Logical agents

Chapter 7

(Some slides adapted from Stuart Russell, Dan Klein, and many others. Thanks guys!)

Outline

Knowledge-based agents
Wumpus world
Logic in general—models and entailment
Propositional (Boolean) logic
Equivalence, validity, satisfiability
Inference rules and theorem proving

— forward chaining

— backward chaining

— resolution

Knowledge-based Agents

* Previously: Solved problems by search
— Basically brute force. Clever...but is it “intelligent”?
— “Knowledge” about how world works hidden...embodied in successor fn.

 Knowledge-based agents:
— Have internal representations of the world...and reason about them.

— Based on formal symbolic logics: propositional, first-order predicate, etc.

« Advantages:
— Can combine and recombine base knowledge for many purposes

— Can accept new tasks anytime, explicitly states as goals
* Q: Could Boggle do any task except...well...boggle search boards?

— Can achieve competence quickly
» Being told new facts about the world
« Learning new knowledge by deduction + percepts

— Can adapt to changes in environment by updating knowledge

Knowledge Bases

« Knowledge base is basis for all KB-agent reasoning and action

— Consists of: set of sentences in a formal language

Inference engine <—— domain-independent algorithms

Knowledge base <—— domain-specific content

« Declarative approach to building an agent (or other system):
* Idea:

— Tell it what it needs to know
— Then it can Ask itself what to do (autonomous agent) or you Ask it goal.
— answers should follow from the KB

« KB-Agents can be viewed at the knowledge level
— i.e., what they know, regardless of how implemented

« Or at the implementation level
— I.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-Agent(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t)) action
— Ask(KB, Make-Action-Query(f)) Tell(KB, Make-
Action-Sentence(action, t))

t—t+1

return action

« KB-agent function centered around on:
— Tell: Adding new information to the KB
— Ask: Posing a query (goal) to be resolved using the KB and universal algorithms

« The agent must be able to:
— Represent states, actions, etc.
— Incorporate new percepts
— Update internal representations of the world

— Deduce hidden properties of the world
« Things it has not been told explicitly...but arise from evolving facts

— Deduce appropriate actions (given tacit or explicit goal)

Wumpus World: A classic example

« Simple game of logical deduction

— Dark cave with deadly pits and voracious wumpus monster sesss P
— Goal: Find hidden pile of gold, avoid dying, return safely 4 o | -
PEAS Description: 3 s | |~ —
« Performance measure: e vsss e —
« gold +1000, death -1000 2 stench ~ Breeze=
» -1 per step, -10 for using the arrow
« Environment: 1 Iﬁ? Zoreeze = (Y | Zorceze =
« Squares adjacent to wumpus are smelly START
» Squares adjacent to pit are breezy 1 2 3 4

« Glitter iff gold is in the same square

» Shooting kills wumpus if you are facing it. Shooting uses up the only arrow
« Grabbing picks up gold if in same square

* Releasing drops the gold in same square

 Actuators:
» Left turn, Right turn, Forward, Grab, Release, Shoot

e Sensors:
* Breeze, Glitter, Smell

Wumpus World: problem characterization

— No—only local perception

— Yes—outcomes exactly specified

— No—sequential at the level of actions

— Yes—Wumpus and Pits do not move

— Yes. Actions are discrete and limited. States are definite and finite.

— Yes—Wumpus is essentially a natural feature

Exploring a wumpus world

OK

OK OK

e Startin[1,1]. Cave entry/exit. Guaranteed safe.
* Note: No smells, no breezes = adjacent squares ok.

Exploring a wumpus world

e Move to [2,1]. Sensor detects breeze (B)

Exploring a wumpus world

Deduce possible pits in adjacent squares.

10

Exploring a wumpus world

Better go explore a safer place...maybe gather more info...
Detect smell (S) in [1,2]... But no breeze!

11

Exploring a wumpus world

Can deduce Win [1,3] (can’t bein [2,2] because was no smellin [2,1]!)
Can definitely place the Pit in [3,1]

12

Exploring a wumpus world

Exploring a wumpus world

Now that [2,2] determined OK, can go there.
Nothing sensed = deductions about adjacent

14

Exploring a wumpus world

And then on to [2,3]. Detect Glitter! Grab Gold!
Then head back out to exit.

15

P?

Tight spots: Can’t always reason safely

 Breezein (1,2)and (2,1)
= no safe actions!

OK P? Make educated guess:
A P? Assuming pits uniformly distributed, (2,2) has pit
Al N\ w/ prob 0.86, vs. 0.31
lok|B oK
! N
A|——>
« Smellin (1,1)
= cannot move!
« Can use a strategy of coercion:
Act: shoot straight ahead

 Wumpus was there - dead
 Wumpus not there - safe

16

Introduction to Logic

Let’s start with some basics: definitions
« Logics are formal languages for representing information
— such that conclusions can be drawn
« Syntax defines the format of legal sentences in the language
« Semantics define the “meaning” of sentences
— i.e., define truth of a sentence with respect to a particular world (state)

Example: The language of arithmetic
* Syntax: Is a legal sentence; is not
* Semantics:
- is true 1ff the number is no less than the number y
— is true in a world where

— 1s false in a world where

Logical Entailment

Entailment means that one thing follows from another:
— KB |=a

— Knowledge base KB entails sentence a
if and only if
a is true in all worlds where KB is true

Example: the KB containing “the Giants won” and “the Reds won”
entails
a ="Either the Giants won or the Reds won”

—> a is true in all worlds in which KB is true.
Example: x+y=4entails4=x+y
Entailment our first element of reasoning!

— is a relationship between sentences (i.e., syntax)
— Idea that one sentence (logical fact) follows logically from another sentence

Models

« What about “in a world where x is true”? A “world”? What's that?

 Model = a possible “world”.

— Formally structured expression of world state with respect to which truth can be
evaluated

— Basically a collection of logical sentences describing a world or state
— We say m is a model of a sentence a if a is true in m

— Notation: M (a) is the set of all models of a

M()
 Example:
— KB = Giants won and Reds won
— a = Giants won

— Then KB |= aif and only if M (KB) < M («)
« KB entails a iff, in every model where a is true, KB is also true.
» Note that KB is the stronger statement here: the “tighter” set of possible models.

Example: Entailment in the wumpus world

Situation after detecting nothing in [1,1],
moving right, breeze in [1,2]

Consider possible models for ?s assuming

only pits:
« Each square could contain a pit...or not ’? ?
- 3 Boolean choices u m
- 8 possible models B
A-L.m | ?
®
= =
T ’ Note:
The full model set for this world is large!
® ,_ 1@ —> contains all possible combinations of
p— — m . possible contents for every square on
board.
OC
; = We are just looking at the subset dealing
: . 18 T with the squares at the frontier of our
=zE

@ exploration. Efficient! 20

Wumpus models

[
~@

KB = wumpus world rules + observations (percepts)
— Percepts = breeze([1,2]) , nothing([1,1])

Solid red line = all of the models in which KB is true = M(KB)
— The state of the world represented by KB is consistent with the model

21

Wumpus models

KB = wumpus-world rules + percepts

Assertion a1 = “[2,1] is safe”
— Dotted line is M(a1) = Set of all models in which a1 holds true.

Then we can say that KB |= a1
— In every model in which KB is true, a1 is also true. = Proof by model checking
— Thus: a1 is consistent with KB - “a1 is derivable from KB via model checking”

22

Wumpus models

Now let’'s consider another case:

« KB = wumpus-world rules + observations again, same as before
e 0a2="2,2]is safe”

* Model checking shows that KB does not entail a2
« Can not conclude there is no pit in [2,2]

— But also doesn’t prove that there is one. Logical facts are simply inconclusive.

23

Logical Inference

Model checking is one possible algorithm for logical inference

— Plan: generate and test. Brute force.
* Generate all possible models that could exist
» Check that goal proposition (i.e. a) is true in all models in which KB is true

KB |-, a - “sentence a can be derived from KB by procedure i
* KB |- a1 ="“goal fact a1 can be derived from KB by model checking”

Metaphor: “Logical consequences” of KB are a haystack; a is a needle.
— Entailment = needle is in haystack: KB |=a (it's in there somewhere)
— inference = finding the needle, i.e., proving the entailment

Soundness: Inference algorithm i is sound if
whenever KB |- q, it is also true that KB |= a

— Desirable! Unsound inference algo shows things entailed that aren’t!

Completeness: iis complete if
whenever KB |= aq, it is also true that KB |-, a

— Desirlagle! A complete inference algo can derive any sentence (goal fact) that is
entailed.

Propositional logic: Syntax

Thus far: General logical concepts. Let's get concrete...
Propositional logic is the simplest logic

— Very basic, illustrates foundational ideas

— So simple - also quite limiting. We’ll need more power eventually...

The proposition symbols P1, P2 simplest possible atomic sentences
— The basic building blocks of propositional logic
— Each represent a specific fact (e.g. W, ,) that can be true or false

Can be combined to form more complex sentences:
— If S is a sentence, 7S is a sentence (negation)
— If S1 and S2 are sentences, S1 /A S2 is a sentence (conjunction)
— If S1 and S2 are sentences, S1 V S2is a sentence (disjunction)
— If S1 and S2 are sentences, S1 =52 is a sentence (implication)
— If S1 and S2 are sentences, S1 < S2 is a sentence (biconditional)

25

Propositional Logic: Semantics

« Each model specifies true/false for each proposition symbol

+ Ex P1,2 Pz,z P3,1

False False True

& Pitin [3,1]. No pitin [2,2] and [1,2]

« With these three symbols: 8 possible models. Easily enumerated.

« Semantics: Rules for evaluating truth with respect to some model m

* Forlogical sentences S;:

=S s true iff

S1 AS2 istrue iff
S1 VS istrue iff
S1 = So istrue iff
l.e., Isfalse iff
(!Ni.e., istrueif

\Y
S'1

is false
istrueand
Istrue or
is false or

Istrue and
is false and

S1 < Sy istrueiff S = S» istrueand

« Simple recursive process evaluates arbitrary sentence

S2
S2
S2
S2
\Y.

IS true
IS true
IS true

is false
TorF

So= S istrue

— E.g.: = P12 A (P2,2V P31)=true A (false V true) = true N true = true

Complete truth tables for connectives

P 0 —P PAQ PVvO P=0 P<0
false false true false false true
false true true false true true f5’l’see
true false false false true false false
true true false true true true true

* Interesting to note:
— Implication (=). Non-intuitive: False only when P is true and Q is false.

— Biconditional (<). “co-variance”: True when both have same truth state.

Wumpus world sentences:
— Let P;; be true if there is a pit in [i,]].
— Let B be true if there is a breeze in [i, j].
— Then: =P,; A °B;; A B,; = “no pit or breeze in [1,1], breeze in [2,2]

— How about: “Pits cause breezes in adjacent squares”?
* Not possible in propositional logic. Can only state specific facts.

— “Asquare is breezy if and only if there is an adjacent pit” — stated for each square!

27

Models

-

Truth tables for

Proposition Symbols

inference

Biin|Boy | Pog | P Py | Pop | P31 | Ry | Ry | Ry | Ry | Rs | KB
false | false | false | false | false | false | false | true | true | true | true | false | false
false | false | false | false | false | false | true | true | true | false | true | false | false
false | true | false | false | false | false | false | true | true | false | true | true | false
false | true | false | false | false | false | true | true | true | true | true | true | true
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true | true | true | true | true | true | true
false | true | false | false | true | false | false | true | false | false | true | true | false
true | true | true | true | true | true | true | false | true | true | false | true | false

* Wumpus KB (what we know):
no pitin [1,1]

R1: =P,

R2:By 1 @ (Pyq Vv Pyq))
R3:B,; © (P14 Vv Py, vPsy)

R4: -B,
R5: B, ,

B[1,1] only if pit in...

no breeze in [1,1]

breeze in [2,1]

* Model Checking for entailment:
« KB is true if all rules (Rs) are true

— True in just three models

* Some « is true if consistent across all true KB

models

— a=P,, - false in all three > deduce no pit [2,1]

— a=P,, < Inconclusive...

Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB, a) returns frue or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

symbols — a list of the proposition symbols in KB and a
return TT-Check-All(KB, a, symbols, [])

function TT-Check-All(KB, a, symbols, model) returns true or false
if Empty?(symbols) then
if PL-True?(KB, model) then return PL-True?(a, model)
else return frue
else do
P — First(symbols); rest — Rest(symbols)
return TT-Check-All(KB, a, rest, Extend(P, true, model)) and
TT-Check-All(KB, a, rest, Extend(P, false , model))

O(2™) for n symbols; problem is co-NP-complete

Propositional Theorem Proving

« So far: The only algorithm for proving entailment is model-checking
— Have set of logical sentences KB, want to know if a= P, , is entailed
— = generated 2P models, check M(KB) < M(a)
— Gets expensive fast as the number logical facts (P,;) grows!

 Propositional Theorem Proving
— Construct a proof of a sentence without consulting models

— Search through a space of possible symbols transformations to connect KB
with a.

* Need three key concepts first:

— Validity. A sentence is valid only if true in all models (tautology).
« Ex. True, AV—A, A=A, (AA (A=>B))=B
* Gives us deduction theorem: A |=B if and only if A=B is valid.
« Can decide if A|= B by checking the A=B true in all models!

— Satisfiability. A sentence satisfiable if it’s true in some model.
 Earlier KB (R, through R;) was satisfiable because true in 3 models.

Propositional Theorem Proving

Last concept: Logical equivalence
— To logical sentences A and B are equivalent if M(A)=M(b).
— Meaning: A equivalent to B iff each entails the other > A |-B and B [=A
— There are many equivalences established by standard rules of logic:

(@ AB) = (BAa) commutativity of A
(aVpP) = (BVa) commutativity of V
(@AB)A7y) = (aA(BA7)) associativity of A
(aVPB)Vy) = (aV(BV7y)) associativity of V
—(—a) = a double-negation elimination
(@ = B) = (- = —a) contraposition
(@ = B) = (—~aV () implication elimination
(@ © B) = ((a = B)A(B = a)) biconditional elimination
—(aAfB) = (maV -F) De Morgan
=(aVpB) = (—aA-F) De Morgan
(@A (BVy) = (@AB)V(aAy)) distributivity of A over V
(@V(BA7) = (aVB)A(aVy)) distributivity of V over A

31

Propositional Theorem Proving

« Validity and satisfiability are connected. Useful:
— Alis valid iff "Ais unsatisfiable; A is satisfiable iff 7A is not valid.
— Thus: KB |= aif and only if (KB A —a) is unsatisfiable
— Basis for proof by contradiction! > Assume a false, show unsatisfiable

« Plus we have a number of standard logical inference rules:

— Modus Ponens: — And Elimination:
a =B, a aA B
B B

« Plus: all of the logical equivalences can be used as inference rules
(a=B) = (ma V B) (implication elimination)
becomes

(a=B) (-a V B)
and
(-a V B) (a = B)

Propositional Theorem Proving Example:

that is, there is no pit in [1,2]. First, we apply biconditional elimination to R to obtain

Re: (Bin = (Pi2V Py3)) A (PraV Py1) = Biy).

Then we apply And-Elimination to Rg to obtain Wum PuUS KB

Ry (PrastBeiiasseBibiis R1: P,
Logical equivalence for contrapositives gives R2:B;; © (Pyq v Pq2)

Rg: (TBy1 =SSR R3: B, © (P14 Vv Py, vPsy)
Now we can apply Modus Ponens with Rg and the percept Ry (i.e., —Bj 1), to obtain R4: 7B,

Ry » (s RS: By

Finally, we apply De Morgan’s rule, giving the conclusion
Ry : . 75 oulasoNe

That is, neither [1,2] nor [2,1] contains a pit.

* Found this proof “manually”, by hand
— Needed cleverness and insight to find goal in directed manner.

» Could apply any search algo! Brute force!
— Initial state: initial KB
— Actions: applying all inference rules to all sentences - new Kbi
— Result: Add bottom half of inference rule to KB; to get Kb,, ,
— Goal: goal state is when some KB, generated contains target fact/query

Propositional Theorem Proving

Searching for proofs in inference space is alternative to model checking
— Often much more efficient: ignores facts (P;’s) irrelevant to target goal
— Especially useful when the model space is complex (lots of P;’s)

Searching for proofs is sound ... but is it complete?
— Search algorithms like IDS are complete...if a goal is reachable.

— Highly dependent on completeness of set of inference rules
* Missing some critical inference rule - proof will not succeed.

Resolution Theorem Proving solves this problem
— Proof with a single inference rule (resolution)
— Guaranteed complete algorithm if used with any complete search algorithm

— But: requires all of KB to be clauses (see book disc.)
« Clause = a disjunction of literals, e.g. P, V P, V P,V P,
» Luckily: any set of propositional logic can be turned into conjunctive normal form

— For any sentences A and B in propositional logic, a resolution theorem prover
can decide if A |=B.

34

Conversion to CNF

Plan: Apply various equivalences to “massage” into CNF

Example:
Bi11< (P12V P21)

1. Eliminate <, replacing a < pwith (a =) A (8= «).

(B1,1 =>(P12V P21)) A ((P1,2V P21) = B11)

2. Eliminate =, replacing a = f with —a Vv p.
(mB1,1V P1,2V P2,1) A (=(P1,2V P2,1) V B1,1)

3. Move — inwards using de Morgan’s rules and double-negation:
(mB1,1V P12V P21) A ((mP1,2 A =P2,1) V B1,1)

4. Apply distributivity law (Vv over A) and flatten:

(=B1,1V P12V P21) A (m=P1,2V B1,1) A (=P2,1V B1,1)

Not always super easy! But can be brute-forced with search!

35

Resolution Theorem Proving

Basically: works by removing (resolving) contradictory literals.

Example: Given KB:
R1: =P, ,
R2: -P,,
R3: P,,
R4: P,y VP, VP,,

Then:
R1 resolves with R4 to give R5: (-P,;VP,,) VP;, VP,,=P;, VP,,
R2 resolves with RS to give R6: Pj,

— At end of resolution we have inferred a specific fact!

Full Resolution inference rule:
@;Va,Va; Va)A(mMVmVm;V..Vm,)
@;Vas. Va)A(MmMVm;V..Vm,)
where a, and m, are complementary literals.

So each resolution step:
— Considers a logical sentence in CNF (i.e. two clauses in your KB)
— Resolves to two new clauses - each with complementary literals removed.

Algorithm: Resolution Theorem Proving

|ldea: Proof by contradiction

— Want to show that KB |=a - so show that (KB A —a) is unsatisfiable

Plan:

— Convert (KB A —a) into CNF
— Exhaustively apply resolution to all pairs of clauses with complementary literals

— Continue process until:

« There are no new resolutions to make
— Could not show unsatisfiability - KB does not entail a

* Two clauses resolve to empty clause

— a,V a,resolves to {} = essentially “false”

— Unsatisfiability is shown - KB |=a

Example:

By VP2 VP,

“B,,vP, VB,

Piav Py voP;,

B, VP, VB,

PaVPy,voP,,

37

Inference with Horn Clauses

« Resolution theorem is complete ... but also complex
— Many practical cases: Don’t need all this power (and complexity!)

« Inference with Horn clauses
— If your KB can be expressed within a restricted rule format

— Horn clause: Disjunction in which at most one element is positive
 Ex: (7Ly; V "Breeze V B;,) ; ™B,,
* No positive literals = goal clause
+ Can be rewritten as implications: (L, V Breeze) = B, ,
« LHS= premise (body); RHS = consequent (head)

« Can be use in forward/backward chaining proof algorithm
— These algorithms are very natural and run in linear time!

Forward Chaining

— ldea: Work forward from the known facts to try to reach the target goal
« Start with known facts - true by definition

* Repeat:
— fire any rule whose premises are satisfied in the KB,
— add its conclusion to the KB

« Until: query is found (proved!); or no more facts added to KB (stalled, failed)

— Visually: Can represent the H-clauses in the KB as a directed graph.
« Forward chaining: start with facts and traverse the graph

P=0
LANM = P
BANL => M

ANP = L
ANB = L

Forward chaining example

Q

40

Backward Chaining

« |dea: work backwards from the query g:

« The Plan: A simple (recursive!) algorithm
* [|nitialize: Push g on the “proof stack” = things to be proven

Repeat:

— Pop next fact g, to prove off proof stack

— Check if g; is known to be true (fact in KB). If so, continue

— Else search KB for rule R; with head = q; (a way to prove q;)

— Add premises of R; to the proof stack
Until:

— Proof stack is empty (success); or

— no change in proof stack

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
— has already been proved true, or
— has already failed

— Visually: Can represent the H-clauses in the KB as a directed graph.
« Backward chaining: start with target goal and traverse the graph
* Done if/when all leaves of search are facts

P=0
LANM = P
BANL => M

ANP = L
ANB = L

Backward chaining example

Stack:

42

Summary: Inference Approaches

Model Checking
— Simple, complete ... But exponential in number of symbols (features) in KB

Proposition Theorem proving by inference rules (Modus Ponens, etc.)
— Implemented as search though proof space to find goal
— Could be incomplete!

Resolution theorem proving
— Universal and guaranteed complete
— ... but also arduous and complex

Forward/Backward Chaining with Horn clauses
— Possible in contexts where rules can be massaged in to Horn-clause form
— Complete, straightforward, and efficient (linear time in size of KB)
— FC: data-driven. Good for routine, automatic, continuous processing

» Non-goal directed, e.g., dynamic facial recognition, routine decision-making
« May do lots of inferring that is irrelevant to proving some goal

— BC: goal-driven. Good for answering specific questions (posed as goals)

« Complexity often much less than linear in size of KB
» Basis for Prolog language

Summary: Inference Approaches

« Logical agents apply inference to a knowledge base to derive new
information and make decisions

« Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundness: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

* Propositional logic lacks expressive power

