Logical agents

Chapter 7

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general-models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
- forward chaining
- backward chaining
- resolution

Knowledge-based Agents

- Previously: Solved problems by search
- Basically brute force. Clever...but is it "intelligent"?
- "Knowledge" about how world works hidden...embodied in successor fn.
- Knowledge-based agents:
- Have internal representations of the world...and reason about them.
- Based on formal symbolic logics: propositional, first-order predicate, etc.
- Advantages:
- Can combine and recombine base knowledge for many purposes
- Can accept new tasks anytime, explicitly states as goals
- Q: Could Boggle do any task except...well...boggle search boards?
- Can achieve competence quickly
- Being told new facts about the world
- Learning new knowledge by deduction + percepts
- Can adapt to changes in environment by updating knowledge

Knowledge Bases

- Knowledge base is basis for all KB-agent reasoning and action
- Consists of: set of sentences in a formal language

- Declarative approach to building an agent (or other system):
- Idea:
- Tell it what it needs to know
- Then it can Ask itself what to do (autonomous agent) or you Ask it goal.
- answers should follow from the KB
- KB-Agents can be viewed at the knowledge level
- i.e., what they know, regardless of how implemented
- Or at the implementation level
- i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-Agent( percept) returns an action
    static: KB, a knowledge base
    t, a counter, initially 0, indicating time
    Tell(KB, Make-Percept-Sentence( percept, t)) action
    \leftarrowAsk(KB, Make-Action-Query(t)) Tell(KB, Make-
    Action-Sentence(action,t))
    t\leftarrowt+1
    return action
```

- KB-agent function centered around on:
- Tell: Adding new information to the KB
- Ask: Posing a query (goal) to be resolved using the KB and universal algorithms
- The agent must be able to:
- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Things it has not been told explicitly...but arise from evolving facts
- Deduce appropriate actions (given tacit or explicit goal)

Wumpus World: A classic example

- Simple game of logical deduction
- Dark cave with deadly pits and voracious wumpus monster
- Goal: Find hidden pile of gold, avoid dying, return safely

PEAS Description:

- Performance measure:
- gold +1000 , death -1000
- -1 per step, -10 for using the arrow
- Environment:
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy

- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it. Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Actuators:
- Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors:
- Breeze, Glitter, Smell

Wumpus World: problem characterization

- Observable??
- No-only local perception
- Deterministic??
- Yes—outcomes exactly specified
- Episodic??
- No-sequential at the level of actions
- Static??
- Yes-Wumpus and Pits do not move
- Discrete??
- Yes. Actions are discrete and limited. States are definite and finite.
- Single-agent??
- Yes-Wumpus is essentially a natural feature

Exploring a wumpus world

- Start in [1,1]. Cave entry/exit. Guaranteed safe.
- Note: No smells, no breezes \rightarrow adjacent squares ok.

Exploring a wumpus world

- Move to $[2,1]$. Sensor detects breeze (B)

Exploring a wumpus world

- Deduce possible pits in adjacent squares.

Exploring a wumpus world

- Better go explore a safer place...maybe gather more info...
- Detect smell (S) in [1,2]... But no breeze!

Exploring a wumpus world

- Can deduce W in $[1,3]$ (can't be in $[2,2]$ because was no smell in $[2,1]!$)
- Can definitely place the Pit in [3,1]

Exploring a wumpus world

Exploring a wumpus world

- Now that $[2,2]$ determined OK, can go there.
- Nothing sensed \rightarrow deductions about adjacent

Exploring a wumpus world

- And then on to [2,3]. Detect Glitter! Grab Gold!
- Then head back out to exit.

Tight spots: Can't always reason safely

- Breeze in $(1,2)$ and $(2,1)$

$$
\Rightarrow \quad \text { no safe actions! }
$$

- Make educated guess:

Assuming pits uniformly distributed, $(2,2)$ has pit w/ prob 0.86 , vs. 0.31

- Smell in $(1,1)$
\Rightarrow cannot move!
- Can use a strategy of coercion:

Act: shoot straight ahead

- Wumpus was there \rightarrow dead
- Wumpus not there \rightarrow safe

Introduction to Logic

Let's start with some basics: definitions

- Logics are formal languages for representing information
- such that conclusions can be drawn
- Syntax defines the format of legal sentences in the language
- Semantics define the "meaning" of sentences
- i.e., define truth of a sentence with respect to a particular world (state)

Example: The language of arithmetic

- Syntax: $x+2 \geq y$ is a legal sentence; $x 2+y>$ is not
- Semantics:
$-\quad x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$-x+2 \geq y$ is true in a world where $x=7, y=1$
$-x+2 \geq y$ is false in a world where $x=0, y=6$

Logical Entailment

- Entailment means that one thing follows from another:
$-\mathrm{KB} \mid=\alpha$
- Knowledge base KB entails sentence α
if and only if
α is true in all worlds where KB is true
- Example: the KB containing "the Giants won" and "the Reds won" entails $\alpha=$ "Either the Giants won or the Reds won"
- $\quad \rightarrow \alpha$ is true in all worlds in which KB is true.
- Example: $x+y=4$ entails $4=x+y$
- Entailment our first element of reasoning!
- is a relationship between sentences (i.e., syntax)
- Idea that one sentence (logical fact) follows logically from another sentence

Models

- What about "in a world where x is true"? A "world"? What's that?
- Model = a possible "world".
- Formally structured expression of world state with respect to which truth can be evaluated
- Basically a collection of logical sentences describing a world or state
- We say m is a model of a sentence α if α is true in m
- Notation: $M(\alpha)$ is the set of all models of α
- Example:
$-K B=$ Giants won and Reds won
$-\alpha=$ Giants won
- Then $K B \mid=\alpha$ if and only if $M(K B) \subseteq M(\alpha)$

- KB entails α iff, in every model where α is true, $K B$ is also true.
- Note that KB is the stronger statement here: the "tighter" set of possible models.

Example: Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [1,2]

Consider possible models for ?s assuming only pits:

- Each square could contain a pit...or not $\rightarrow 3$ Boolean choices
$\rightarrow 8$ possible models

Note:
The full model set for this world is large!
\rightarrow contains all possible combinations of possible contents for every square on board.

We are just looking at the subset dealing with the squares at the frontier of our exploration. Efficient!

Wumpus models

- $\mathrm{KB}=$ wumpus world rules + observations (percepts)
- Percepts $=$ breeze $([1,2])$, nothing $([1,1])$
- Solid red line $=$ all of the models in which KB is true $=M(K B)$
- The state of the world represented by KB is consistent with the model

Wumpus models

- $\mathrm{KB}=$ wumpus-world rules + percepts
- Assertion $\alpha 1=$ " $[2,1]$ is safe"
- Dotted line is $M(\alpha 1)=$ Set of all models in which $\alpha 1$ holds true.
- Then we can say that $\mathrm{KB} \mid=\alpha 1$
- In every model in which KB is true, $\alpha 1$ is also true. \rightarrow Proof by model checking
- Thus: $\alpha 1$ is consistent with $\mathrm{KB} \rightarrow$ " $\alpha 1$ is derivable from KB via model checking"

Wumpus models

Now let's consider another case:

- KB = wumpus-world rules + observations again, same as before
- $\alpha 2=$ " $[2,2]$ is safe"
- Model checking shows that KB does not entail $\alpha 2$
- Can not conclude there is no pit in $[2,2]$
- But also doesn't prove that there is one. Logical facts are simply inconclusive.

Logical Inference

- Model checking is one possible algorithm for logical inference
- Plan: generate and test. Brute force.
- Generate all possible models that could exist
- Check that goal proposition (i.e. α) is true in all models in which KB is true
- KB $\mid-{ }_{\mathrm{i}} \alpha \rightarrow$ "sentence α can be derived from KB by procedure i "
- KB |- mc $\alpha 1$ = "goal fact $\alpha 1$ can be derived from KB by model checking"
- Metaphor: "Logical consequences" of KB are a haystack; α is a needle.
- Entailment = needle is in haystack: $\mathrm{KB} \mid=\alpha$ (it's in there somewhere)
- inference = finding the needle, i.e., proving the entailment
- Soundness: Inference algorithm i is sound if whenever $\mathrm{KB} \mid-_{i} \mathrm{a}$, it is also true that $\mathrm{KB} \mid=\alpha$
- Desirable! Unsound inference algo shows things entailed that aren't!
- Completeness: i is complete if
whenever $\mathrm{KB} \mid=\alpha$, it is also true that $\mathrm{KB} \mid-{ }_{-} \alpha$
- Desirable! A complete inference algo can derive any sentence (goal fact) that is entailed.

Propositional logic: Syntax

- Thus far: General logical concepts. Let's get concrete...
- Propositional logic is the simplest logic
- Very basic, illustrates foundational ideas
- So simple \rightarrow also quite limiting. We'll need more power eventually...
- The proposition symbols P1, P2 simplest possible atomic sentences
- The basic building blocks of propositional logic
- Each represent a specific fact (e.g. $\mathrm{W}_{1,2}$) that can be true or false
- Can be combined to form more complex sentences:
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S1 and S2 are sentences, S1 \wedge S2 is a sentence (conjunction)
- If S 1 and S 2 are sentences, S 1 V S2 is a sentence (disjunction)
- If S1 and S2 are sentences, $\mathrm{S} 1 \Rightarrow \mathrm{~S} 2$ is a sentence (implication)
- If S1 and S2 are sentences, S1 $\Leftrightarrow \mathrm{S} 2$ is a sentence (biconditional)

Propositional Logic: Semantics

- Each model specifies true/false for each proposition symbol
- Ex:

```
lll}\mp@subsup{|}{1,2}{\mp@subsup{P}{1,2}{}}\mp@subsup{P}{2,2}{}\mp@subsup{P}{3,1}{
```

\leftarrow Pit in [3,1]. No pit in [2,2] and [1,2]

- With these three symbols: 8 possible models. Easily enumerated.
- Semantics: Rules for evaluating truth with respect to some model m
- For logical sentences S_{i} :

$\neg S$	is true iff	S	is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}
$S_{1} \vee S_{2}$	is true iff	S_{1}	is true or	S_{2}
is true				
$S_{1} \Rightarrow S_{2}$	is true iff	S_{1}	is false or	S_{2}

- Simple recursive process evaluates arbitrary sentence
- E.g.: $\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

Complete truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	
false	true	true	false	true	true	fbylse
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Interesting to note:
- Implication (\Rightarrow). Non-intuitive: False only when P is true and Q is false.
- Biconditional (\Leftrightarrow). "co-variance": True when both have same truth state.

Wumpus world sentences:

- Let $P_{i, j}$ be true if there is a pit in [i, j].
- Let $\mathrm{B}_{\mathrm{i}, \mathrm{j}}$ be true if there is a breeze in [i, j].
- Then: $\neg P_{1,1} \wedge \neg B_{1,1} \wedge B_{2,1} \rightarrow$ "no pit or breeze in [1,1], breeze in $[2,2]$
- How about: "Pits cause breezes in adjacent squares"?
- Not possible in propositional logic. Can only state specific facts.
$-B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right), B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$, etc. etc.
- "A square is breezy if and only if there is an adjacent pit" - stated for each square!

Truth tables for inference

Models

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | R_{1} | R_{2} | R_{3} | R_{4} | R_{5} | KB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| false | true | true | true | true | false | false |
| false | false | false | false | false | false | true | true | true | false | true | false | false |
| \vdots |
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

- Wumpus KB (what we know):

R1: $\neg \mathrm{P}_{1,1}$
R2: $B_{1,1} \Leftrightarrow\left(P_{2,1} \vee P_{1,2}\right)$
R3: $B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$
R4: $\neg \mathrm{B}_{1,1}$
R5: $B_{2,1}$
no pit in $[1,1]$
$B[1,1]$ only if pit in...
no breeze in $[1,1]$
breeze in [2,1]

- Model Checking for entailment:
- KB is true if all rules (Rs) are true
- True in just three models
- Some α is true if consistent across all true KB models

$$
\begin{aligned}
& -\alpha=\mathrm{P}_{2,1} \rightarrow \text { false in all three } \rightarrow \text { deduce no pit }[2,1] \\
& -\alpha=\mathrm{P}_{2,2} \rightarrow \text { Inconclusive... }
\end{aligned}
$$

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
        \alpha, the query, a sentence in propositional logic
    symbols }\leftarrowa\mathrm{ list of the proposition symbols in KB and }
    return TT-Check-All(KB, a, symbols, [ ])
```

function TT-Check-All(KB, α, symbols, model) returns true or false if Empty?(symbols) then
if PL-True?(KB, model) then return PL-True?(α, model)
else return true
else do
$P \leftarrow \operatorname{First}($ symbols); rest $\leftarrow \operatorname{Rest}($ symbols)
return TT-Check-All(KB, α, rest, Extend(P, true, model)) and
TT-Check-All(KB, a, rest, Extend(P , false , model))
$O\left(2^{n}\right)$ for n symbols; problem is co-NP-complete

Propositional Theorem Proving

- So far: The only algorithm for proving entailment is model-checking
- Have set of logical sentences KB, want to know if $\alpha=P_{1,2}$ is entailed
$-\quad \rightarrow$ generated $2^{P i}$ models, check $M(K B) \subseteq M(\alpha)$
- Gets expensive fast as the number logical facts $\left(P_{i}\right)$ grows!
- Propositional Theorem Proving
- Construct a proof of a sentence without consulting models
- Search through a space of possible symbols transformations to connect KB with α.
- Need three key concepts first:
- Validity. A sentence is valid only if true in all models (tautology).
- Ex. True, $A \vee \neg A, A \Rightarrow A,(A \wedge(A \Rightarrow B)) \Rightarrow B$
- Gives us deduction theorem: $A \mid=B$ if and only if $A \Rightarrow B$ is valid.
- Can decide if $A \mid=B$ by checking the $A \Rightarrow B$ true in all models!
- Satisfiability. A sentence satisfiable if it's true in some model.
- Earlier KB (R_{1} through R_{5}) was satisfiable because true in 3 models.

Propositional Theorem Proving

- Last concept: Logical equivalence
- To logical sentences A and B are equivalent if $M(A)=M(b)$.
- Meaning: A equivalent to B iff each entails the other $\rightarrow A \mid=B$ and $B \mid=A$
- There are many equivalences established by standard rules of logic:

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Propositional Theorem Proving

- Validity and satisfiability are connected. Useful:
- A is valid iff $\neg A$ is unsatisfiable; $\quad A$ is satisfiable iff $\neg A$ is not valid.
- Thus: $K B \mid=\alpha$ if and only if $(K B \wedge \neg \alpha)$ is unsatisfiable
- Basis for proof by contradiction! \rightarrow Assume α false, show unsatisfiable
- Plus we have a number of standard logical inference rules:
- Modus Ponens: - And Elimination:

$$
\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \quad \frac{\alpha \wedge \beta}{\beta}
$$

- Plus: all of the logical equivalences can be used as inference rules

$$
\begin{array}{ll}
(\alpha \Rightarrow \beta) & \begin{array}{l}
\text { 三 }(\neg \alpha \vee \beta) \\
\text { becomes }
\end{array} \\
\begin{array}{l}
\text { (implication elimination) } \\
(-\alpha \vee \beta)
\end{array} \text { and } \quad \frac{(-\alpha \vee \beta)}{(\alpha \Rightarrow \beta)}
\end{array}
$$

Propositional Theorem Proving Example:

that is, there is no pit in [1,2]. First, we apply biconditional elimination to R_{2} to obtain

$$
R_{6}: \quad\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

Then we apply And-Elimination to R_{6} to obtain
$R_{7}: \quad\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$.
Logical equivalence for contrapositives gives
$R_{8}: \quad\left(\neg B_{1,1} \Rightarrow \neg\left(P_{1,2} \vee P_{2,1}\right)\right)$
Now we can apply Modus Ponens with R_{8} and the percept R_{4} (i.e., $\neg B_{1,1}$), to obtain
$R_{9}: \quad \neg\left(P_{1,2} \vee P_{2,1}\right)$.

```
Wumpus KB
R1: \(\neg \mathrm{P}_{1,1}\)
R2: \(B_{1,1} \Leftrightarrow\left(P_{2,1} \vee P_{1,2}\right)\)
R3: \(B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)\)
R4: \(\neg \mathrm{B}_{1,1}\)
R5: \(B_{2,1}\)
```

Finally, we apply De Morgan's rule, giving the conclusion

$$
R_{10}: \quad \neg P_{1,2} \wedge \neg P_{2,1} .
$$

That is, neither $[1,2]$ nor $[2,1]$ contains a pit.

- Found this proof "manually", by hand
- Needed cleverness and insight to find goal in directed manner.
- Could apply any search algo! Brute force!
- Initial state: initial KB
- Actions: applying all inference rules to all sentences \rightarrow new Kbi
- Result: Add bottom half of inference rule to $K B_{i}$ to get Kb_{i+1}
- Goal: goal state is when some KB_{i} generated contains target fact/query

Propositional Theorem Proving

- Searching for proofs in inference space is alternative to model checking
- Often much more efficient: ignores facts (P_{i} 's) irrelevant to target goal
- Especially useful when the model space is complex (lots of P_{i} 's)
- Searching for proofs is sound ... but is it complete?
- Search algorithms like IDS are complete...if a goal is reachable.
- Highly dependent on completeness of set of inference rules
- Missing some critical inference rule \rightarrow proof will not succeed.
- Resolution Theorem Proving solves this problem
- Proof with a single inference rule (resolution)
- Guaranteed complete algorithm if used with any complete search algorithm
- But: requires all of KB to be clauses (see book disc.)
- Clause $=$ a disjunction of literals, e.g. $P_{1} \vee P_{2} \vee P_{3} \vee P_{4}$
- Luckily: any set of propositional logic can be turned into conjunctive normal form
- For any sentences A and B in propositional logic, a resolution theorem prover can decide if $A \mid=B$.

Conversion to CNF

Plan: Apply various equivalences to "massage" into CNF

Example:

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Not always super easy! But can be brute-forced with search!

Resolution Theorem Proving

- Basically: works by removing (resolving) contradictory literals.
- Example: Given KB:

R1: $\neg \mathrm{P}_{1,1}$
R2: $\neg \mathrm{P}_{1,3}$
R3: $\neg P_{2,2}$
$R 4: P_{1,1}^{2,2} \vee P_{3,1} \vee P_{2,2}$

- Then:
$R 1$ resolves with $R 4$ to give $R 5:\left(\neg P_{1,1} \vee P_{1,1}\right) \vee P_{3,1} \vee P_{2,2}=P_{3,1} \vee P_{2,2}$
$R 2$ resolves with R5 to give R6: $P_{3,1}$
- At end of resolution we have inferred a specific fact!
- Full Resolution inference rule:

$$
\frac{\left(a_{1} \vee a_{2} \vee a_{3} . . \vee a_{n}\right) \wedge\left(m_{1} \vee m_{2} \vee m_{3} \vee \ldots \vee m_{n}\right)}{\left(a_{1} \vee a_{3} . . \vee a_{n}\right) \wedge\left(m_{1} \vee m_{3} \vee \ldots \vee m_{n}\right)}
$$

where a_{2} and m_{2} are complementary literals.

- So each resolution step:
- Considers a logical sentence in CNF (i.e. two clauses in your KB)
- Resolves to two new clauses \rightarrow each with complementary literals removed.

Algorithm: Resolution Theorem Proving

- Idea: Proof by contradiction
- Want to show that $\mathrm{KB} \mid=\alpha \rightarrow$ so show that $(\mathrm{KB} \wedge \neg \alpha)$ is unsatisfiable
- Plan:
- Convert (KB $\wedge \neg \alpha$) into CNF
- Exhaustively apply resolution to all pairs of clauses with complementary literals
- Continue process until:
- There are no new resolutions to make
- Could not show unsatisfiability \rightarrow KB does not entail α
- Two clauses resolve to empty clause
- $a_{1} \vee a_{1}$ resolves to $\}=$ essentially "false"
- Unsatisfiability is shown $\rightarrow \mathrm{KB} \mid=\alpha$
- Example:

Inference with Horn Clauses

- Resolution theorem is complete ... but also complex
- Many practical cases: Don't need all this power (and complexity!)
- Inference with Horn clauses
- If your KB can be expressed within a restricted rule format
- Horn clause: Disjunction in which at most one element is positive
- Ex: $\left(\neg \mathrm{L}_{1,1} \vee \neg\right.$ Breeze $\left.\vee \mathrm{B}_{1,1}\right)$; $\neg \mathrm{B}_{2,2}$
- No positive literals = goal clause
- Can be rewritten as implications: $\left(L_{1,1} \vee\right.$ Breeze $) \Rightarrow B_{1,1}$
- LHS= premise (body); RHS = consequent (head)
- Can be use in forward/backward chaining proof algorithm
- These algorithms are very natural and run in linear time !

Forward Chaining

- Idea: Work forward from the known facts to try to reach the target goal
- Start with known facts \rightarrow true by definition
- Repeat:
- fire any rule whose premises are satisfied in the KB,
- add its conclusion to the KB
- Until: query is found (proved!); or no more facts added to KB (stalled, failed)
- Visually: Can represent the H-clauses in the KB as a directed graph.
- Forward chaining: start with facts and traverse the graph

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Backward Chaining

- Idea: work backwards from the query q :
- The Plan: A simple (recursive!) algorithm
- Initialize: Push q on the "proof stack" = things to be proven
- Repeat:
- Pop next fact q_{i} to prove off proof stack
- Check if q_{i} is known to be true (fact in $K B$). If so, continue
- Else search KB for rule R_{j} with head $=q_{i}$ (a way to prove q_{i})
- Add premises of R_{j} to the proof stack
- Until:
- Proof stack is empty (success); or
- no change in proof stack
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
- has already been proved true, or
- has already failed
- Visually: Can represent the H-clauses in the KB as a directed graph.
- Backward chaining: start with target goal and traverse the graph
- Done if/when all leaves of search are facts

Backward chaining example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Summary: Inference Approaches

- Model Checking
- Simple, complete ... But exponential in number of symbols (features) in KB
- Proposition Theorem proving by inference rules (Modus Ponens, etc.)
- Implemented as search though proof space to find goal
- Could be incomplete!
- Resolution theorem proving
- Universal and guaranteed complete
- ... but also arduous and complex
- Forward/Backward Chaining with Horn clauses
- Possible in contexts where rules can be massaged in to Horn-clause form
- Complete, straightforward, and efficient (linear time in size of KB)
- FC: data-driven. Good for routine, automatic, continuous processing
- Non-goal directed, e.g., dynamic facial recognition, routine decision-making
- May do lots of inferring that is irrelevant to proving some goal
- BC: goal-driven. Good for answering specific questions (posed as goals)
- Complexity often much less than linear in size of KB
- Basis for Prolog language

Summary: Inference Approaches

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Propositional logic lacks expressive power

$$
\alpha \beta \subseteq \neg \Rightarrow \mid=\wedge \vee
$$

