First-order logic

Chapter 8

Outline

- Why FOL?
- ◆ Syntax and semantics of FOL
- ♦ Fun with sentences
- ♦ Wumpus world in FOL

Thinking about formal languages

- Programming languages = formal languages. Most widely used type...
 - Have "facts" = data structures and contents
 - But!
 - The manipulation of facts is "hard-wired" in domain-specific procedures
 - They are *procedural*, not *declarative*.
 - Declarative: Facts and rules for manipulating stated independently.
 - → Domain-*independent* reasoning system...could be applied to any facts.
- Propositional Logic: Pros and cons
 - ✓ Propositional logic is declarative: pieces of syntax correspond to facts
 - Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
 - ✓ Propositional logic is compositional:
 - meaning of B1,1 \land P1,2 is derived from meaning of B1,1 and of P1,2
 - ✓ Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
 - Propositional logic has very limited expressive power (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First Order Logics

- Propositional Logics: Assumes the world contains facts (only)
 - Individual propositional symbols. May be true or false. Not parameterized.
 - $P_{1,1} \neg B_{1,2} B_{1,1} \Rightarrow P_{1,2} \lor P_{2,1}$
- First Order Logic: More like natural language. Contains:
 - Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
 - Relations:
 - Propositions: Facts about one object.
 - red, round, bogus, prime, multistoried . . .,
 - Many to many relations: Relate whole groups of objects
 - brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
 - Functions:
 - Subset of relations: relate multiple "inputs" to a single "output"
 - father of, best friend, third inning of, one more than, end of
- And there are other logics as well:
 - Temporal, Probabilistic, Fuzzy

Logics: Quick Big Picture Overview

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL: Basics

- Models in propositional logics: Link symbols to truth values
- Models in FOLs: Objects!
 - Domain of a FOL model: the set of objects it contains. (must be >0)
 - Objects represent entities that exist in the world.
 - Kings, swords, big toes, wind, rain, etc.
 - Objects can be related in various ways
 - This is the "1st order" aspect of the logic! Reason about relationships...
 - E.g. "Brother" relation={ <john,doug>, <john, ben>, etc. ... tuples }
 - Unary relations = properties
 - Person(john), hungry(jack)
 - Some relations are functions: only one value.
 - Father(son, papa).
 - Sqrt(16,4)

Syntax of FOL: Closer look

- Three kinds of symbols on FOL:
 - Constant symbols: Stand for objects
 - MyCar, Richard, Kittycat
 - Predicate symbols: stand for relations
 - Brother, ParkedAt, Sparkly, Fat
 - Function symbols: stand for functions
 - Leftleg, Father
- Where does "truth" come from?
 - Propositional logic: simpler \rightarrow Symbols refer to world features. T/F
 - FOL: Model must provide necessary information to determine truth value
 - Has its set of Constant (Object), Predicate (relations), and function symbols
 - Also has *interpretation*: what world objects/relations specified by above symbols.
 - Example interpretations:
 - "John" refers to John Georgas, "Brother" refers to Brotherhood relation
 - "John" refers to a donor liver in Chad, "Brother" refers to "smaller than".
 - Logics are not truth! Always dependent on human interpretation!
 - Concept of "intended interpretation" = "the obvious one"

Syntax of FOL: Making Sentences

- Logical symbols can be combined into sentences
 - Just like propositional logic. To describe a possible world (model).
- Anatomy of sentences in FOL:
 - Term: Logical expression that refers to an object
 - Constant symbols are terms \rightarrow named reference to object
 - Could also have descriptive reference to object (we don't name everything!)
 - LeftLeg(John) refers to an (anonymous) object that is John's left leg.
 - Generally: complex terms = functor(term1, term2, term3...)
 - Functor refers to some function in model, terms refer to objects related by function
 - The interpretation of model clarifies/fixes the referent of each term.
 - Atomic Sentences: state facts in the model
 - Brother (John, Richard) → intended interpretation = "Richard is brother of John"
 - Could be more complex/nested: Married(Father(John), Mother(John)).
 - Sentence is true in a given model, if the specified relation holds in that model
 - Complex Sentences: Can use the usual logical connectives to compound
 - \neg King(Richard) \Rightarrow King(John)
 - ¬Brother(LeftLeg(Richard), John)
 - King(Richard) V King(John)

Entailment in FOL

- Our goal remains to show/prove/compute *entailment*.
 - KB |= $\alpha \rightarrow$ show that statement α is true in all models where KB is true.
 - Model checking in propositional logic: generate all possible models, check em.
 - Technically still works perfect in FOL...except model space is HUGE.
- How many models exist for a give world in FOL?
 - By definition: every possible combination of every possible assignment.
 - So: Model space = *all* permutations of *all* factors in an FOL world:
 - For each number of domain elements n from 1 to ∞
 - For each k-ary predicate P_{k} in the vocabulary For each possible k-ary relation on n objects
 - For each constant symbol C in the vocabulary
 - For each choice of referent for C from n objects
- Computing entailment by enumerating FOL models is not feasible!
 - Model-checking is not an option to compute entailment
 - Need more focused inference-based reasoning!

Universal Quantification

- FOL power! We can make broad statements about the world!
 - State that a logical sentence holds for *all possible instantiations of referents!*
- Format: \forall (variables) (logical sentence, with variables)
 - States: sentences is true for all possible bindings of given variables.
 - $\forall x \; EnrolledIn(cs470, x) \Rightarrow Smart(x)$
- Truth: $\forall x P$ is true in model m iff P is true with x bound to every possible object in the model.
 - So wait: Above statement true only if it evaluates to true with x bound to "Frank"...and with x bound to "projector" holds? Huh?
 - Yes. Note that it's an *implication* \rightarrow true *except when* premise false and RHS true.
- Caution:
 - Typically ' \Rightarrow ' is the main connective with \forall
 - Common mistake: Using \wedge as the main connective
 - $\forall x \, EnrolledIn(cs470, x) \land Smart(x)$
 - "Everyone is enrolled in CS470" and "everyone is smart"

Existential Quantification

- State: a sentence holds for *at least one instantiation of referents!*
- Format: \exists (variables) (logical sentence, with variables)
 - States: sentence is true for *at least one* binding of given variables.
 - $\exists x \; EnrolledIn(cs470, x) \land Smart(x)$
- Truth: $\exists x P$ is true in model m iff P is true with x bound to every possible object in the model.
 - So wait: Above statement true only if it evaluates to true with x bound to some possible object in the model.
- Caution:
 - Typically ' \wedge ' is the main connective with \forall
 - Common mistake: Using \Rightarrow as the main connective instead
 - $\exists x \; EnrolledIn(cs470, x) \Rightarrow Smart(x)$
 - "The existence of someone enrolled in cs470 implies that someone is smart"
 - Ok, but: implication is false only if LHS false and RHS true. True all other times.
 - Above is also true if there is anyone who is NOT enrolled in cs470!

Properties of Quantifiers

- Quantifiers can be nested...but be careful of meaning!
- $\forall x \forall y$ is the same as $\forall y \forall x$
 - Usually we just write $\forall x, y$
- ∃ x ∃ y is the same as ∃ y ∃ x
 Usually write ∃ x, y
- $\exists x \forall y \text{ is not the same as } \forall y \exists x !!$
 - $\exists x \forall y Loves(x,y)$
 - "There is a person who loves everyone in the world"
 - $\forall y \exists x Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- Often good to parenthesize to emphasize quantifier meaning
 - $\forall x (\exists y Loves(x,y))$
 - "Everyone loves at least one person"
 - Note: there's nothing saying that x and y can't be bound to same object!

Fun with logic sentences...

• Brothers are siblings

Brothers are siblings

 $\forall x, y Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall x, y Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Brothers are siblings

 $\forall x, y Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x, y \; FirstCousin(x, y) \Leftrightarrow \exists p, ps \; Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

Some closing details

- Equality
 - Problem: The same object could be bound to multiple names.
 - Ex: $\exists x, y$ Brother(x, Richard) \land Brother(y, Richard)
 - "Richard has two brothers"?? No!
 - x, y could be bound to same object \rightarrow true in models where R has one brother!
 - Solution: need a way to constrain what variables could (or not) refer to.
 - Equality symbol (=) signifies that two terms refer to same object
 - $x = y \rightarrow$ the object referred to by x is the same on as y.
 - $\neg(x = y) \rightarrow$ the two are NOT equal. Usually write: $x \neq y$
 - So now: $\exists x, y$ Brother(x, Richard) \land Brother(y, Richard) $\land x \neq y$
- Database Semantics
 - Problem: Brother(John, Richard) \land Brother(Jeff, Richard)
 - "john" and "jeff" could be bound to same object! → add john ≠ jeff
 - But sentence still true in models where there are tons of *other* brothers.
 - Non-intuitive and cumbersome. Could constrain semantics a bit...
 - Unique-names assumption: Every constant refers to distinct object.
 - Closed World assumption: atomic sentences (facts) not known to be true are false.
 - Domain Closure: models contain only objects named by constants (no hidden)
 - Not strictly FOL...but often used (e.g. in systems like Prolog)

Using FOL to infer entailments

- Want to:
 - Establish a KB. Express our known axioms about the world
 - Put in new information. New knowledge, percepts.
 - Ask if the current KB entails some logic sentence (query) α
- Use Tell/Ask model for KB agents introduced at start
 - TELL (KB, King(John))
 - TELL (KB, $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$)
 - ASK (KB, King(John))
 - Or the real power: ask quantified questions (i.e. with variables)
 - ASK(KB, $\exists x Person(x)$)
 - "Does there exist a person?"
 - Is true...but could be true *many times over*. → could be many bindings for x
 - ASKVARS(KB, Person(x))
 - Modified semantics: return a stream/list of all possible bindings
 - Only works for H-clause KBs \rightarrow list of *specific* bindings.
 - Person(Sue) Person(Maggie) is true in FOL...but can't yield binding for Person(x)

A simple example

The Mogul World

Start with some rules about the world:

- If you have a rich parent, then you're rich
- If you are ruthless and have powerful friends then you are rich
- Rich people are rotten
- The children of rich people are rotten.

Then we need some facts:

- Trump is rich
- Tim is a powerful friend to Joe and Maggie
- Trump has a child named Ivanka
- Joe is ruthless but Maggie is not

Show some queries being resolved.

- Is Trump rich? Ivanka?
- Who is a rotten person?
- Who is rich?

Summary: First Order Logic

- Maintains best features of knowledge-based reasoning intro'd in Ch7
 K-rep is declarative, compositional, context-independent, unambiguous
- FOL is *far* more powerful than propositional logic
 - Reasoning about objects, properties, and their relations. Not just T/F facts
 - Increased power: sufficient to encode Wumpus world (and many others)
- Syntax is similar to what to that of prop. logic (and most other logics)
 - Simple atomic terms ... that can be combined into complex sentences
 - Uses all of the standard logical ops... Plus universal/existential quantification
- A model in FOL is:
 - A set of objects, predicates, functions...plus...
 - An interpretation that connects these meaningless symbols to world objects
- Developing a KB in FOL requires:
 - careful domain analysis to identify relevant objects/predicates/fns for domain
 - Careful encoding of domain axioms and facts into FOL

 $\begin{array}{ccc} \alpha & \beta & \subseteq & \neg \implies \mid = \land \lor \\ \Leftrightarrow \end{array}$

