
Inference in first-order logic 

Chapter 9 

1	



2	

Outline 

♦  Reducing first-order inference to propositional  inference 

♦  Unification 

♦  Generalized Modus Ponens 

♦  Forward and backward chaining 

♦  Logic programming 

♦  Resolution 



Reasoning in FOL 

•  We know how to efficiently represent complex worlds in FOL 
–  Quantification + variables à FOL much more flexible, compact 

•  We know how to do inference in propositional logics 
–  Model-checking  OR  inference rules  OR resolution 
–  Can be arduous, but it’s fairly mechanical.  Sound and complete 

–  Size of problem becomes impossible as complexity of world grows. 

•  Would like to use FOL...and do inference in FOL. 
–  Quantification + variables à make things much more complex. 

•  Question:  How can we reason in FOL? 
–  We can convert FOL to propositional à use propositional inferencing 

–  We can develop new ideas to deal with instantiation/variables 
•  Reasoning directly in FOL! 



Universal Instantiation (UI) 

•  Goal:  Get rid of universal quantifiers 
•  Plan: Logically equivalent replacement 

–  Consider all facts that a universally quantified sentence could imply.   
–  Replace the quantified sentence by all implied facts. 

•  Example.  Consider: 
–   ∀x King(x) ∧ Greedy(x)  ⇒  Evil(x) 

•  What are all the literal facts that this could imply?  
–  King(John) ∧ Greedy(John) ⇒ Evil(John)   
–  King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 
–  King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John)) 
–  Etc. etc. etc.   à “∀x” means “true for every possible literal substitution 

•  Every possible instantiation of a universally quantified sentence is entailed 
by it: 

•  So: for a given FOL fact base:  substitute all ∀x with literal facts implied. 

for	any	variable	v	and	ground	term		g	
∀	v 	α	

Subst({v/g},	α)	



Existential Instantiation (EI) 

•  Goal:  Get rid of existential quantifiers 
•  Plan: Logically equivalent replacement 
•  Example.  Consider: 

–   ∃x Crown(x) ∧ OnHead(x, John) 

•  What exactly does this mean?  
–  There is some literal in the world for which this is true. 
–  But for which literal?  What if we don’t know it yet? Or anonymous: mom(Kate) 

•  Answer: create a special unique anonymous literal:  Skolem Constant 

–  So: Crown(C1) ∧ OnHead(C1, John),  where C1 is a new Skolem symbol 

•  So, to get rid of quantification: 
–  UI can be applied several times to add new sentences 

•  the new KB is logically equivalent to the old 
–  EI can be applied once to replace the existential sentence 

•  the new KB is not strictly equivalent to the old...but is satisfiable iff the old KB was 
satisfiable 

For	any	sentence	α,	variable	v,	and	constant	symbol	k	
that	does	not	appear	elsewhere	in	the	knowledge	base	

∃ v α
Subst({v/k}, α)



Example:  Reduction to Propositional Inference 

•  Suppose the KB contains just the following: 
–  ∀x King(x) ∧ Greedy(x)  ⇒  Evil(x)   
–  King(John) 

–  Greedy(John)   
–  Brother(Richard, John) 

•  Instantiating the universal sentence in all possible ways, we have 
–  King(John) ∧ Greedy(John) ⇒  Evil(John)   

–  King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)   

–  King(John) 
–  Greedy(John)   

–  Brother(Richard, John) 

•  The new KB is propositionalized:   
–  proposition symbols: King(John), Greedy(John),  Evil(John), King(Richard) etc. 
–  Note:  not predicates!  Consider them monolithic symbols like B1,1 and W3,2 



Analysis: Reducing FOL to Propositional Inference 

•  Claim: a sentence α  is entailed by new KB iff entailed by original KB 
•  Claim: every FOL KB can be propositionalized so as to preserve entailment 
•  Idea!   Do inference in FOL KB by: 

1.  Propositionalize KB and query 
2.  apply propositional resolution, return result   

•  Problem: function symbols: for any input, yield an output entity 
–  Can refer to infinitely many entities, e.g., Father(Father(Father(John))) 
–  Propositionalized KB is essentially infinite! 

•  Theorem: Herbrand (1930): 
–  If a sentence α is entailed by an FOL KB,  it is entailed by a finite subset of the 

propositional   KB 

•  Yields new Idea:  For n = 0 to ∞ do 
–  create a propositional KB by instantiating with depth-n terms 
–  see if α is entailed by this  KB 

•  Basically the IDS concept applied to proving entailment 

•  Problem:  works if α is entailed... But never stop looking if α is not entailed 
–  Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable 



Other practical problems with propositionalization 

•  Another problem:  Propositionalization generates lots of irrelevant 
sentences.   

–  E.g., from: 
•   ∀x  King(x) ∧ Greedy(x) ⇒ Evil(x)   
•  King(John),  Prince(Andrew),  Lady(Di),  Stodgy(Mum) 
•  ∀y Greedy(y)   
•  Brother(Richard, John) 

–  it seems instantly obvious to human readers that Evil(John),  

    ...but propositionalization produces lots of  facts that are irrelevant: 
•  Greedy(Richard), Greedy(Andrew), Greedy(Di), Greedy(Mum), etc 

•  With p k-ary predicates and n constants, there are p·nk instantiations! 
–  And with function symbols, it gets much much  worse! 

•  We need a more straightforward way to inference directly in FOL !!! 



Unification 

•  Observation:   
–  Given previous KB, we can get the inference Evil(John) immediately... if we can find 

a substitution  θ such that King(x) and Greedy(x) match King(John) and Greedy(y) 
•  θ = {x/John, y/John} works! 

•  Definition:  Unify(α, β) = θ if subst(θ, α) = subst(θ, β) 
–  Two terms α and β unify, if you can find a variable binding θ that, when substituted 

in, makes the terms identical 

•  Example:  Unify the following sentences: 

•  The last one fails...but shouldn’t.  What’s going on?   
–  The ‘x’ in Knows(John,x) is not necessarily same as ‘x’ in Knows(x,OJ) 

•  Both are just variables...could be bound to anything.   

–  Standardize apart:  Variables in each clause made unique:  Knows(John, x217) 



Generalized Modus Ponens (GMP) 

•  We can leverage unification to generalize Modus Ponens Inference!    
–  Reminder:  Modus ponens was   

–  But now suppose that pi and q are all parameterized by variables 

–  If there is some set of bindings θ that makes all sentences in the premise of an 
implication identical to sentences already in the KB, then we can assert the 
conclusion. 

–  Or formally: 

–  So then: 

•   Note that GMP is used with: 
–  KB of definite clauses (exactly one positive term) 
–  All variables are assumed to be universally quantified 

α		⇒	β,		α	
			β		

p1,	p2,	p3...pn,		(p1	∧	p2	∧	...	∧pn)	⇒	q)	
q	Or,	more	generally:		

p’1,	p’2,	p’3...p’n,		(p1	∧	p2	∧	...	∧pn)	⇒	q)	
subst(θ,q)	 where	subst(θ,pi’)	=	subst(θ,pi)	for	all	i		

King(John),	Greedy(y),		(King(x)	∧Greedy(y))	⇒	Evil(x))	
Evil(John)	 for	θ={x/John,	y/John}		
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Example:  Putting it together 

The law says that it is a crime for an American to sell weapons to 
hostile nations. The country Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it by Colonel West, who 
is  American. 

Prove that Col. West is a criminal 
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Example:		PuRng	it	together	(cont.) 

. . . it is a crime for an American to sell weapons to hostile  
nations: 
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Example:  Putting it together (cont.) 

. . . it is a crime for an American to sell weapons to hostile  nations: 
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 

Nono . . . has some missiles 
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Example:  Putting it together (cont.) 

. . . it is a crime for an American to sell weapons to hostile  nations: 
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧ Missile(x):  
Owns(Nono, M1) and Missile(M1) 

 
. . . all of its missiles were sold to it by Colonel  West 
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Example:  Putting it together (cont.) 

. . . it is a crime for an American to sell weapons to hostile  nations: 
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 

Nono . . . has some missiles,  
    i.e., ∃ x Owns(Nono, x) ∧ Missile(x)...and applying EI  
      Owns(Nono, M1) and Missile(M1) 
 
. . . all of its missiles were sold to it by Colonel  West 
∀x  Missile(x) ∧ Owns(Nono, x)  ⇒  Sells(West, x, Nono) 
 

Missiles are weapons: 
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Example:  Putting it together (cont.) 

. . . it is a crime for an American to sell weapons to hostile  nations: 
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 

Nono . . . has some missiles, i.e.,  
    ∃ x Owns(Nono, x) ∧ Missile(x):   
     Owns(Nono, M1) and Missile(M1) 
 
. . . all of its missiles were sold to it by Colonel  West 
∀ x Missile(x) ∧ Owns(Nono, x)  ⇒  Sells(West, x, Nono) 
 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 
 

An enemy of America counts as  “hostile”: 
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Example:  Putting it together (cont.) 

. . . it is a crime for an American to sell weapons to hostile  nations: 
American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 

Nono . . . has some missiles,  
  i.e., ∃ x Owns(Nono, x) ∧ Missile(x):   
  Owns(Nono, M1) and Missile(M1) 

 
. . . all of its missiles were sold to it by Colonel  West 

∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 
 

An enemy of America counts as  “hostile”: 
Enemy(x, America) ⇒ Hostile(x) 
 

West, who is American . . . 
American(West) 
 

The country Nono, an enemy of America . . . 
Enemy(Nono, America) 



Inference algorithms:  Forward chaining 

18	

Similar	to	proposiSonal	logic,	we	can	infer	new	facts	using	forward	chaining	
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Forward chaining proof 

Enemy(Nono,America) Owns(Nono,M1) Missile(M1) American(West) 

First	we	have	the	known	facts...	



Forward chaining proof 

Owns(Nono,M1) Missile(M1) American(West) 

Weapon(M1) Sells(West,M1,Nono) 
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Hostile(Nono) 

Enemy(Nono,America) 

Forward	chaining	with:	
•  ∀x Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
•  Missile(x) ⇒ Weapon(x) 
•  Enemy(x, America) ⇒ Hostile(x) 

	



Forward chaining proof 

Owns(Nono,M1) Missile(M1) American(West) 

Weapon(M1) 

Criminal(West) 

Sells(West,M1,Nono) 
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Hostile(Nono) 

Enemy(Nono,America) 

ConSnuing	to	infer	with:	
•  American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 



Forward Chaining Proof 

•  Properties of Forward-chaining proof 
–  Sound and complete for first-order definite clauses 

•  Proof similar to propositional proof.  

–  For Datalog (first-order definite clauses + no functions), FC terminates for 
Datalog in poly iterations  

•  There at most p · nk   literals = upper bound on number of iterations. 
•  May not terminate in general if α is not  entailed.  Fn’s generate infinite new facts. 
•  This is unavoidable:  entailment with definite clauses is  semi-decidable 

•  Efficiency of forward chaining proof.  Sources of inefficiency 
–  Matching conjunctive premises to all possible literals 

•  Can often order conjunctive clauses to quickly constrain literals. 

–  Redundant matching of all rules on each cycle 
•  Simple observation:  no need to match a rule on iteration  k if a premise wasn’t 

added on iteration k − 1   ⇒ match only those rules whose premise contains a newly 
added literal 

–  Waste time generating facts irrelevant to goal 
•  Inherent to forward chaining.  Backward chaining more efficient for goal-directed. 
•  Magic sets: Can dynamically rewrite rules to “specialize” them toward desired goal 



Backward chaining algorithm 
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For	query-oriented	(goal-directed)	proofs,	backward	chaining	is	more	natural	
•  Note	that	the	algorithm	is	depth-first,	recursive.	

Returns	a	set	of	subsStuSons		
•  All	possible	sets	of	bindings	for	which	entailment	holds	
•  Could	also	return	an	“iterator”:		new	set	of	bindings	each	Sme	you	ask	

function FOL-BC-Ask(KB, goals, θ) returns a set of substitutions 
inputs: KB, a knowledge base 

goals, a list of conjuncts forming a query (θ		already   applied) 
θ, the current substitution, initially the empty substitution { } 

local variables: answers, a set of substitutions, initially  empty 

if goals is empty then return  {θ}    ;; if I’ve proven everything, I’m done 
q t ← Subst(θ, First(goals))  ;; else grab the first goal in list and try to prove 
for each sentence r in KB    

where Standardize-Apart(r) = ( p1   ∧  .	.	.	∧  pn ⇒ q) 
and θt ← Unify(q, q t) succeeds   ;; unify goal with head of rule 

new goals ← [ p1,	.	.	.	,	pn|Rest(goals)]  ;; add RHS of rule to goal stack 
;; now plug latest bindings made into goal stack and call recursively... 
answers ← FOL-BC-Ask(KB, new goals, Compose(θt,	θ)) ∪ answers 

return answers 
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Backward chaining example 

Criminal(West) 

“Prove	that	Colonel	West	is	a	criminal”	

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Criminal(West) 

Weapon(y) American(x) Sells(x,y,z) 
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Hostile(z) 

{x/West} 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Criminal(West) 

Weapon(y) Sells(x,y,z) Hostile(z) 
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{x/West} 

{ } 
American(West) 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Hostile(Nono) 

Criminal(West) 

Weapon(y) 

Missile(y) 

Sells(West,M1,z) American(West) 

{ } 
Sells(x,y,z) Hostile(z) 
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{x/West} 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Hostile(Nono) 

Criminal(West) 

Weapon(y) 

Missile(y) 

Sells(West,M1,z) American(West) 

{ } 
Sells(x,y,z) Hostile(z) 
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{ y/M1} 

{x/West, y/M1} 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Owns(Nono,M1) Missile(M1) 

Criminal(West) 

Weapon(y) 

Missile(y) 

American(West) 

{ y/M1} 
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{
Sells(West,M1,z) 

z/Nono } { } 
Hostile(z) 

{x/West, y/M1, z/Nono} 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward chaining example 

Hostile(Nono) 

Enemy(Nono,America) Owns(Nono,M1) Missile(M1) 

Criminal(West) 

Weapon(y) 

Missile(y) 

American(West) 

{ y/M1} 
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{ } { } { } 

{
Sells(West,M1,z) 

z/Nono } { } 

{x/West, y/M1, z/Nono} 

American(x)∧W eapon(y)∧Sells(x, y, z)∧Hostile(z) ⇒ Criminal(x) 
 Owns(Nono, M1) and Missile(M1) 
∀x  Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) 
Missile(x) ⇒ Weapon(x) 
Enemy(x, America) ⇒ Hostile(x) 
American(West) 
Enemy(Nono, America) 



Backward Chaining Proof 

•  Properties of Backward chaining proof 
–  Depth-first recursive proof search 

•  space is linear in size of proof   

–  Incomplete due to infinite loops 
•  ⇒ fix by checking current goal against every goal on stack 
•  Breaks loop...but may not solve incompleteness problem (inherent to DFS) 

–  Inefficient due to repeated subgoals (both success and   failure) 
•  fix using caching of previous results (extra  space!) 

–  Widely used (with improvements!)  for logic programming 
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Logic programming 

Logic programming: 
•  is a way to solve problems declaratively 
•  Based directly on FOL... (using datalog semantics) 

 
Conceptually:  computation as inference on logical  KBs 

Logic programming 
1.  Identify problem 
2.  Assemble information 
3.  Tea break 
4.  Encode information in KB 
5.  Encode problem instance as  facts 
6.  Ask queries 
7.  Find false facts 

Ordinary Procedural Programming 
1.  Identify problem   
2.  Assemble information 
3.  Figure out solution 
4.  Program solution 
5.  Encode problem instance as data 
6.  Apply program to data 
7.  Debug procedural errors 

Should be easier to debug Capital(NewYork, US) than x := x + 2 ! 



Prolog systems 

•  Basis: backward chaining with Horn clauses + bells & whistles 

•  Widely used in Europe, Japan (basis of 5th Generation project) 
–  Compilation techniques ⇒ approaching a billion LIPS 

•  Program = set of clauses  = head :- literal1, . . . literaln. 
–  e.g.:   criminal(X) :- american(X),  weapon(Y),  sells(X,Y,Z), hostile(Z). 

•  Depth-first, left-to-right backward chaining 

•  Built-in predicates for arithmetic etc. 
–  e.g.:   X is Y*Z+3 

•  Closed-world assumption (“negation as failure”)   
–  e.g.:  given alive(X) :- not dead(X).   

–  alive(joe) succeeds if dead(joe) fails 



Prolog examples 

•  Depth-first search from a start state X:   
dfs(X) :- goal(X). 
dfs(X) :- successor(X,S), dfs(S). 

–  No need to loop over S: successor succeeds for each   

•  Appending two lists to produce a third:   
append([],Y,Y). 
append([X|L],Y,[X|Z]) :- append(L,Y,Z). 

–  Query:   append([2],[4,6,8],Z). 
•  Yields (yawn):  [2,4,6,8] 

–  query:  append(A,B,[1,2]) ? 
•  WOW!!    Much more powerful than procedural functions!   
•  Provides all possible bindings of A, B that could (when appended) yield [1,2] 
•  A=[]  B=[1,2]  ;   A=[1]  B=[2]   ;   A=[1,2]  B=[] 



FOL Resolution:  Brief summary 

•  Principle:  Identical to propositional resolution 

•  Full first-order version: 

–  where Unify(li , ¬mj) = θ.  

•  So same as before:   match complemented predicates 
–  But now:  that unify with some set of bindings to be identical  

•  For example, 

–  with θ = {x/Ken} 

•  To show entailment of α : Apply resolution steps to CNF (KB ∧ ¬α) 
•  Is complete for FOL 

¬Rich(x)	∨	Unhappy(x)		
Rich(Ken)	
Unhappy(Ken)	

l1		∨...∨	lk,			m1	∨...	∨	mn	

Subst(θ,	(l1	∨...∨	li−1	∨	li+1	∨	...	∨	lk		∨	m1	∨	...	∨	mj−1	∨	mj+1	∨	...	∨	mn)	
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Conversion to CNF 

Loves(y, x)] 

Everyone who loves all animals is loved by   
someone: 
∀ x [∀ y Animal(y)  ⇒  Loves(x, y)]  ⇒  [∃ y 

1.  Eliminate biconditionals and implications 

∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] 

2. Move ¬ inwards:   
•  Note that:  ¬∀x, p ≡ ∃ x ¬p 
•  And that:   ¬∃ x, p ≡ ∀x ¬p 

So: 
∀ x  
∀ x  

[∃ y 
[∃ y 

¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y  Loves(y, x)] 
¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y  Loves(y, x)] 

∀ x  [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y  Loves(y, x)] 
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Conversion to CNF (contd.) 

3.  Standardize variables:  each quantifier should use a different  one 

∀x  [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] 

4.  Skolemize:  
•  a more general form of existential instantiation.   
•  Each existential variable is replaced by a Skolem function  of the enclosing 

universally quantified  variables: 
•  Could	generate	any	possible	literal	as	the	one	that	“exists”	

∀x  [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x) 
 

5. Drop universal quantifiers: 

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x) 
 

6. Distribute ∧  over ∨: 

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)] 



Example:  Resolution proof 
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Summary:  Inference in FOL 

•  Fred Flintstone:   Turn FOL into propositional logic;  find entailments 
–  Use of Universal Instantiation and Existential Instantiation 
–  Works...but is slow for all but the smallest domains. 

•  Better plan:  Use unification to identify possible bindings of variables! 
–  Can be seen as a “goal-focused instantiation” 
–  Then can just use generalized Modus Ponens for inference 
–  Forward and Backward chaining algorithms implement this approach in two different 

ways 

•  Forward chaining is used in production systems (expert systems) 
–  Forward chaining is complete for datalog à runs in polynomial time 

•  Backward chaining is best for query-oriented proof 
–  Used in logic programming systems like Prolog 
–  Suffers from typical DFS issues:  infinite loops and incompleteness 

•  Prolog uses database semantics to implement a subset of FOL 

•  Generalized resolution proof provides a complete proof system for FOL 



40	

α  β  ⊆     ¬  ⇒  |=  ∧  ∨  
⇔	


