Logical agents

Chapter 7

(Some slides adapted from Stuart Russell, Dan Klein, and many others. Thanks guys!)

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general—models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge-based Agents

- Previously: Solved problems by search
 - Basically brute force. Clever...but is it "intelligent"?
 - "Knowledge" about how world works hidden...embodied in successor fn.
- Knowledge-based agents:
 - Have internal representations of the world...and reason about them.
 - Based on formal symbolic logics: propositional, first-order predicate, etc.
- Advantages:
 - Can combine and recombine base knowledge for *many* purposes
 - Can accept new tasks anytime, explicitly states as goals
 - Q: Could Boggle do any task except...well...boggle search boards?
 - Can achieve competence quickly
 - Being told new facts about the world
 - Learning new knowledge by deduction + percepts
 - Can adapt to changes in environment by updating knowledge

Knowledge Bases

- Knowledge base is basis for all KB-agent reasoning and action
 - Consists of: set of sentences in a formal language

- Declarative approach to building an agent (or other system):
- Idea:
 - Tell it what it needs to know
 - Then it can Ask itself what to do (autonomous agent) or you Ask it goal.
 - answers should follow from the KB
- KB-Agents can be viewed at the knowledge level
 - i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-Agent( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time
Tell(KB, Make-Percept-Sentence( percept, t)) action
\leftarrow Ask(KB, Make-Action-Query(t)) Tell(KB, Make-
Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

- KB-agent function centered around on:
 - Tell: Adding new information to the KB
 - Ask: Posing a query (goal) to be resolved using the KB and universal algorithms
- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Things it has not been told explicitly...but arise from evolving facts
 - Deduce appropriate actions (given tacit or explicit goal)

Wumpus World: A classic example

- Simple game of logical deduction
 - Dark cave with deadly pits and voracious wumpus monster
 - Goal: Find hidden pile of gold, avoid dying, return safely
- PEAS Description:
- Performance measure:
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- Environment:
 - · Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - · Shooting kills wumpus if you are facing it. Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- Actuators:
 - Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors:
 - Breeze, Glitter, Smell

Wumpus World: problem characterization

- Observable??
 - No—only local perception
- Deterministic??
 - Yes-outcomes exactly specified
- Episodic??
 - No-sequential at the level of actions
- Static??
 - Yes—Wumpus and Pits do not move
- Discrete??
 - Yes. Actions are discrete and limited. States are definite and finite.
- Single-agent??
 - Yes—Wumpus is essentially a natural feature

- Start in [1,1]. Cave entry/exit. Guaranteed safe.
- Note: No smells, no breezes \rightarrow adjacent squares ok.

8

B [OK A		
[OK A	OK	

• Move to [2,1]. Sensor detects breeze (B)

• Deduce possible pits in adjacent squares.

- Better go explore a safer place...maybe gather more info...
- Detect smell (S) in [1,2]... But no breeze!

- Can deduce W in [1,3] (can't be in [2,2] because was no smell in [2,1]!)
- Can definitely place the Pit in [3,1]

- Now that [2,2] determined OK, can go there.
- Nothing sensed → deductions about adjacent

- And then on to [2,3]. Detect Glitter! Grab Gold!
- Then head back out to exit.

Tight spots: Can't *always* reason safely

- Breeze in (1,2) and (2,1) \Rightarrow no safe actions!
- Make educated guess: Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

- Smell in (1,1)
 - \Rightarrow cannot move!
- Can use a strategy of coercion: Act: shoot straight ahead
 - Wumpus was there \rightarrow dead
 - Wumpus not there \rightarrow safe

Introduction to Logic

Let's start with some basics: definitions

- Logics are formal languages for representing information
 - such that conclusions can be drawn
- Syntax defines the format of legal sentences in the language
- Semantics define the "meaning" of sentences
 - i.e., define truth of a sentence with respect to a particular world (state)

Example: The language of arithmetic

- Syntax: $x + 2 \ge y$ is a legal sentence; $x^2 + y \ge x^2$ is not
- Semantics:
 - $x + 2 \ge y$ is true iff the number x + 2 is no less than the number y
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - $x + 2 \ge y$ is false in a world where x = 0, y = 6

Logical Entailment

- Entailment means that one thing follows from another:
 - KB |= α
 - Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
- Example: the KB containing "the Giants won" and "the Reds won" entails α ="Either the Giants won or the Reds won"
- $\rightarrow \alpha$ is true in all worlds in which KB is true.
- Example: x + y = 4 entails 4 = x + y
- Entailment our first element of *reasoning!*
 - is a relationship between sentences (i.e., syntax)
 - Idea that one sentence (logical fact) follows logically from another sentence

Models

- What about "*in a world* where x is true"? A "world"? What's that?
- Model = a possible "world".
 - Formally structured expression of world state with respect to which truth can be evaluated
 - Basically a collection of logical sentences describing a world or state
 - We say m is a model of a sentence α if α is true in m
 - Notation: M (α) is the set of all models of α
- Example:
 - *KB* = Giants won and Reds won
 - $-\alpha$ = Giants won

- Then *KB* |= α if and only if *M*(*KB*) \subseteq *M*(α)
 - KB entails α iff, in every model where α is true, KB is also true.
 - Note that KB is the stronger statement here: the "tighter" set of possible models.

Example: Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [1,2]

Consider possible models for ?s assuming only pits:

- Each square could contain a pit...or not
 - → 3 Boolean choices
 - \rightarrow 8 possible models

Note:

The *full* model set for this world is large! → contains all possible combinations of possible contents for *every* square on board.

We are just looking at the subset dealing with the squares at the frontier of our exploration. Efficient! 20

Wumpus models

- KB = wumpus world rules + observations (percepts)
 - Percepts = breeze([1,2]) , nothing([1,1])
- Solid red line = all of the models in which KB is *true* = *M*(*KB*)

– The state of the world represented by KB is consistent with the model

Wumpus models

- KB = wumpus-world rules + percepts
- Assertion α1 = "[2,1] is safe"
 - Dotted line is $M(\alpha 1)$ = Set of all models in which $\alpha 1$ holds true.
- Then we can say that KB $\mid = \alpha 1$
 - − In every model in which KB is true, α 1 is also true. → Proof by model checking
 - Thus: $\alpha 1$ is consistent with KB \rightarrow " $\alpha 1$ is *derivable* from KB via model checking"

Wumpus models

Now let's consider another case:

- KB = wumpus-world rules + observations again, same as before
- α2 = "[2,2] is safe"
- Model checking shows that KB does **not** entail α2
- Can not conclude there is no pit in [2,2]
 - But also doesn't prove that there *is* one. Logical facts are simply inconclusive.

Logical Inference

- Model checking is one possible algorithm for logical inference
 - Plan: generate and test. Brute force.
 - Generate all possible models that could exist
 - Check that goal proposition (i.e. α) is true in all models in which KB is true
- KB $|-_i \alpha \rightarrow$ "sentence α can be derived from KB by procedure i"
 - KB $\mid_{mc} \alpha 1$ = "goal fact $\alpha 1$ can be derived from KB by model checking"
- Metaphor: "Logical consequences" of KB are a haystack; α is a needle.
 - Entailment = needle is in haystack: KB $|= \alpha$ (it's in there somewhere)
 - inference = finding the needle, i.e., proving the entailment
- Soundness: Inference algorithm i is sound if whenever KB |- i α, it is also true that KB |= α
 - Desirable! Unsound inference algo shows things entailed that aren't!
- Completeness: i is complete if whenever KB |= α, it is also true that KB |- i α
 - Desirable! A complete inference algo can derive any sentence (goal fact) that is entailed.

Propositional logic: Syntax

- Thus far: General logical concepts. Let's get concrete...
- Propositional logic is the simplest logic
 - Very basic, illustrates foundational ideas
 - So simple \rightarrow also quite limiting. We'll need more power eventually...
- The proposition symbols P1, P2 simplest possible atomic sentences
 - The basic building blocks of propositional logic
 - Each represent a specific fact (e.g. $W_{1,2}$) that can be true or false
- Can be combined to form more complex sentences:
 - If S is a sentence, \neg S is a sentence (negation)
 - If S1 and S2 are sentences, S1 \land S2 is a sentence (conjunction)
 - If S1 and S2 are sentences, S1 V S2 is a sentence (disjunction)
 - If S1 and S2 are sentences, $S1 \Rightarrow S2$ is a sentence (implication)
 - If S1 and S2 are sentences, S1 \Leftrightarrow S2 is a sentence (biconditional)

Propositional Logic: Semantics

- Each model specifies true/false for *each* proposition symbol
- Ex:

P_{1,2} P_{2,2} P_{3,1} False False True ← Pit in [3,1]. No pit in [2,2] and [1,2]

- With these three symbols: 8 possible models. Easily enumerated.
- Semantics: Rules for evaluating truth with respect to some model m
- For logical sentences S_i:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true <mark>a n d</mark>	<i>S</i> ₂	is true
$S_1 \vee S_2$	is true iff	S_1	is true <mark>o r</mark>	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false <mark>o r</mark>	S_2	is true
i.e.,	is false iff	S_1	is true <mark>a n d</mark>	S_2	is false
(<mark>!!</mark>) i.e.,	is <mark>true</mark> if	S_1	is false and	S_2	T or F
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true <mark>a n d</mark>	$S_2 \Rightarrow S_1$	is true

• Simple recursive process evaluates arbitrary sentence

- E.g.: $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$

Complete truth tables for connectives

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

• Interesting to note:

- Implication (\Rightarrow). Non-intuitive: False *only* when P is true and Q is false.
- Biconditional (\Leftrightarrow). "co-variance": True when both have same truth state.

Wumpus world sentences:

- Let $P_{i,i}$ be true if there is a pit in [i, j].
- Let $B_{i,i}$ be true if there is a breeze in [i, j].
- Then: ¬P_{1,1} ∧ ¬B_{1,1} ∧ B_{2,1} → "no pit or breeze in [1,1], breeze in [2,2]
- How about: "Pits cause breezes in adjacent squares"?
 - Not possible in propositional logic. Can only state specific facts.
- $B_{1,1}$ ⇔ ($P_{1,2} \lor P_{2,1}$), $B_{2,1}$ ⇔ ($P_{1,1} \lor P_{2,2} \lor P_{3,1}$), etc. etc.
- "A square is breezy if and only if there is an adjacent pit" stated for each square!

Truth tables for inference

Proposition Symbols														
					人									
		\bigcap												
		$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
	(false	true	true	true	true	false	false						
Models		false	false	false	false	false	false	true	true	true	false	true	false	false
		:	:	:	:	:	:	:	:	:	:	:	:	:
)	false	true	false	false	false	false	false	true	true	false	true	true	false
		false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
		false	true	false	false	false	true	false	true	true	true	true	true	true
		false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
		false	true	false	false	true	false	false	true	false	false	true	true	false
		:	:	:	:	:	:	:	:	:	:	:	:	:
		true	false	true	true	false	true	false						

• Wumpus KB (what we know):

R1: $\neg P_{1,1}$ nR2: $B_{1,1} \Leftrightarrow (P_{2,1} \lor P_{1,2})$ BR3: $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ R4: $\neg B_{1,1}$ nR5: $B_{2,1}$ b

no pit in [1,1] B[1,1] only if pit in...

no breeze in [1,1] breeze in [2,1]

- Model Checking for entailment:
- KB is true if all rules (Rs) are true – True in just three models
- Some α is true if consistent across *all* true KB models

 $- \alpha = P_{2,1}$ → false in all three → deduce no pit [2,1] $- \alpha = P_{2,2}$ → Inconclusive...

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the guery, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-Check-All(KB, α, symbols, [])
function TT-Check-All(KB, \alpha, symbols, model) returns true or false
   if Empty?(symbols) then
       if PL-True?(KB, model) then return PL-True?(a, model)
       else return true
   else do
       P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-Check-All(KB, α, rest, Extend(P, true, model)) and
                  TT-Check-All(KB, α, rest, Extend(P, false, model))
```

 $O(2^n)$ for *n* symbols; problem is co-NP-complete

- So far: The only algorithm for proving entailment is model-checking
 - Have set of logical sentences KB, want to know if α = P_{1,2} is entailed
 - − → generated 2^{Pi} models, check M(KB) ⊆ M(α)
 - Gets expensive fast as the number logical facts (P_i) grows!

Propositional Theorem Proving

- Construct a proof of a sentence without consulting models
- Search through a space of possible symbols transformations to connect KB with $\boldsymbol{\alpha}.$
- Need three key concepts first:
 - Validity. A sentence is valid only if true in all models (tautology).
 - Ex. True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
 - Gives us deduction theorem: $A \models B$ if and only if $A \Rightarrow B$ is valid.
 - Can decide if A |= B by checking the $A \Rightarrow B$ true in all models!
 - Satisfiability. A sentence satisfiable if it's true in some model.
 - Earlier KB (R_1 through R_5) was satisfiable because true in 3 models.

- Last concept: Logical equivalence
 - To logical sentences A and B are *equivalent* if M(A)=M(b).
 - Meaning: A *equivalent* to B iff each entails the other \rightarrow A |=B and B |=A
 - There are many equivalences established by standard rules of logic:

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

- Validity and satisfiability are connected. Useful:
 - A is valid iff \neg A is unsatisfiable; A is satisfiable iff \neg A is not valid.
 - Thus: *KB* |= α if and only if (*KB* $\wedge \neg \alpha$) is unsatisfiable
 - Basis for proof by contradiction! \rightarrow Assume α false, show unsatisfiable
- Plus we have a number of standard logical inference rules:
 - Modus Ponens: And Elimination:

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta} \qquad \qquad \frac{\alpha \land \beta}{\beta}$$

• Plus: all of the logical equivalences can be used as inference rules

 $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ (implication elimination) becomes

$$\frac{(\alpha \Rightarrow \beta)}{(\neg \alpha \lor \beta)} \qquad \text{and} \qquad \frac{(\neg \alpha \lor \beta)}{(\alpha \Rightarrow \beta)}$$

Propositional Theorem Proving Example:

that is, there is no pit in [1,2]. First, we apply biconditional elimination to R_2 to obtain $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$. Then we apply And-Elimination to R_6 to obtain $R_7: ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$. Logical equivalence for contrapositives gives $R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$. Now we can apply Modus Ponens with R_8 and the percept R_4 (i.e., $\neg B_{1,1}$), to obtain $R_9: \neg (P_{1,2} \lor P_{2,1})$. Finally, we apply De Morgan's rule, giving the conclusion $R_{10}: \neg P_{1,2} \land \neg P_{2,1}$.

That is, neither [1,2] nor [2,1] contains a pit.

- Found this proof "manually", by hand
 - Needed cleverness and insight to find goal in directed manner.
- Could apply any search algo! Brute force!
 - Initial state: initial KB
 - Actions: applying all inference rules to all sentences \rightarrow new Kbi
 - Result: Add bottom half of inference rule to KB_i to get Kb_{i+1}
 - Goal: goal state is when some KB_i generated contains target fact/query

Wumpus KB R1: $\neg P_{1,1}$ R2: $B_{1,1} \Leftrightarrow (P_{2,1} \lor P_{1,2})$ R3: $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ R4: $\neg B_{1,1}$ R5: $B_{2,1}$

- Searching for proofs in inference space is alternative to model checking
 - Often much more efficient: ignores facts (Pi's) irrelevant to target goal
 - Especially useful when the model space is complex (lots of P_i 's)
- Searching for proofs is sound ... but is it complete?
 - Search algorithms like IDS are complete...*if a goal is reachable*.
 - Highly dependent on completeness of set of inference rules
 - Missing some critical inference rule \rightarrow proof will not succeed.
- **Resolution Theorem Proving** solves this problem
 - Proof with a *single* inference rule (resolution)
 - Guaranteed complete algorithm if used with any complete search algorithm
 - But: requires all of KB to be clauses (see book disc.)
 - Clause = a *disjunction* of literals, e.g. $P_1 \vee P_2 \vee P_3 \vee P_4$
 - Luckily: any set of propositional logic can be turned into conjunctive normal form
 - For any sentences A and B in propositional logic, a resolution theorem prover can decide if A |= B.

Conversion to CNF

Plan: Apply various equivalences to "massage" into CNF Example:

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

3. Move \neg inwards using de Morgan's rules and double-negation:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

4. Apply distributivity law (\lor over \land) and flatten:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Not always super easy! But can be brute-forced with search!

35

Resolution Theorem Proving

- Basically: works by removing (resolving) contradictory literals.
- Example: Given KB:
 - R1: $\neg P_{1,1}$ R2: $\neg P_{1,3}$ R3: $\neg P_{2,2}$ R4: $P_{1,1} \lor P_{3,1} \lor P_{2,2}$
- Then:

R1 resolves with R4 to give R5: $(\neg P_{1,1} \lor P_{1,1}) \lor P_{3,1} \lor P_{2,2} = P_{3,1} \lor P_{2,2}$ R2 resolves with R5 to give R6: $P_{3,1}$

- At end of resolution we have inferred a specific fact!
- Full Resolution inference rule:

 $(a_1 \vee a_2 \vee a_3 \vee \vee a_n) \wedge (m_1 \vee m_2 \vee m_3 \vee \vee \vee \vee m_n)$

 $(a_1 \vee a_3 \dots \vee a_n) \wedge (m_1 \vee m_3 \vee \dots \vee m_n)$

where a_2 and m_2 are complementary literals.

- So each resolution step:
 - Considers a logical sentence in CNF (i.e. two clauses in your KB)
 - Resolves to two new clauses \rightarrow each with complementary literals removed.

Algorithm: Resolution Theorem Proving

• Idea: Proof by contradiction

– Want to show that KB |= $\alpha \rightarrow$ so show that (KB $\land \neg \alpha$) is unsatisfiable

- Plan:
 - Convert (KB $\land \neg \alpha$) into CNF
 - Exhaustively apply resolution to all pairs of clauses with complementary literals
 - Continue process until:
 - There are no new resolutions to make
 - Could not show unsatisfiability \rightarrow KB does **not** entail α
 - Two clauses resolve to empty clause
 - $-a_1 \vee a_1$ resolves to { } = essentially "false"
 - Unsatisfiability is shown \rightarrow KB |= α
- Example:

Inference with Horn Clauses

- Resolution theorem is complete ... but also complex
 - Many practical cases: Don't need all this power (and complexity!)

- Inference with Horn clauses
 - If your KB can be expressed within a restricted rule format
 - Horn clause: Disjunction in which at most one element is positive
 - Ex: $(\neg L_{1,1} \lor \neg Breeze \lor B_{1,1})$; $\neg B_{2,2}$
 - No positive literals = goal clause
 - Can be rewritten as implications: $(L_{1,1} \lor Breeze) \Rightarrow B_{1,1}$
 - LHS= premise (body); RHS = consequent (head)
- Can be use in forward/backward chaining proof algorithm
 - These algorithms are very natural and run in linear time !

Forward Chaining

- Idea: Work forward from the known facts to try to reach the target goal

- Start with known facts → true by definition
- Repeat:
 - fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB
- Until: query is found (proved!); or no more facts added to KB (stalled, failed)
- Visually: Can represent the H-clauses in the KB as a directed graph.
 - Forward chaining: start with facts and traverse the graph

Forward chaining example

 $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B

Backward Chaining

- Idea: work backwards from the query *q*:
- The Plan: A simple (recursive!) algorithm
 - Initialize: Push *q* on the "proof stack" = things to be proven
 - Repeat:
 - Pop next fact q_i to prove off proof stack
 - Check if q_i is known to be true (fact in KB). If so, continue
 - Else search KB for rule R_i with head = q_i (a way to prove q_i)
 - Add premises of R_i to the proof stack
 - Until:
 - Proof stack is empty (success); or
 - no change in proof stack
 - Avoid loops: check if new subgoal is already on the goal stack
 - Avoid repeated work: check if new subgoal
 - has already been proved true, or
 - has already failed
- Visually: Can represent the H-clauses in the KB as a directed graph.
 - Backward chaining: start with target goal and traverse the graph
 - Done if/when all leaves of search are facts

Backward chaining example

Summary: Inference Approaches

- Model Checking
 - Simple, complete ... But exponential in number of symbols (features) in KB
- Proposition Theorem proving by inference rules (Modus Ponens, etc.)
 - Implemented as search though proof space to find goal
 - Could be incomplete!
- Resolution theorem proving
 - Universal and guaranteed complete
 - ... but also arduous and complex
- Forward/Backward Chaining with Horn clauses
 - Possible in contexts where rules can be massaged in to Horn-clause form
 - Complete, straightforward, and efficient (linear time in size of KB)
 - FC: data-driven. Good for routine, automatic, continuous processing
 - Non-goal directed, e.g., dynamic facial recognition, routine decision-making
 - May do lots of inferring that is *irrelevant* to proving some goal
 - BC: goal-driven. Good for answering specific questions (posed as goals)
 - Complexity often much less than linear in size of KB
 - Basis for Prolog language

Summary: Inference Approaches

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

• Propositional logic lacks expressive power

 $\begin{array}{ccc} \alpha & \beta & \subseteq & \neg \implies \mid = \land \lor \\ \Leftrightarrow \end{array}$

