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The real world is an uncertain place... 

Example:  I need a plan that will get me to airport on time 
•  Let action At = leave for airport t minutes before flight   

–  Will At get me  there on  time? 
•  Problems: 

1.  partial observability (road state, other drivers’ plans, etc.) 
2.  noisy  sensors  (ADOT/Google traffic reports and estimates) 
3.  uncertainty in action outcomes  (flat tire, detours, etc.) 
4.  immense  complexity of modeling  and  predicting traffic 

•  Hence  a  purely logical approach  either: 
–  Risks  falsehood:   

•  “Plan A90 leaves home 90 minutes early and airport is only 5 minutes away; A90 will get 
me there  on time” 

•  Does not take into account any uncertainties à is not realistic 

–  or 2) leads  to conclusions  that are too weak for decision making:  
•  “Plan A90 will get me there on time if there’s no accident on the bridge  and  it doesn’t rain 

and  my  tires remain intact etc. etc. etc.” 
•  Takes into account many (infinite?) uncertainties...none of which can be proven à no 

actionable plan. 

–  Is irrationally cautious:   
•  Plan A1440 leaves 24 hours early; might reasonably be said to get me there on time  but I’d 

have  to stay overnight in the airport  . . .) 



Dealing with Uncertainty 
So what can we do?  Need tools do we have to deal with this? 
 
Belief States? 
•  Idea:  generate and track all possible states of the world given uncertainty 

–  Used for Problem-solving Agents (ch4) and Logical Agents (ch7) 
–  Make a contingency plan that is guaranteed successful for all eventualities 

•  Nice idea, but not very realistic for complex, variable worlds: 
–  For partially observable world, must consider every possible explanation for 

incoming sensor percepts...no matter how unlikely. à Huge belief states 
–  A plan to handle every contingency gets arbitrarily large in a real world with 

essentially infinite contingencies. 
–  Sometimes there is no plan that is guaranteed to achieve the goal...and yet we 

must act...rationally. 

•  Conclusion:  We need some new tools! 
–  Reasoning rationally under uncertainty.  Takes into account: 

•  Relative importance of various goals (performance measures of agent) 
•  The likelihood of:  contingencies, action success/failure, etc. 



Dealing with Uncertainty 
So how about building uncertainty into logical reasoning? 
•  Example: diagnosing a toothache 

–  Diagnosis:  classic example of a problem with inherent uncertainty 
–  Attempt 1:  Toothache ⇒ HasCavity 

•  But:  not all toothaches are caused by cavities.  Not true!  

–  Attempt 2: Toothache ⇒ Cavity ∨ GumDisease ∨Abscess ∨ etc ∨ etc 
•  To be true:  would need nearly unlimited list of options...some unknown. 

–  Attempt 3: Try make causal:  Cavity ⇒ Toothache 
•  Nope:  not all cavities cause toothaches!  

•  Fundamental problems with using logic in uncertain domains: 
•  Laziness:  It’s too much work to generate complete list of antecedents/consequents to 

cover all possibilities 
•  Ignorance:   You may not even know all of the possibilities. 

–  Incomplete domain model.   Common in real world... 

•  Practical Ignorance:  Even if domain model complete, I may not have all necessary 
percepts on hand 

–  The connection between toothaches-cavities is just not a logical consequence! 

•  Need a new solution:  Probability theory 
–  Allow stating a degree of belief in various statements in the KB 



Probability 

•  Probabilistic assertions (sentences in KB) essentially summarize effects of 
–  laziness: failure to enumerate exceptions, qualifications, etc.   
–  ignorance:  lack of relevant facts, initial conditions, etc. 

•  Clearly a subjective technique! 
–  Extensive familiarity with domain required to accurately state probabilities 

–  Need for extensive fine-tuning.  Probabilities are conditional on evolving facts 

•  Subjective or Bayesian  probability: 
–  Probabilities relate propositions to one’s own current state of knowledge 

•  e.g., P (A25|no reported accidents) = 0.06 
•  These are not claims of a “probabilistic tendency” in the current situation  (but might 

be  learned  from past  experience  of similar situations) 

–  Probabilities of propositions change with new evidence:   
•  e.g., P (A25|no reported accidents,  time=5 a.m.) = 0.15 

–  Interesting: Analogous  to logical entailment status 
•  KB |=  α à means α entailed by KB...which represents what you currently know. 
•  Analogously:  KB = “no reported accidents,  time=5 a.m.” à KB |=(0.15) α 



Making Decisions under Uncertainty 
•  Probability theory seems effective at expressing uncertainty. 

–  But how do I actually reason (make decisions) in an uncertain world? 

•  Suppose  I believe  the following: 
–  P(A25 gets me there on time | etc etc etc) = 0.04 
–  P(A90 gets me there on time | etc etc etc) = 0.70 
–  P(A120 gets me there on time | etc etc etc) = 0.95 
–  P(A1440 gets me there on time | etc etc etc) = 0.9999 

•  Accurately expresses uncertainty with probabilities.  But which plan should 
I choose?   

–  Depends on my preferences for: 
•   missing flight risk vs. wait time in airport vs. (pro/con) vs. (pro/con) vs. etc. 

–  Utility theory is used to represent and infer preferences 
•  Reasons about how useful/valued various outcomes are to an agent 

•  Decision Theory = Utility Theory + Probability Theory 
–  Complete basis for reasoning in an uncertain world!  



Probability Theory Basics 
•  Like logic assertions, probabilistic assertions are about possible worlds 

–  Logical assertion α:  all possible worlds in which α is false ruled out. 
–  Probabilistic assertion α: states how probable various worlds are given α. 

•  Defn:  Sample space: a set Ω = all possible worlds that might exist 
–  e.g., after two dice roll:  36  possible worlds (assuming distinguishable dice) 
–  Possible worlds are exclusive and mutually exhaustive  

•  Only one can be true (the actual world);  at least one must be true 
–  ω ∈ Ω is  a  sample  point (possible world) 

•  Defn: probability space or probability model is a sample space with an  
assignment  P(ω) for every  ω∈ Ω  such that: 

–  0 ≤ P(ω) ≤ 1 
–  Σω P(ω) = 1 
–  e.g. for die roll: P(1,1) = P(1,2) = P(1,3) =... = P(6,6) = 1/36. 

•  An event A is any subset of Ω 
–  Allows us to group possible worlds, e.g., “doubles rolled with dice” 
–  P(A) = Σ{ω∈A} P(ω) 
–  e.g., P(doubles rolled) = P (1,1) + P (2,2) + ... + P (6,6)  



Probability Theory Basics 

•  A proposition in the probabilistic world is then simply an assertion that 
some event (describing a set of possible worlds) is true. 

–  θ=“doubles rolled”   à  asserts event “doubles” is true à  asserts {[1,1] ∨  
[2,2] ∨...∨ [6,6]} is true. 

–  Propositions can be compound: θ=(doubles ∧(total>4)) 
–  P(θ) = Σω∈θ P(ω)     à   probability of proposition is sum of its parts 

•  Nature of probability of some proposition θ being true can vary, depending: 
–  Unconditional or prior probability = a priori belief in truth of some proposition in 

the absence of other info. 
•  e.g. P(doubles) = 6 * (1/36) = 1/6   à odds given no other info. 
•  But what if one die has already rolled a 5?   Or I now know dice are loaded? 

–  Conditional or posterior probability = probability given certain information 
•  Maybe P(cavity) = 0.2 (the prior)... but P(cavity | toothache) = 0.6  
•  Or could be:  P(cavity | toothache ∧ (dentist found no cavity) ) = 0 



Probability Theory Basics 

•  Syntax:  how to actually write out a proposition 
–  A factored representation:  states all of the “things” that are asserted true. 

–  “Things” = random variables (begin with upper case) 
•  The features that together define a possible world by taking on values 
•  E.g.  “Cavity”, “Total-die-value”, “Die1” 

–  Every variable has domain = set of possible values 
•  domain(Die1) = {1,2,3,4,5,6}  ;  domain(Total-die-value)={1,2,...,12} 

–  Variables with a boolean domain can (syntactic sugar) be compacted: 
•  domain(Cavity) = {true, false}  à instead of “Cavity=true”, just write “cavity” 
•  conversely for Cavity=false à ¬cavity 

–  Probability of proposition = summed probability of atomic events 
•  P(DieSum=7) = P(6,1) + P(2,5) + P(5,2) + P(3,4) + etc etc 



Probability Distributions 
•  So we can now express the probability of a proposition: 

–  P(Weather=sunny) = 0.6 ;         P(Cavity=false) = P(¬cavity)=0.1 

•  Probability Distribution expresses all possible probabilities for some event 
–  So for:   P(Weather=sunny) = 0.6; P(Weather=rain) = 0.1; etc etc   à 
–  P(Weather) = {0.72, 0.1, 0.29, 0.01}   for Weather={sun, rain, clouds, snow} 

•  Can be seen as total function that returns probabilities for all values of Weather 
•  Is normalized, i.e., sum of all probabilities adds up to 1. 
•  Note that bold P means prob. distr.;  plain P means plain probability 

•  Joint Probability Distribution: for a set of random variables, gives probability for 
every combo of values of every variable. 

–  Gives probability for every event within the sample space 
–  P(Weather, Cavity) = a 4x2 matrix of values: 

•  Full Joint Probability Distribution =  joint distribution for all random variables in 
domain 

–  Every probability question about a domain can be answered by full joint distribution 
•   because every event is a sum of sample points (variable/value pairs) 

W eather = sunny rain cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02 
Cavity = false 0.576 0.08 0.064 0.08 



Probability Distributions: for continuous variables 
•  What about continuous random variables? 

•  Some variables are continuous, e.g.  P(Temp=82.3) = 0.23;  P(Temp=82.5)= 0.24;  etc. 
•  Also could assert ranges:  P(Temp<85)  ;  P(40<Temp<67) 

•  We can express distributions as a parameterized function of value: 
•  P (X = x) = U [18, 26](x) = uniform density between 18 and 26 
•  Known as a probability density function (pdf) 

–  Here P is a really a density distribution; the whole range integrates to 1. 
•  Probability of falling in 67-75 range is 100% 
•  Probability of NoonTemp at any single value is actually zero! 
•  P (X = 20.5) = 0.125 really means Limdxà0 P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125 

 

dx 18 26 

0.125 



Probability	Distributions	

13	

0

Another	example:			simple	Gaussian	distribu5on:	



Conditional Probability 
•  Let’s take a closer look now... 

–  Precise meaning of:  P(cavity | toothache) = 0.8 ? 
•  Not:  “if toothache, then 80% chance of cavity” !  
•  That would be a hard fact:  “whenever toothache, P(cavity) is 80%” 
•  Yes:  “P(cavity)=80% given that all I know is toothache” 
•  Leaves room for P(cavity | (toothache ∧ fist-fight) ) = 0.01 
•  Less specific belief P(cavity | toothache)=0.8 remains true after more evidence 

arrives....but is less useful. 

–  Some evidence may be “irrelevant”, allowing simplification: 
•  P(cavity | toothache, NAUjacksWin) = P(cavity | toothache) = 0.8 
•  “Irrelevance” determined by detailed domain knowledge.  We’ll come back to this... 

•  Conditional Distributions 
–  Concept of distributions can also by used for conditional probability 

–  P(Cavity | Toothache) = probabilities for all values in range of Cavity, Toothache 
•  = { P(cavity | toothache), P(¬cavity | toothache), P(cavity | ¬toothache),  

P(¬cavity | ¬toothache) } 

–  So: P(X | Y) = gives values of P(X=xi | Y=yi) for all possible i,j in ranges of X,Y 



Computing with Conditional Probability 

•  Conditional probability can be defined in terms of unconditional probability: 

–  can be rewritten, giving the product rule: 
•  P(a∧b) = P(a|b) P(b) 
•  Makes sense:  

–  For (a∧b) to be true, we need b to be true...and need a to be true given b 

•  Also works for distributions: 
–  P(Weather, Cavity) = P(Weather|Cavity)  P(Cavity) 

•  Stands for a (4 values for Weather) x (2 values for Cavity) = 8 product equations 

•  The chain rule is derived by successive application of product rule: 
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1) 

= P(X1, . . . , Xn−2) P(Xn1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1) 

= ... 

 

–  Note the recursive reduction joint P into a chained product of conditional P’s 

P(a|b)=		
P(a∧b)	
P(b)	

P(doubles)|Die1=5)=		
P(doubles∧Die1=5)	

P(Die1=5)	
E.g.:		



Inference in a probabilistic world 

•  Just need a couple more probabilistic rules: 
–  Obvious:  P(¬a) = 1- P(a) 

–  Inclusion-Exclusion Principle:  P(a∨b) = P(a) + P(b) – P(a∧b) 

•  So how to do Inference?   
–  Logical Inference = asking whether something is true (entailed), given the KB 

–  Probabilistic Inference = asking how likely something is, given the KB 
•  Just compute the posterior probability for query proposition, given KB! 

–  We use the full joint probability distribution as the KB! 
•  Contains the probability of all possible worlds! 

–  Inference = look up the probability of a query proposition 
•  Extract and sum up the appropriate “slice” of the joint distribution 

•  Example:  Consider a world with just three boolean variables 
–  Toothache (has one or not) 
–  Cavity (has or not) 

–  Catch (dentists tool catches or not) 



17	

Inference	using	full	joint	distribution	

Start with the full joint distribution for this world: 

toothache ¬toothache 

catch ¬catch catch ¬catch 

cavity .108 .012 .072 .008 

¬cavity .016 .064 .144 .576 

For  any  proposition φ, the P(φ) = sum  the atomic events  
where  it is true: 
 

P (φ) = Σω:ω|=φP (ω) 
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Inference	using	full	joint	distribution	

Start with the full joint distribution for this world: 

For  any  proposition φ, the P(φ) = sum  the atomic events  
where  it is true: 

P (φ) = Σω:ω|=φP (ω) 
 
P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 

toothache ¬toothache 

catch ¬catch catch ¬catch 

cavity .108 .012 .072 .008 

¬cavity .016 .064 .144 .576 

This process is called summing out or marginalization 
•  Sum up probabilities across values of other (non-specified) variables 
•  In this case:  Cavity and Catch 
•  Generally:  P(Y) = Σz∈Z P(Y,z) ,or also, by product rule: P(Y)=Σz∈Z P(Y|z) P(z) 
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Inference	using	full	joint	distribution	

Start with the full joint distribution for this world: 

For  any  proposition φ, the P(φ) = sum  the atomic events  where  it is true: 
 

P (φ) = Σω:ω|=φP (ω) 
 
Can also easily do compound propositional queries: 
 
P (cavity∨toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28 
 

toothache ¬toothache 

catch ¬catch catch ¬catch 

cavity .108 .012 .072 .008 

¬cavity .016 .064 .144 .576 
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Inference	using	full	joint	distribution	

Start with the full joint distribution for this world: 

Can  also  compute conditional probabilities: 
 
P (¬cavity|toothache) = 
 

       
      = 

 
 

      =  0.4 
 
 

toothache ¬toothache 

catch ¬catch catch ¬catch 

cavity .108 .012 .072 .008 

¬cavity .016 .064 .144 .576 

P (¬cavity ∧ toothache) 
 P (toothache)	

(Product	rule)	

0.016 + 0.064 
0.108 + 0.012 + 0.016 + 0.064 



Normalization 

•  Denominator can  be viewed as a normalization constant α for the distribution P(Cavity|
toothache) 

–  Ensures that the probability of the distribution adds up to 1. 

P(Cavity|toothache) = α P(Cavity, toothache) 
= α [P(Cavity, toothache, catch) + P(Cavity, toothache, ¬catch)] 
= α [(0.108, 0.016) + (0.012, 0.064)] 
= α (0.12, 0.08)      = (0.6, 0.4) 

•  Note that proportions between (0.12, 0.08)  and (0.6, 0.4) are same 
–  Latter are just normalized by application of α to add up to 1. 
–  So if α just normalizes, I could also normalize “manually” à divide by sum of two.  
–  Wow: I don’t need to actually know P(toothache) à can just normalize manually!  

toothache ¬toothache 

catch ¬catch catch ¬catch 

cavity .108 .012 .072 .008 

¬cavity .016 .064 .144 .576 

P (cavity ∧ toothache) 
 P (toothache)	

P(cavity|toothache) = 



Inference using full joint distribution 
•  In Summary:   Compute distribution of query variable by fixing evidence variables 

(those in the “given” part) and summing over hidden (all other) variables 
–  Let’s analyze the implications more closely... 

•  Let X be  all the variables.   
–  Typically, we  want the conditional joint distribution of the query variables Y given specific 

values  e for the evidence variables  E 
–  Then the hidden variables are H = X − Y − E 

•  Then the required summation of joint entries is done by summing out the hidden 
variables: 

–  P(Y|E = e) =    αP(Y, E = e) =     αΣh∈HP(Y, E = e, H = h) 

•  Problem:  works great, can answer all queries...but exponential complexity: 
–  For world with n boolean variables: 

•  Requires O(2n) to create store joint distribution table;  O(2n) to process table lookup 

–  Jumps to O(dn) for random variables with a range of d values! 
–  Fine for toy worlds with three variables.  Real worlds à  >100 variables! 

•  Inefficiency!  How to even find/define the probabilities for O(dn) table entries! 
–  Especially given that you may never consult most of them! 
–  We need some more tools! 



Independence of variables 

•  The problem:   full joint distribution get huge fast  
–  the cross-product of all variables, all values in their range.   
–  Different probability for every variables...conditional on all values of all other 

variables. 

•  But are all of these variables really related?  Is every variable really related to all 
others? 

–  Consider P(toothache, catch, cavity, cloudy)  à  2 x 2 x 2 x 4 joint distr. = 32 entries 

–  By product rule: P(toothache, catch, cavity, cloudy)   
      = P(cloudy|toothache,catch,cavity) P(touchache,catch,cavity) 

–  But it the weather really conditional on toothaches, cavities and dentist’s tools?   No! 

–  So realistically:  P(cloudy|toothache,catch,cavity) = P(cloudy) 

–  So then actually:  P(toothache, catch, cavity, cloudy) =  
      P(cloudy) P(touchache,catch,cavity) 

–  We say that cloudy and dental variables are independent (also absolute independence) 
•  àprobabilities separate à just multiplied simply. 

•  Effectively:  the 32-element joint distribution table becomes one 8-element 
table + 4-element table  



Independence of variables 
•  Graphically: 

•  Much easier to build/access 8-table + 4-table than 32-table!  
–  32 entries reduced to 12!     

–  Generally:  N dependent variables = 2n   vs.  N independent variables = n     Wow! 

•  Math:  for independent variables X and Y: 
•  P(A|B) = P(A)  or  P(B|A) = P(B)   or  P(X,Y)= P(X)P(Y) 

•  Independence assertions based on judgment, specific knowledge of domain 

–  Can dramatically reduce information needed for full joint distribution (2n à n) 

–  Sadly:  absolute independence is quite rare in real world 
•  Even an indirect connection must be accounted for as a conditional 

–  Plus:  even independent subset can still be large, e.g., real dentistry = 100’s of variables 

•  Need more power!  

Toothache	

Cavity	

Weather	

Catch	 Toothache	

Cavity	

Catch	
Weather	

decomposes	to	



Conditional Independence 
•  Consider again:   Toothache, Catch, Cavity 

–  Clearly not independent:  toothache and tool and cavity obviously related 

–  But what is the relationship? 
•  Truly interconnected?  No! 

–  Catch and Toothache are actually halfway independent of each other 
•  They are related only via cavity.  à  they are both caused by the cavity 
•  Formally: they are conditionally independent given cavity 
•  Math notation:  P(toothache ∧ catch | cavity) = P(toothache|cavity)  P(catch|cavity)

  

–  Generally:  given conditionally independent X, Y given some Z 
•  P(X,Y|Z) = P(X|Z) P(Y|Z)  and also P(X|Y,Z) = P(X|Z)  and P(Y|X,Z)= P(Y|Z) 
•  Allows same decomposition of large joint table to smaller ones as before: 

P(Toothache, Catch,Cavity)  
= P(Toothache,Catch|Cavity) P(Cavity)  (prod. rule) 
= P(Toothache|Cavity)  P(Catch|Cavity)  P(Cavity)    (using above) 
 

–  One large table decomposed to three smaller ones.   #entries: O(2n) à O(n) ! 
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Toothache	

Catch	

Cavity	

Catch	 Toothache	Cavity	

Or	



Conditional Independence 

•  Conditional independence is very common in real world! 
–  Our basic and most robust form of knowledge about uncertain environments! 

•  A single cause often influences many conditionally independent effects 
–  P(Cause, Effect1, Effect2,...,Effectn) = P(Cause)  Πi P(Effecti | Cause) 
–  This probability distribution is a naive Bayes model 

–  Naive:  because it’s often applied for simplicity... 
•  Even when the effects are not strictly conditionally independent give the cause 
•  Often works surprisingly well   (i.e. “close enough” for good reasoning) 

•  Let’s look at how we leverage conditional independence to reason... 
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Bayes Rule 

•  Recall the product rule: 
 P(a ∧ b) = P(a|b) P(b)     or, conversely:   P (a ∧ b) = P(b|a) P(a) 

•  equate and divide by P(a): 

•  The basis for probabilistic inference in all modern AI systems! 
 
•  More generally, applied to probability distributions, we have: 
•    

•  As always, this represents a whole set of equations:  every combo of var values 

•  And even more generally, conditioned on additional background info e :  
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P(a|b)	P(b)	
P(a)	

P(b|a)	=	Bayes	rule:	

P(X|Y)	P(Y)	
P(X)	

P(Y|X)	=	

P(X|Y,e)	P(Y|e)	
P(X|e)	

P(Y|X,e)	=	



•  So: 

–  Doesn’t seem super useful at first? 
•  To calculate P(Y|X), I need P(X|Y)   --- is that likely?  Yes! 

–  Very useful for cause-effect reasoning, e.g., diagnosis problems 

•  Example:  
A patient comes in with a stiff neck; one possible and very serious cause is 
meningitis.  Epidemiological studies have shown that meningitis causes a stiff neck 
70% of the time.  It’s also known that meningitis strikes about 1/50,000 people in 
general, and that about 1% of people have a stiff neck on any given day.   

•  So: 
•  P(stiff|men) = 0.7 
•  P(m) = 1/50,000   and P(stiff) = 1/100 
•  P(men|stiff) =   P(stiff|men) P(men) / P(stiff)  =  (0.7 * 1/50k)/0.01 = 0.0014 

•  We often have probabilities in the causal direction…can compute probability in the 
diagnostic direction 

 

Using Bayes Rule 

28	

P(X|Y)	P(Y)	
P(X)	

P(Y|X)	=	

P(effect|cause)	P(cause)	
P(effect)	

P(cause|effect)	=	



Using Bayes Rule:  a typical example 

•  Let’s try this out: 
–  Your doctor says you tested positive for a serious disease; test is 99% 

accurate. It’s a rare disease though:  only 1 in 10,000 people have it. Why 
should you be happy?  
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Summary 

•  Probability is  a  rigorous formalism for uncertain  knowledge 
–  Provide an entire mathematics for quantifying and calculating uncertainty 

•  Joint probability distribution specifies probability of every atomic event 
–  Every combination of every variables across its whole range   
–  Queries  can  be  answered  by summing over atomic events 

•  For nontrivial domains, we must find a way to reduce the joint table size 
–  Size of joint distribution is O(n2) for n variables.  Intractable. 
–  Independence  and conditional independence  provide the  tools 

•  Bayes Rule focuses probability calculus on forward diagnostic problems 
–  Probability of a cause, given a set of conditionally independent effects 
–  Useful for many “diagnosis” tasks 

•  How likely is it that some event has occurred, given a set of observed evidence. 

•  Bayes rule provides the basis of probabilistic reasoning in AI 
–  Basis for Bayesian networks (next chapter) 
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α  β  ⊆     ¬  ⇒  |=  ∧  ∨  
⇔	



Extra slides…maybe next time… 



Wumpus	World	
1,4 2,4 3,4 4,4 

1,3 2,3 3,3 4,3 

1,2 
B 

OK 

2,2 3,2 4,2 

1,1 
 
 

OK 

2,1 
B 

OK 

3,1 4,1 

Chapter 13	 33	

Pi j  = true iff [i, j ]  contains a  pit 

Bi j  = true iff [i, j ]  is breezy 
Include only B1,1, B1,2, B2,1  in the probability model 
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Specifying	the	probability	 model	

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1) 

Apply product rule: P(B1,1, B1,2, B2,1 | P1,1, . . . , P4,4)P(P1,1, . . . , P4,4) 

(Do it this way  to get P (Effect|Cause).) 

First term:  1  if pits are  adjacent to breezes,  0  otherwise 

Second  term:  pits are  placed  randomly,  probability 0.2 per square: 

P(P  , . . . , P 1,1  4,4 ) = Π 4,4 
i , j  = 1,1 i , j  P(P  ) = 0.2  × 0.8 n  16− n 

for n pits. 
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Observations	and	 query	

We  know the following  facts: 
b  = ¬b1,1  ∧ b1,2 ∧ b2,1 

known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1 

Query  is P(P1,3|known, b) 

Define Unknown =  Pijs other than P1,3  and  Known 

For inference  by  enumeration, we  have 

P(P1,3|known, b) = αΣunknownP(P1,3, unknown, known, b) 

Grows  exponentially with number  of squares! 



Using	conditional	 independence	

Basic  insight:  observations  are  conditionally  independent  of other hidden  
squares  given  neighbouring hidden squares 

1,4 2,4 3,4 4,4 

1,3 
 

QUERY 

2,3 3,3 
OTHER 

4,3 

1,2 2,2 3,2 4,2 

1,1 
KNOW 

2,1  FRI 
N 

N3G,1E 4,1 

Chapter 13	 36	

Define Unknown = Fringe ∪ Other 
P(b|P1,3, Known, Unknown) = P(b|P1,3, Known, 
Fringe) 

Manipulate query  into a  form where  we  can  use  this! 
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Using	conditional	independence	 contd.	

P(P1,3|known, b) = α   
 

unknown 
P(P1,3, unknown, known, 
b)   

 

unknown 
P(b|P1,3, known, unknown)P(P1,3, known, 
unknown) 

    
 
fr inge other 

    
 
fr inge other 

P(b|known, P1,3, fringe, other)P(P1,3, known, fringe, 
other) 

P(b|known, P1,3, fringe)P(P1 ,3, known, fringe, other)     

other 
P(P1,3, known, fringe, 
other) 

= α 

= α 

= α 

= α  P(b|known, P1,3, fringe) 

= α 
f r inge 

  

f r inge 
P(b|known, P1,3, fringe)   

 

other 
P(P1,3)P (known)P (fringe)P (other) 

= α P (known)P(P1,3) 
  

 

f r inge 
P(b|known, P1,3, fringe)P (fringe)   

 

other 
P (other) 

= αt		
P(P1,3) 

  
 

f r inge 
P(b|known, P1,3, fringe)P (fringe) 



Using	conditional	independence	 contd.	

1,3 

1,2 
B 

 
OK 

2,2 

1,1 
 
 

OK 

2,1 
B 

 
OK 

3,1 

1,3 

1,2 
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OK 

2,2 

1,1 
 
 

OK 

2,1 
B 

 
OK 

3,1 

1,3 

1,2 
B 

 
OK 

2,2 

1,1 
 
 

OK 

2,1 
B 

 
OK 

3,1 

0.2 x 0.2 = 0.04 0.2 x 0.8 = 0.16 0.8 x 0.2 = 0.16 

1,3 

1,2 
B 

 
OK 

2,2 

1,1 
 
 

OK 

2,1 
B 

 
OK 

3,1 

1,3 

1,2 
B 

 
OK 

2,2 

1,1 
 
 

OK 

2,1 
B 

 
OK 

3,1 

0.2 x 0.2 = 0.04 
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0.2 x 0.8 = 0.16 

P(P1,3|known, b) =  αt	(0.2(0.04 + 0.16 + 0.16),  0.8(0.04 + 0.16)) 
≈ (0.31, 0.69) 

 
P(P2,2|known, b)  ≈ (0.86, 0.14) 


