
Logical agents 

Chapter 7 
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(Some	slides	adapted	from	Stuart	Russell,	Dan	Klein,	and	many	others.	Thanks	guys!)			



Outline 

•  Knowledge-based agents 
•  Wumpus world 
•  Logic in general—models and entailment 
•  Propositional (Boolean) logic 
•  Equivalence, validity, satisfiability 
•  Inference rules and theorem  proving 

–  forward chaining 
–  backward chaining 

–  resolution 
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Knowledge-based Agents 

•  Previously:  Solved problems by search 
–  Basically brute force.  Clever...but is it “intelligent”? 
–  “Knowledge” about how world works hidden...embodied in successor fn. 

•  Knowledge-based agents: 
–  Have internal representations of the world...and reason about them.  

–  Based on formal symbolic logics:  propositional, first-order predicate, etc. 

•  Advantages: 
–  Can combine and recombine base knowledge for many purposes 

–  Can accept new tasks anytime, explicitly states as goals 
•  Q: Could Boggle do any task except...well...boggle search boards? 

–  Can achieve competence quickly 
•  Being told new facts about the world 
•  Learning new knowledge by deduction + percepts 

–  Can adapt to changes in environment by updating knowledge 
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Knowledge Bases 

•  Knowledge base is basis for all KB-agent reasoning and action 
–  Consists of:  set of sentences in a formal language  

Inference engine 

Knowledge base domain−specific content 

domain−independent algorithms 

•  Declarative approach to building an agent (or other  system): 
•  Idea: 

–  Tell it what it needs to know 
–  Then it can Ask itself what to do (autonomous agent) or you Ask it goal. 
–  answers should follow from the KB 
   

•  KB-Agents can be viewed at the knowledge level 
–  i.e., what they know, regardless of how implemented 

•  Or at the implementation level 
–  i.e., data structures in KB and algorithms that manipulate  them 

  



A simple knowledge-based agent 

•  KB-agent function centered around on: 
–  Tell:  Adding new information to the KB 
–  Ask: Posing a query (goal) to be resolved using the KB and universal algorithms 

•  The agent must be able to:   
–  Represent states, actions, etc.   
–  Incorporate new percepts 
–  Update internal representations of the world   
–  Deduce hidden properties of the world 

•  Things it has not been told explicitly...but arise from evolving facts 
–  Deduce appropriate actions (given tacit or explicit goal) 

function KB-Agent( percept) returns an action 
static: KB, a knowledge base 

t, a counter, initially 0, indicating time 

Tell(KB, Make-Percept-Sentence( percept, t))  action 
← Ask(KB, Make-Action-Query(t))  Tell(KB, Make-
Action-Sentence(action, t)) 
t ← t + 1 
return action 



Wumpus World:  A classic example 

•  Simple game of logical deduction 
–  Dark cave with deadly pits and voracious wumpus monster 
–  Goal:  Find hidden pile of gold, avoid dying, return safely 

PEAS Description:  
•  Performance measure:   

•  gold +1000, death -1000 
•  -1 per step, -10 for using the arrow   

•  Environment: 
•  Squares adjacent to wumpus are smelly   
•  Squares adjacent to pit are breezy   
•  Glitter iff gold is in the same  square 
•  Shooting kills wumpus if you are facing it.  Shooting uses up the only arrow   
•  Grabbing picks up gold if in same square   
•  Releasing drops the gold in same  square 

•  Actuators:  
•  Left turn, Right turn,  Forward, Grab, Release, Shoot 

•  Sensors: 
•  Breeze, Glitter, Smell 
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Wumpus World:  problem characterization 

•  Observable??  
–  No—only local perception   

•  Deterministic??  
–  Yes—outcomes exactly specified   

•  Episodic??  
–  No—sequential at the level of actions   

•  Static??  
–  Yes—Wumpus and Pits do not move   

•  Discrete??  
–  Yes.  Actions are discrete and limited. States are definite and finite. 

•  Single-agent??   
–  Yes—Wumpus is essentially a natural feature 

 



Exploring	a	wumpus	world	
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A 

•  Start	in	[1,1].		Cave	entry/exit.		Guaranteed	safe.	
•  Note:		No	smells,	no	breezes	à	adjacent	squares	ok.		
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Exploring	a	wumpus	 world	
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9	•  Move	to	[2,1].		Sensor	detects	breeze	(B)				
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OK 

OK OK 

A 

A 

B 

P? 

P? 

10	•  Deduce	possible	pits	in	adjacent	squares.				
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11	•  BeSer	go	explore	a	safer	place...maybe	gather	more	info...	
•  Detect	smell	(S)	in	[1,2]...	But	no	breeze!		



Exploring	a	wumpus	world	

OK 

OK OK 

A 

A 

B 

P? 

A 

S 

P?  
OK 

12	
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W 
•  Can	deduce	W	in	[1,3]			(can’t	be	in	[2,2]	because	was	no	smell	in	[2,1]!		)	
•  Can	definitely	place	the	Pit	in	[3,1]			
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OK 

•  Now	that	[2,2]	determined	OK,	can	go	there.	
•  Nothing	sensed	à	deducZons	about	adjacent	



Exploring	a	wumpus	world	
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•  And	then	on	to	[2,3].		Detect	GliSer!		Grab	Gold!			
•  Then	head	back	out	to	exit.		



Tight	spots:		Can’t	always	reason	safely	
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•  Breeze in (1,2) and (2,1) 
⇒  no safe actions! 

•  Make educated guess:   
Assuming pits uniformly distributed,  (2,2) has pit 
w/ prob 0.86, vs.  0.31 

A 
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S 

•  Smell in (1,1) 
⇒  cannot move! 
 

•  Can use a strategy of coercion: 
   Act: shoot straight ahead 

•  Wumpus was there à dead 
•  Wumpus not there à safe 



Introduction to Logic 

Let’s start with some basics:  definitions 
•  Logics are formal languages for representing information 

–    such that conclusions can be  drawn 
•  Syntax defines the format of legal sentences in the language   
•  Semantics define the “meaning” of  sentences 

–  i.e., define truth of a sentence with respect to a particular world (state) 

Example:  The language of arithmetic 
•  Syntax:  x + 2 ≥ y is a legal sentence;      x2 + y > is not 
•  Semantics:  

–    x + 2 ≥ y is true iff the number x + 2 is no less than the number y   

–    x + 2 ≥ y is true in a world where x = 7, y = 1 
–    x + 2 ≥ y is false in a world where x = 0, y = 6 



Logical Entailment 

•  Entailment means that one thing follows from another: 
–  KB |= α 
–  Knowledge base KB entails sentence α 

   if and only if 
α is true in all worlds where KB is true 

•  Example:  the KB containing “the Giants won” and “the Reds won”   
entails  
α =“Either the Giants won or the Reds won” 

•  à α is true in all worlds in which KB is true. 

•  Example:  x + y = 4 entails 4 = x + y 

•  Entailment our first element of reasoning! 
–  is a relationship between sentences (i.e., syntax) 
–  Idea that one sentence (logical fact) follows logically from another sentence 
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Models 

•  What about “in a world where x is true”?  A “world”?  What’s that? 

•  Model = a possible “world”.  
–  Formally structured expression of world state with respect to which truth can be   

evaluated 
–  Basically a collection of logical sentences describing a world or state 
–  We say m is a model of a sentence α if α is true in m   
–  Notation:  M (α) is the set of all models of α 

•  Example:  
–  KB = Giants won and Reds  won 
–  α = Giants won 

–  Then KB |= α if and only if M (KB) ⊆ M (α) 
•  KB entails α iff, in every model where α is true, KB is also true. 
•  Note that KB is the stronger statement here: the “tighter” set of possible models. 
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Example:	Entailment	in	the	wumpus		world	
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A A 

B ? 
?  ? 

Situation after detecting nothing in [1,1],  
moving right, breeze in [1,2] 
 
Consider possible models for ?s assuming 
only pits: 
•  Each square could contain a pit...or not 

à 3 Boolean choices 
à 8 possible models 

Note:			
The	full	model	set	for	this	world	is	large!	
	à	contains	all	possible	combinaZons	of	
possible	contents	for	every	square	on	
board.		
	
We	are	just	looking	at	the	subset	dealing	
with	the	squares	at	the	fronZer	of	our	
exploraZon.	Efficient!		



Wumpus models 
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•  KB = wumpus world rules + observations (percepts) 
–  Percepts = breeze([1,2]) , nothing([1,1])   

•  Solid red line = all of the models in which KB is true = M(KB) 
–  The state of the world represented by KB is consistent with the model 

 



Wumpus models 
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•  KB = wumpus-world rules + percepts 
•  Assertion α1 = “[2,1] is safe”  

–  Dotted line is M(α1) = Set of all models in which α1 holds true. 
•  Then we can say that KB |=  α1 

–  In every model in which KB is true, α1 is also true. è Proof by model  checking 
–  Thus: α1 is consistent with KB à   “α1 is derivable from KB via model checking” 

α1	



Wumpus models 
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Now let’s consider another case: 
•  KB = wumpus-world rules + observations again, same as before 
•  α2 = “[2,2] is safe” 

•  Model checking shows that KB does not entail  α2   
•  Can not conclude there is no pit in [2,2]  

–  But also doesn’t prove that there is one.  Logical facts are simply inconclusive. 

α2	



Logical Inference 

•  Model checking is one possible algorithm for logical inference 
–  Plan:  generate and test.  Brute force. 

•  Generate all possible models that could exist 
•  Check that goal proposition (i.e. α) is true in all models in which KB is true 

•  KB |– i α  à “sentence α can be derived from KB by procedure i” 
•  KB |– mc α1 = “goal fact α1 can be derived from KB by model checking” 

•  Metaphor:  “Logical consequences” of KB are a haystack; α is a needle.   
–  Entailment = needle is in haystack:   KB |= α  (it’s in there somewhere) 
–  inference = finding the needle, i.e., proving the entailment 
 

•  Soundness:  Inference algorithm i is sound if 
  whenever KB |– i α, it is also true that KB |=  α 

–  Desirable!  Unsound inference algo shows things entailed that aren’t!  

•  Completeness:  i is complete if 
  whenever KB |=  α, it is also true that KB |– i α 

–  Desirable!  A complete inference algo can derive any sentence (goal fact) that is 
entailed. 
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Propositional logic:  Syntax 

•  Thus far:  General logical concepts.  Let’s get concrete... 
•  Propositional logic is the simplest logic 

–  Very basic, illustrates foundational ideas 

–  So simple à also quite limiting.  We’ll need more power eventually... 

   
•  The proposition symbols P1, P2 simplest possible atomic sentences 

–  The basic building blocks of propositional logic 

–  Each represent a specific fact (e.g. W1,2) that can be true or false  

•  Can be combined to form more complex sentences:  
–  If S is a sentence, ¬S  is a sentence  (negation) 
–  If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)   

–  If S1 and S2 are sentences, S1 ∨ S2 is a sentence    (disjunction) 
–  If S1 and S2 are  sentences, S1 ⇒S2 is a sentence (implication)   

–  If S1 and S2 are  sentences, S1 ⇔S2 is a sentence  (biconditional) 
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Propositional Logic: Semantics 
•  Each model specifies true/false for each proposition  symbol 
•  Ex:                                    ß Pit in [3,1].  No pit in [2,2] and [1,2] 

•  With these three symbols:  8 possible models.  Easily enumerated. 

•  Semantics:  Rules for evaluating truth with respect to some model m 
•  For logical sentences Si: 

•  Simple recursive process evaluates arbitrary sentence 
–  E.g.:  ¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true 

P1,2				P2,2				P3,1	
False					False			True	
	

¬S is	true	iff S is	false 
S1 ∧ S2 is true iff S1 is true a n d  S2 is true 
S1 ∨ S2 is true iff S1 is true o r  S2 is true 

S1  ⇒  S2 is true iff S1 is false o r  S2 is true 
i.e., is false iff S1 is true a n d  S2 is false 

(!!) i.e., is true if S1 is false and S2 T or F 
S1  ⇔ S2 is true iff S1  ⇒ S2 is true a n d  S2⇒ S1 is true 



Complete truth tables for  connectives 

•  Interesting to note: 
–  Implication (⇒).   Non-intuitive:  False only when P is true and Q is false.   
–  Biconditional (⇔). “co-variance”:   True when both have same truth state. 

Wumpus world sentences:  
–  Let Pi,j be true if there is a pit in [i, j].   
–  Let Bi,j be true if there is a breeze in  [i, j]. 
–  Then:   ¬P1,1  ∧  ¬B1,1  ∧  B2,1   è  “no pit or breeze in [1,1], breeze in [2,2] 

–  How about:  “Pits cause breezes in adjacent squares”? 
•  Not possible in propositional logic.  Can only state specific facts. 

–  B1,1  ⇔ (P1,2 ∨ P2,1)  ,   B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1),  etc.  etc. 
–  “A square is breezy if and only if there is an adjacent  pit” – stated for each square! 
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true	

P 
false	

Q 
false	

¬P 
true	

P ∧ Q 
false	

P ∨ Q 
false	

P ⇒Q 
true	

P ⇔Q 

false	 true	 true	 false	 true	 true	 false	
true	 false	 false	 false	 true	 false	 false	
true	 true	 false	 true	 true	 true	 true	



Truth tables for  inference 
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• Wumpus KB (what we know):  
R1: ¬P1,1        no pit in [1,1] 
R2: B1,1  ⇔ (P2,1 ∨ P1,2)   B[1,1] only if pit in... 
R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) 
R4: ¬B1,1     no breeze in [1,1] 
R5: B2,1     breeze in [2,1] 

ProposiZon	Symbols	

Models	

•  Model Checking for entailment: 
•  KB is true if all rules (Rs) are true 

–  True in just three models 

•  Some α  is true if consistent across all true KB 
models 

–  α= P2,1  à false in all three à deduce no pit [2,1] 
–  α= P2,2  à Inconclusive... 



Inference	by	enumeration	

Depth-first enumeration of all models is sound and  complete 
 

function TT-Entails?(KB, α) returns true or false 
inputs: KB, the knowledge base, a sentence in propositional   logic 

α, the query, a sentence in propositional  logic 

symbols ← a list of the proposition symbols in KB and α 
return TT-Check-All(KB, α, symbols, [ ]) 

 
function TT-Check-All(KB, α, symbols, model) returns true or false 

if Empty?(symbols) then 
if PL-True?(KB, model) then return PL-True?(α, model) 
else return true 

else do 
P ← First(symbols); rest ← Rest(symbols) 
return TT-Check-All(KB, α, rest, Extend(P , true, model )) and 

TT-Check-All(KB, α, rest, Extend(P , false , model )) 
 

O(2n) for n symbols; problem is co-NP-complete 
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Propositional Theorem Proving 

•  So far:  The only algorithm for proving entailment is model-checking 
–  Have set of logical sentences KB, want to know if α= P1,2 is entailed 
–    à generated 2Pi models, check M(KB) ⊆ M(α) 
–  Gets expensive fast as the number logical facts (Pi) grows! 

•  Propositional Theorem Proving 
–  Construct a proof of a sentence without consulting models 
–  Search through a space of possible symbols transformations to connect KB 

with α.  
–    

•  Need three key concepts first: 
–  Validity.   A sentence is valid only if true in all models (tautology). 

•  Ex.  True,   A ∨¬A,  A⇒A,   (A ∧ (A⇒B))⇒B   
•  Gives us deduction theorem:  A |= B if and only if  A⇒B is valid.  
•  Can decide if A |= B  by checking the A⇒B true in all models! 

–  Satisfiability.  A sentence satisfiable if it’s true in some model. 
•  Earlier KB (R1 through R5) was satisfiable because true in 3 models. 
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Propositional Theorem Proving 

•  Last concept:  Logical equivalence 
–  To logical sentences A and B are equivalent if M(A)=M(b).  
–  Meaning:  A equivalent to B iff each entails the other à  A |= B and B |= A 

–  There are many equivalences established by standard rules of logic: 
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Propositional Theorem Proving 

•  Validity and satisfiability are connected.  Useful: 
–  A is valid iff ¬A is unsatisfiable;    A is satisfiable iff ¬A is not valid. 
–  Thus:  KB |= α if and only if (KB ∧ ¬α) is unsatisfiable 
–  Basis for proof by contradiction! à  Assume α false, show unsatisfiable 

•  Plus we have a number of standard logical inference rules: 
–  Modus Ponens:          – And Elimination:  

•  Plus: all of the logical equivalences can be used as inference rules 
  
 (α ⇒ β)   Ξ  (¬α ∨ β)  (implication elimination) 
   becomes 
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α		⇒	β,		α	
			β		

α	∧		β	
			β		

(α	⇒	β)		
(¬α	∨	β) 

(¬α	∨	β)		
(α	⇒	β) 

and	



Propositional Theorem Proving Example: 

•  Found this proof “manually”, by hand 
–  Needed cleverness and insight to find goal in directed manner.   

•  Could apply any search algo!  Brute force!  
–  Initial state: initial KB 
–  Actions:  applying all inference rules to all sentences à new Kbi 
–  Result:  Add bottom half of inference rule to KBi to get Kbi+1 

–  Goal:  goal state is when some KBi generated contains target fact/query 
33	

Wumpus KB 
R1: ¬P1,1      
R2: B1,1  ⇔ (P2,1 ∨ P1,2) 
R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) 
R4: ¬B1,1     
R5: B2,1     



Propositional Theorem Proving 

•  Searching for proofs in inference space is alternative to model checking 
–  Often much more efficient:  ignores facts (Pi’s) irrelevant to target goal 
–  Especially useful when the model space is complex (lots of Pi’s) 

•  Searching for proofs is sound ... but is it complete? 
–  Search algorithms like IDS are complete...if a goal is reachable. 

–  Highly dependent on completeness of set of inference rules  
•  Missing some critical inference rule à proof will not succeed.   

•  Resolution Theorem Proving solves this problem 
–  Proof with a single inference rule (resolution) 

–  Guaranteed complete algorithm if used with any complete search algorithm 

–  But:  requires all of KB to be clauses  (see book disc.) 
•  Clause = a disjunction of literals, e.g.  P1 ∨ P2 ∨ P3 ∨ P4 

•  Luckily:  any set of propositional  logic can be turned into conjunctive normal form 

–  For any sentences A and B in propositional logic, a resolution theorem prover 
can decide if  A |= B.   
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Conversion to CNF 

B1,1 ⇔  (P1,2 ∨ P2,1) 

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒β) ∧ (β ⇒  α). 
(B1,1 ⇒(P1,2 ∨ P2,1))   ∧   ((P1,2 ∨ P2,1) ⇒ B1,1) 

2.  Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β. 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

3.  Move ¬  inwards using de Morgan’s rules and  double-negation: 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) 

4.  Apply distributivity law (∨ over ∧) and  flatten: 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨  B1,1) 

Plan:		Apply	various	equivalences	to	“massage”	into	CNF	
	

Example:	

Not	always	super	easy!		But	can	be	brute-forced	with	search!	



Resolution Theorem Proving 

•  Basically:  works by removing (resolving) contradictory literals. 
•  Example:  Given KB: 

R1:  ¬P1,1 
R2:  ¬P1,3 
R3:  ¬P2,2 
R4:  P1,1 ∨ P3,1 ∨ P2,2 

•  Then: 
R1 resolves with R4 to give   R5:  (¬P1,1∨ P1,1) ∨ P3,1 ∨ P2,2 = P3,1 ∨ P2,2 
R2 resolves with R5 to give    R6:  P3,1 

–  At end of resolution we have inferred a specific fact!  

•  Full Resolution inference rule:  
 
 

 where a2 and m2 are complementary literals. 

•  So each resolution step: 
–  Considers a logical sentence in CNF  (i.e. two clauses in your KB) 
–  Resolves to two new clauses à each with complementary literals removed. 
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(a1∨ a2 ∨ a3.. ∨an) ∧ (m1∨ m2∨ m3 ∨... ∨ mn)  
(a1∨ a3.. ∨an) ∧ (m1∨ m3 ∨... ∨ mn)  
 



Algorithm: Resolution Theorem Proving 

•  Idea: Proof by contradiction 
–  Want to show that KB |= α   à so show that (KB ∧ ¬α) is unsatisfiable 

•  Plan: 
–  Convert (KB ∧ ¬α) into CNF 

–  Exhaustively apply resolution to all pairs of clauses with complementary literals 
–  Continue process until: 

•  There are no new resolutions to make 
–  Could not show unsatisfiability   à  KB does not entail α 

•  Two clauses resolve to empty clause 
–  a1∨ a1 resolves to { }   =  essentially “false” 
–  Unsatisfiability is shown  à  KB |= α 

•  Example: 
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Inference with Horn Clauses 

•  Resolution theorem is complete ... but also complex 
–  Many practical cases:  Don’t need all this power (and complexity!) 

•  Inference with Horn clauses 
–  If your KB can be expressed within a restricted rule format 

–  Horn clause:  Disjunction in which at most one element is positive 
•  Ex:  (¬L1,1 ∨ ¬Breeze ∨ B1,1)  ;      ¬B2,2 
•  No positive literals = goal clause 
•  Can be rewritten as implications:  (L1,1 ∨ Breeze) ⇒ B1,1 

•  LHS= premise (body);  RHS = consequent (head) 

•  Can be use in forward/backward chaining proof algorithm   
–  These algorithms are very natural and run in linear  time ! 
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Forward Chaining 

–  Idea:  Work forward from the known facts to try to reach the target goal 
•  Start with known facts à true by definition 
•  Repeat:  

–  fire any rule whose premises are satisfied in the KB,  
–  add its conclusion to the KB 

•  Until: query is  found (proved!);  or no more facts added to KB (stalled, failed) 

–  Visually:  Can represent the H-clauses in the KB as a directed graph.   
•  Forward chaining:  start with facts and traverse the graph 

39	

L ∧ M  ⇒  P 

B ∧ L  ⇒  M 
A ∧ P  ⇒  L 
A ∧ B  ⇒  L  
A 
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Forward	chaining	 example	

B A 
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L ∧ M  ⇒  P 

B ∧ L  ⇒  M 
A ∧ P  ⇒  L 
A ∧ B  ⇒  L  
A 
B 

P ⇒Q 
	



Backward Chaining 

•  Idea: work backwards from the query q:   
•  The Plan: A simple (recursive!) algorithm 

•  Initialize:  Push q on the “proof stack” = things to be proven 
•  Repeat:  

–  Pop next fact qi to prove off proof stack 
–  Check if qi is known to be true (fact in KB).  If so, continue 
–  Else search KB for rule Rj with head = qi   (a way to prove qi ) 
–  Add premises of Rj to the proof stack 

•  Until:   
–  Proof stack is empty (success); or  
–  no change in proof stack 

•  Avoid loops: check if new subgoal is already on the goal stack   
•  Avoid repeated work:  check if new subgoal 

–  has already been proved true,  or 
–  has already failed 

–  Visually:  Can represent the H-clauses in the KB as a directed graph.   
•  Backward chaining:  start with target goal and traverse the graph 
•  Done if/when all leaves of search are facts 41	



Backward	chaining	 example	
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P 

 
 

M 
 
L 

A 
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B 

L ∧ M  ⇒  P 

B ∧ L  ⇒  M 
A ∧ P  ⇒  L 
A ∧ B  ⇒  L  
A 
B 

P ⇒Q 
	

Stack:	
		



Summary:  Inference Approaches 

•  Model Checking 
–  Simple, complete ... But exponential in number of symbols (features) in KB 

•  Proposition Theorem proving by inference rules (Modus Ponens, etc.) 
–  Implemented as search though proof space to find goal 
–  Could be incomplete!   

•  Resolution theorem proving  
–  Universal and guaranteed complete 
–  ... but also arduous and complex 

•  Forward/Backward Chaining with Horn clauses 
–  Possible in contexts where rules can be massaged in to Horn-clause form 
–  Complete, straightforward, and efficient (linear time in size of KB) 
–  FC:  data-driven.  Good for routine, automatic, continuous processing 

•  Non-goal directed, e.g., dynamic facial recognition, routine decision-making 
•  May do lots of inferring that is irrelevant to proving some goal 

–  BC:  goal-driven.  Good for answering specific questions (posed as goals) 
•  Complexity often much less than linear in size of KB 
•  Basis for Prolog language 
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Summary:  Inference Approaches 

•  Logical agents apply inference to a knowledge base to derive new 
information and make decisions 

•  Basic concepts of logic: 
–  syntax:  formal structure of sentences 

–  semantics:  truth of sentences wrt models 
–  entailment:  necessary truth of one sentence given another 

–  inference:  deriving sentences from other sentences 

–  soundness:  derivations produce only entailed sentences 
–  completeness:  derivations can produce all entailed sentences 

•  Wumpus world requires the ability to represent partial and negated 
information, reason by cases,  etc. 

 
•  Propositional logic lacks expressive power 
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