution; the whole range integrates to 1.
 - Probability of falling in 67-75 range is 100%
 - Probability of NoonTemp at any single value is actually zero!
 - P (X = 20.5) = 0.125 really means $\lim_{dx\to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$

Probability Distributions



Conditional Probability

- Let's take a closer look now...
 - Precise meaning of: P(cavity | toothache) = 0.8 ?
 - Not: "if toothache, then 80% chance of cavity" !
 - That would be a hard fact: "whenever toothache, P(cavity) is 80%"
 - Yes: "P(cavity)=80% given that all I know is toothache"
 - Leaves room for P(cavity | (toothache \land fist-fight)) = 0.01
 - Less specific belief P(cavity | toothache)=0.8 remains true after more evidence arrives....but is less useful.
 - Some evidence may be "irrelevant", allowing simplification:
 - P(cavity | toothache, NAUjacksWin) = P(cavity | toothache) = 0.8
 - "Irrelevance" determined by detailed domain knowledge. We'll come back to this...
- Conditional Distributions
 - Concept of distributions can also by used for conditional probability
 - P(Cavity | Toothache) = probabilities for all values in range of Cavity, Toothache
 - = { P(cavity | toothache), P(¬cavity | toothache), P(cavity | ¬toothache), P(¬cavity | ¬toothache) }
 - So: P(X | Y) = gives values of $P(X=x_i | Y=y_i)$ for all possible i,j in ranges of X,Y

Computing with Conditional Probability

• Conditional probability can be defined in terms of unconditional probability:

 $P(a|b) = \frac{P(a \land b)}{P(b)} \qquad E.g.: \qquad P(doubles) | Die_1 = 5) = \frac{P(doubles \land Die_1 = 5)}{P(Die_1 = 5)}$

- can be rewritten, giving the product rule:
 - $P(a \land b) = P(a|b) P(b)$
 - Makes sense:
 - For $(a \land b)$ to be true, we need b to be true...and need a to be true given b
- Also works for distributions:

 $- \mathbf{P}(\text{Weather, Cavity}) = \mathbf{P}(\text{Weather}|\text{Cavity}) \mathbf{P}(\text{Cavity})$

- Stands for a (4 values for Weather) x (2 values for Cavity) = 8 product equations
- The chain rule is derived by successive application of product rule:

 $P(X_{1}, ..., X_{n}) = P(X_{1}, ..., X_{n-1}) P(X_{n}|X_{1}, ..., X_{n-1})$ = $P(X_{1}, ..., X_{n-2}) P(X_{n1}|X_{1}, ..., X_{n-2}) P(X_{n}|X_{1}, ..., X_{n-1})$ = ...

 $\Pi_{i=1}^n \boldsymbol{P}(X_i | X_1 \dots X_{i-1})$

- Note the recursive reduction joint P into a chained product of conditional P's

Inference in a probabilistic world

- Just need a couple more probabilistic rules:
 - Obvious: $P(\neg a) = 1 P(a)$
 - Inclusion-Exclusion Principle: $P(a \lor b) = P(a) + P(b) P(a \land b)$
- So how to do Inference?
 - Logical Inference = asking whether something is true (entailed), given the KB
 - Probabilistic Inference = asking *how likely something is*, given the KB
 - Just compute the posterior probability for query proposition, given KB!
 - We use the full joint probability distribution as the KB!
 - Contains the probability of all possible worlds!
 - Inference = look up the probability of a query proposition
 - Extract and sum up the appropriate "slice" of the joint distribution
- Example: Consider a world with just three boolean variables
 - Toothache (has one or not)
 - Cavity (has or not)
 - Catch (dentists tool catches or not)

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	- <i>catch</i>
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ , the P(φ) = sum the atomic events where it is true:

 $P(\varphi) = \sum_{\omega:\omega|=\varphi} P(\omega)$

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ , the P(φ) = sum the atomic events where it is true:

 $P(\varphi) = \sum_{\omega:\omega|=\varphi} P(\omega)$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

This process is called summing out or marginalization

- Sum up probabilities across values of other (non-specified) variables
- In this case: Cavity and Catch
- Generally: $P(Y) = \sum_{z \in Z} P(Y,z)$, or also, by product rule: $P(Y) = \sum_{z \in Z} P(Y|z) P(z)$

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

For any proposition φ , the P(φ) = sum the atomic events where it is true:

$$P(\varphi) = \sum_{\omega:\omega|=\varphi} P(\omega)$$

Can also easily do compound propositional queries:

 $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Start with the full joint distribution for this world:

	toothache		-toothache	
	catch	¬catch	catch	-catch
cavity	.108	.012	.072	.008
-cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

 $P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$ (Product rule) $= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064}$ = 0.4

Normalization

	toot	hache	-toothache		
	catch	-catch	catch	-catch	
cavity	.108	.012	.072	.008	
-cavity	.016	.064	.144	.576	

 $P(cavity|toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$

- Denominator can be viewed as a normalization constant α for the distribution **P**(Cavity| toothache)
 - Ensures that the probability of the distribution adds up to 1.

 $P(Cavity|toothache) = \alpha P(Cavity, toothache)$ = $\alpha [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$ = $\alpha [(0.108, 0.016) + (0.012, 0.064)]$ = $\alpha (0.12, 0.08) = (0.6, 0.4)$ Note that proportions between (0.12, 0.08) and (0.6, 0.4) are same

- Latter are just normalized by application of α to add up to 1.
 - So if α just normalizes, I could also normalize "manually" \rightarrow divide by sum of two.
 - Wow: I don't need to actually know P(toothache) \rightarrow can just normalize manually!

- **In Summary:** Compute distribution of query variable by fixing evidence variables (those in the "given" part) and summing over hidden (all other) variables
 - Let's analyze the implications more closely...
- Let X be all the variables.
 - Typically, we want the conditional joint distribution of the query variables Y given specific values e for the evidence variables E
 - Then the hidden variables are H = X Y E
- Then the required summation of joint entries is done by summing out the hidden variables:

 $- \mathbf{P}(Y|E = e) = \alpha \mathbf{P}(Y, E = e) = \alpha \Sigma_{h \in H} \mathbf{P}(Y, E = e, H = h)$

- Problem: works great, can answer all queries...but exponential complexity:
 - For world with n boolean variables:
 - Requires O(2ⁿ) to create store joint distribution table; O(2ⁿ) to process table lookup
 - Jumps to O(dⁿ) for random variables with a range of d values!
 - Fine for toy worlds with three variables. Real worlds \rightarrow >100 variables!
- Inefficiency! How to even find/define the probabilities for O(dⁿ) table entries!
 - Especially given that you may never consult most of them!
 - We need some more tools!

Independence of variables

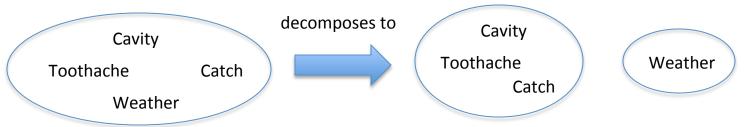
- **The problem:** full joint distribution get huge fast
 - the cross-product of all variables, all values in their range.
 - Different probability for every variables...conditional on all values of all other variables.
- But are all of these variables *really* related? Is every variable really related to all others?
 - Consider P(toothache, catch, cavity, cloudy) \rightarrow 2 x 2 x 2 x 4 joint distr. = 32 entries
 - By product rule: P(toothache, catch, cavity, cloudy)

= P(cloudy|toothache,catch,cavity) P(touchache,catch,cavity)

- But it the weather really conditional on toothaches, cavities and dentist's tools? No!
- So realistically: P(cloudy|toothache,catch,cavity) = P(cloudy)
- So then actually: P(toothache, catch, cavity, cloudy) =
 P(cloudy) P(touchache,catch,cavity)
- We say that cloudy and dental variables are independent (also absolute independence)
 - \rightarrow probabilities separate \rightarrow just multiplied simply.
- Effectively: the 32-element joint distribution table becomes one 8-element table + 4-element table

Independence of variables

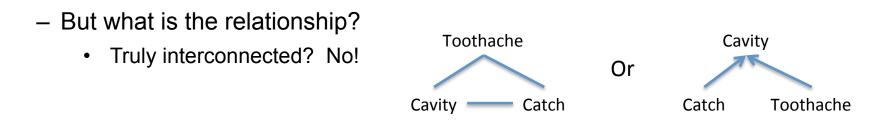
• Graphically:



- Much easier to build/access 8-table + 4-table than 32-table!
 - 32 entries reduced to 12!
 - Generally: N dependent variables = 2^n vs. N independent variables = n Wow!
- Math: for independent variables X and Y:
- $\mathbf{P}(A|B) = \mathbf{P}(A)$ or $\mathbf{P}(B|A) = \mathbf{P}(B)$ or $\mathbf{P}(X,Y) = \mathbf{P}(X)\mathbf{P}(Y)$
- Independence assertions based on judgment, specific knowledge of domain
 - Can dramatically reduce information needed for full joint distribution ($2^n \rightarrow n$)
 - Sadly: absolute independence is quite rare in real world
 - Even an indirect connection must be accounted for as a conditional
 - Plus: even independent subset can still be large, e.g., real dentistry = 100's of variables
- Need more power!

Conditional Independence

- Consider again: Toothache, Catch, Cavity
 - Clearly not independent: toothache and tool and cavity obviously related



- Catch and Toothache are actually halfway independent of each other
 - They are related only via cavity. → they are both caused by the cavity
 - Formally: they are conditionally independent given cavity
 - Math notation: P(toothache ∧ catch | cavity) = P(toothache|cavity) P(catch|cavity)
- Generally: given conditionally independent X, Y given some Z
 - $\mathbf{P}(X,Y|Z) = \mathbf{P}(X|Z) \mathbf{P}(Y|Z)$ and also $\mathbf{P}(X|Y,Z) = \mathbf{P}(X|Z)$ and $\mathbf{P}(Y|X,Z) = \mathbf{P}(Y|Z)$
 - Allows same decomposition of large joint table to smaller ones as before: P(Toothache, Catch,Cavity)
 - = P(Toothache,Catch|Cavity) P(Cavity) (prod. rule)
 - = P(Toothache|Cavity) P(Catch|Cavity) P(Cavity) (using above)
- One large table decomposed to three smaller ones. #entries: $O(2^n) \rightarrow O(n)$!

Conditional Independence

- Conditional independence is very common in real world!
 - Our basic and most robust form of knowledge about uncertain environments!
- A single cause often influences many conditionally independent effects
 - $\mathbf{P}(\text{Cause}, \text{Effect}_1, \text{Effect}_2, \dots, \text{Effect}_n) = \mathbf{P}(\text{Cause}) \Pi_i \mathbf{P}(\text{Effect}_i | \text{Cause})$
 - This probability distribution is a naive Bayes model
 - Naive: because it's often applied for simplicity...
 - Even when the effects are not strictly conditionally independent give the cause
 - Often works surprisingly well (i.e. "close enough" for good reasoning)
- Let's look at how we leverage conditional independence to reason...

Bayes Rule

- Recall the product rule:
 P(a \wedge b) = P(a|b) P(b) or, conversely: P (a \wedge b) = P(b|a) P(a)
- equate and divide by P(a):

Bayes rule: $P(b|a) = \frac{P(a|b) P(b)}{P(a)}$

- The basis for probabilistic inference in all modern AI systems!
- More generally, applied to probability distributions, we have:

$$P(Y | X) = \frac{P(X | Y) P(Y)}{P(X)}$$

- As always, this represents a whole set of equations: every combo of var values
- And even more generally, conditioned on additional background info e :

$$P(Y|X,e) = \frac{P(X|Y,e) P(Y|e)}{P(X|e)}$$

Using Bayes Rule

- So: $P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)}$
 - Doesn't seem super useful at first?
 - To calculate P(Y|X), I need P(X|Y) --- is that likely? Yes!
 - Very useful for cause-effect reasoning, e.g., diagnosis problems

• Example:

A patient comes in with a stiff neck; one possible and very serious cause is meningitis. Epidemiological studies have shown that meningitis causes a stiff neck 70% of the time. It's also known that meningitis strikes about 1/50,000 people in general, and that about 1% of people have a stiff neck on any given day.

- So:
- P(stiff|men) = 0.7
- P(m) = 1/50,000 and P(stiff) = 1/100
- P(men|stiff) = P(stiff|men) P(men) / P(stiff) = (0.7 * 1/50k)/0.01 = 0.0014
- We often have probabilities in the causal direction...can compute probability in the diagnostic direction

Using Bayes Rule: a typical example

- Let's try this out:
 - Your doctor says you tested positive for a serious disease; test is 99% accurate. It's a rare disease though: only 1 in 10,000 people have it. Why should you be happy?

Summary

- Probability is a rigorous formalism for uncertain knowledge
 - Provide an entire mathematics for quantifying and calculating uncertainty
- Joint probability distribution specifies probability of every atomic event
 - Every combination of every variables across its whole range
 - Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint table size
 - Size of joint distribution is $O(n^2)$ for n variables. Intractable.
 - Independence and conditional independence provide the tools
- Bayes Rule focuses probability calculus on forward diagnostic problems
 - Probability of a cause, given a set of conditionally independent effects
 - Useful for many "diagnosis" tasks
 - How likely is it that some event has occurred, given a set of observed evidence.
- Bayes rule provides the basis of probabilistic reasoning in Al
 - Basis for Bayesian networks (next chapter)

 $\begin{array}{ccc} \alpha \ \beta \subseteq & \neg \Rightarrow \mid = \land \lor \\ \Leftrightarrow \end{array}$

Extra slides...maybe next time...

Wumpus World						
	1,4	2,4	3,4	4,4		
	1,3	2,3	3,3	4,3		
	^{1,2} B	2,2	3,2	4,2		
	OK					
	1,1	2,1 B	3,1	4,1		
	ОК	ОК				

 $P_{ij} = true$ iff [i, j] contains a pit

 $B_{ij} = true$ iff [i, j] is breezy Include only $B_{1,1}$, $B_{1,2}$, $B_{2,1}$ in the probability model

Specifying the probability model

The full joint distribution is $P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$

Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) P(P_{1,1}, \dots, P_{4,4})$

(Do it this way to get *P* (*Effect* | *Cause*).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

 $\mathsf{P}(P_{1,1},\ldots,P_{4,4}) = \prod_{i,j=1,1}^{4,4} \mathsf{P}(P_{i,j}) = 0.2^n \times 0.8^{16-n}$

for *n* pits.

Observations and query

We know the following facts: $b = \neg b_{1,1} \land b_{1,2} \land b_{2,1}$ $known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$

Query is $P(P_{1,3}|known, b)$

Define $Unknown = P_{ij}s$ other than $P_{1,3}$ and Known

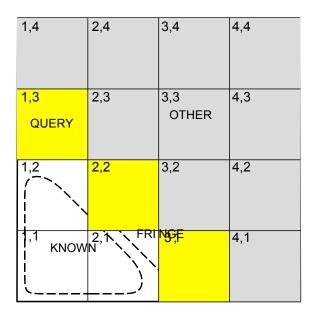
For inference by enumeration, we have

 $P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)$

Grows exponentially with number of squares!

Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares



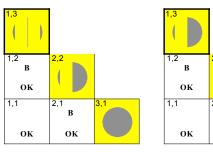
Define $Unknown = Fringe \cup Other$ P($b|P_{1,3}, Known, Unknown$) = P($b|P_{1,3}, Known, Fringe$)

Manipulate query into a form where we can use this!

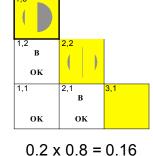
Using conditional independence contd.

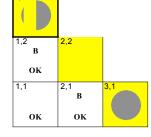
 $P(P_{1,3}|known, b) = \alpha P(P_{1,3}, unknown, known, known, b)$ = $\alpha P(b|P_{1,3}, known, unknown)P(P_{1,3}, known, unknown)$ ^{unknown} unknown) $P(D|known, P_{1,3}, fringe, other)P(P_{1,3}, known, fringe, indication of the state of t$ = α = $\alpha^{\text{fringe other other}}$ $= \alpha \underset{fringe}{P(b|known, P_{1,3}, fringe)}{P(P_{1,3}, known, fringe, other)} = \alpha \underset{fringe}{P(b|known, P_{1,3}, fringe)}{P(P_{1,3}, known, fringe, other)} = \alpha \underset{fringe}{P(b|known, P_{1,3}, fringe)}{P(P_{1,3}, fringe)}{P(P_{1,3})} P(known)P(fringe)P(other)$ $= \alpha P(known)P(P_{1,3}) \underset{fringe}{P(b|known, P_{1,3}, fringe)}{P(b|known, P_{1,3}, fringe)} P(fringe)$ $P(P_{1,3})$

Using conditional independence contd.

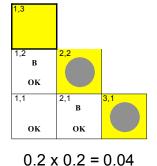


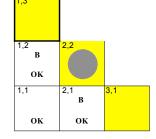
 $0.2 \times 0.2 = 0.04$





0.8 x 0.2 = 0.16





0.2 x 0.8 = 0.16

 $P(P_{1,3}|known, b) = \alpha^{t} (0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)) \\\approx (0.31, 0.69)$

 $P(P_{2,2}|known, b) \approx (0.86, 0.14)$