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(Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!)   
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Outline	

•  Hill-climbing 

•  Simulated annealing 

•  Genetic algorithms (briefly) 

•  Local search  in continuous spaces  (very  briefly) 

•  Searching with non-deterministic actions 

•  Searching with partial observations 

•  Online search  



Motivation:		Types	of	problems	
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Local	Search	Algorithms	

•  So far:  our algorithms explore state space methodically 
•  Keep one or more paths in memory 

•  In many optimization problems, path is irrelevant 
•  the goal state itself is the  solution 
•  State space is large/complex à keeping whole frontier in memory is 

impractical 

•  Local = Zen = has no idea where it is, just immediate descendants 

•  State space = set of “complete” configurations 
•  A graph of boards, map locations, whatever 
•  Connected by actions 

•  Goal: find optimal configuration (e.g. Traveling Salesman) 
    or, find configuration satisfying constraints, (e.g.,   timetable) 

•  In such cases, can use local search algorithms 
•  keep  a  single  “current” state, try to improve it 
•  Constant  space,  suitable for online as  well as  offline  search 



Example:		Travelling	Salesperson	Problem	

Goal: Find shortest path that visits all graph nodes 
 
Plan: Start with any  complete tour, perform pairwise exchanges 

Variants of this approach get within 1% of optimal very quickly with 
thousands  of cities 
 
(Optimum solution is NP-hard.   This is not optimum...but close enough? 
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Example: 	N-queens	Problem 

Start: Put n queens on an n × n board with no two queens on the same  row, 
column, or  diagonal 

Plan: Move a  single queen  to reduce  number of conflicts à generates next 
board 

h = 0 
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h = 5  h = 2 
 
Almost always solves n-queens problems almost instantaneously  for very 
large n, e.g., n = 1 million 
 
(Ponder:  how long does N-Queens take with DFS?)  
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Hill-climbing	Search	

“Like climbing Everest ... in thick fog ... with  amnesia” 

function Hill-Climbing( problem) returns a state that is a local maximum 
inputs: problem, a problem 
local variables: current, a node 

neighbor, a node 

current ← Make-Node(Initial-State[problem]) 
loop do 

neighbor ← a highest-valued successor of current 
if Value[neighbor] ≤ Value[current] then return State[current] 
current ← neighbor 

end 

Plan:  From current state, always move to adjacent state with highest 
value 

•  “Value” of state:  provided by objective function 
•  Essentially identical to goal heuristic h(n) from Ch.3 

•  Always have just one state in memory!  



Hill-climbing:	challenges			

Useful to consider  state space  landscape 

current
state 

objective function 

state space 

global maximum 

shoulder 

local maximum 
"flat" local maximum 
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“Greedy” nature à can get stuck in: 

•  Local maxima 

•  Ridges:  ascending series but with downhill steps in between 

•  Plateau:  shoulder or flat area.   



Hill	climbing:		Getting	unstuck	

Pure hill climbing search on 8-queens:  gets stuck 86% of time!  14% 
success 

Hill climbing modifications and variants: 

•  Allow sideways moves   hoping plateau is shoulder, will find uphill gradient 
 - but limit the number of them!   (allow 100: 8-queens= 94% success!) 

•  Stochastic hill-climbing  Choose randomly between uphill successors 
 - choice weighted by steepness of uphill move 

•  First-choice: randomly generate successors until find an uphill one 
 - not necessarily the most uphill one à so essentially stochastic too. 

•  Random restart:  do successive hill-climbing searches 
 - start at random start state each time 
 - guaranteed to find a goal eventually 
 - the most you do, the more chance of optimizing goal 

 

Overall Observation:  “greediness” insists on always uphill moves 
 
Overall Plan for all variants:   Build in ways to allow *some* non-optimal moves 

 à get out of local maximum and onward to global maximum 



10	

Simulated	annealing	
Based metaphorically on metalic annealing 
 
Idea:   
ü  escape local maxima by allowing some random “bad” moves 
ü  but gradually decrease the degree and  frequency 
ü    à jiggle hard at beginning, then less and less to find global maxima 

function Simulated-Annealing( problem, schedule) returns a solution state 
inputs: problem, a problem 

schedule, a mapping from time to  “temperature” 
local variables: current, a node 

next, a node 
T, a “temperature” controlling prob. of downward  steps 

current ← Make-Node(Initial-State[problem]) 
for t ←  1 to ∞ do 

T ← schedule[t] 
if T = 0 then return current 
next ← a randomly selected successor of current 
∆E ← Value[next] – Value[current] 
if ∆E > 0 then current ← next 
else current ← next only with probability e∆	E/T 



Properties	of	Simulated		Annealing	

•  Widely used  in VLSI layout, airline scheduling,   etc. 
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Local	beam	search	

Observation: we do have some memory.  Why not use it? 

Plan: keep k states instead of 1 
•  choose top k of all their successors   
•  Not the same  as  k searches  run in  parallel! 
•  Searches  that find good  states place more successors in top k 

à “recruit" other searches to join  them 

 

Problem: quite often, all k states end up on same local maximum 
  
Solution:  add stochastic element 
•  choose k successors randomly, biased towards good ones 
•  note: a fairly close  analogy to natural selection (survival of fittest) 



Genetic	algorithms	

Effectively: stochastic local beam search  + generate successors from pairs of states 
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Metaphor:  “breed a better solution” 
•  Take the best characteristics of two parents à generate offspring 

Steps: 
1.  Rank current population (of states) by fitness function 
2.  Select states to cross.  Random plus weighted by fitness (more fit=more likely) 
3.  Randomly select “crossover point” 
4.  Swap out whole parts of states to generate “offspring” 
5.  Throw in mutation step (randomness!) 



Genetic	Algorithm:		N-Queens	example	



Genetic	algorithms:	analysis	
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Pro:  Can jump search around the search space... 
•  In larger jumps.  Successors not just one move away from parents 
•  In “directed randomness”.  Hopefully directed towards “best traits” 
•  In theory:  find goals (or optimum solutions) faster, more likely. 

Concerns:  Only really works in “certain” situations... 
•  States must be encodable as strings (to allow swapping pieces) 
•  Only really works if substrings somehow related functionally meaningful pieces. 

à counter-example: 

+ = !!! 

Overall:  Genetic algorithms are a cool, but quite specialized technique 
•  Depend heavily on careful engineering of state representation 
•  Much work being done to characterize promising conditions for use. 



Searching	in	continuous	state	 spaces	(brieFly...)	
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Observation:  so far, states have been discrete “moves” apart 
•  Each “move” corresponds to an “atomic action”   (can’t do a half-action!  1/16 action 
•  But the real world is generally a continuous space!   
•  What if we want to plan in real world space, rather than logical space?  

From researchGate.net 

Katieluethgeospatial.blogspot.com 



Searching	Continuous	spaces	

 Example: Suppose  we  want to site three airports in  Romania: 
•  6-D state space  defined by (x1, y2), (x2, y2), (x3, y3) 
•  objective function f (x1, y2, x2, y2, x3, y3) = sum  of squared  distances  from each  city 

to nearest airport  (six dimensional search space) 

Approaches:  
Discretization methods turn continuous space into discrete space 
•  e.g., empirical gradient search considers  ±δ  change  in each  coordinate 
•  If you make δ small enough, you get needed accuracy 

Gradient methods actually compute a gradient vector as a continuous fn.  

∇ f  = ⎜ 
⎜ 

∂ f  ∂ f  ∂ f  
,  ,  ,  ,  , 

⎛   ∂ f  ∂ f  ∂ f  ⎞ ⎟ 
⎟ 

⎝ ∂x1  ∂y1  ∂x2  ∂y2  ∂x3  ∂y3 
⎠ 

to increase/reduce f  , e.g., by x ← x + α∇ f  (x) 

Summary:  interesting area, highly complex 



Searching with Non-deterministic actions 

•  So far:  fully-observable, deterministic worlds.  
–  Agent knows exact state.  All actions always produce one outcome. 
–  Unrealistic?  

•  Real world = partially observable, non-deterministic 
–  Percepts become useful:  can tell agent which action occurred 

–  Goal:  not a simple action sequence, but contingency plan  

•  Example: Vacuum world, v2.0 
–  Suck(p1, dirty)= (p1,clean) 

and sometimes (p2, clean) 
–  Suck(p1, clean)= sometimes (p1,dirty) 

–  If start state=1, solution= 
[Suck, if(state=5) then [right,suck]  ] 



AND-OR trees to represent non-determinism 

•  Need a different kind of search tree 
–  When search agent chooses an action:  OR node 

•  Agent can specifically choose one action or another to include in plan.  
•  In Ch3 : trees with only OR nodes.   

–  Non-deterministic action= there may be several possible outcomes 
•  Plan being developed must cover all possible outcomes 
•  AND node:  because must plan down all branches too.  
 

•  Search space is an AND-OR tree 
–  Alternating OR and AND layers 
–  Find solution= search this tree using same methods from Ch3. 

•  Solution in a non-deterministic search space 
–  Not simple action sequence 
–  Solution= subtree within search tree with: 

•  Goal node at each leaf  (plan covers all contingencies) 
•  One action at each OR node 
•  A branch at AND nodes, representing all possible outcomes 

•  Execution of a solution = essentially “action, case-stmt, action, case-sttmt”. 

 



Non-deterministic search trees 

•  Start state = 1 

•  One solution: 
1.  Suck,  

2.  if(state=5) then 
[right,suck]  ] 

 
•  What about the “loop” 

leaves? 
–  Dead end? 

–  Discarded? 



Non-determinism:  Actions that fail 

•  Action failure is often a non-deterministic 
outcome 
–  Creates a cycle in the search tree 

•  If no successful solution (plan) without a 
cycle: 
–  May return a solution that contains a 

cycle   

–  Represents retrying the action 

•  Infinite loop in plan execution? 
–  Depends on environment  

•  Action guaranteed to succeed 
eventually? 

–  In practice: can limit loops 
•  Plan no longer complete (could fail) 



Searching with Partial Observations 

•  Previously:  Percept gives full picture of state 
–  eg. Whole chess board, whole boggle board, entire robot maze 

•  Partial Observation: incomplete glimpse of current state 
–  Agent’s percept:    zero <= percept < full state 
–  Consequence:  we don’t always know exactly what state we’re in.   

•  Concept of believe state 
–  set of all possible states agent could be in. 

•  Find a solution (action sequence) that the leads to goal 
–  Actions applied to a believe state à new believe state based on union of that 

action applied to all real states within believe state 



Conformant (sensorless) search 

•  Worst possible case:  percept= null.   Blind!  
–  Actually quite useful:  finds plan that works regardless of sensor failure 

•  Plan:   
–  Build a belief state space based on the real state space 
–  Search that state space using the usual search techniques! 

•  Belief state space: 
–  Believe states:  Power-set(real states).  

•  Huge!  All possible combinations!   N physical states = 2N believe states! 
•  Usually:  only small subset actually reachable!  

–  Initial State:  All states in world 
•  No sensor input = no idea what state I’m really in.  
•  So I “believe” I might be in any of them. 



Conformant (sensorless) search 

•  Belief state space (cont.): 
–  Actions:  basically same actions as in physical space.  

•  For simplicity:  Assume that illegal actions have no effect 
•  Example:  Move(left, p1) = p1    if p1 is the left edge of the board.   
•  Can adapt for contexts in which illegal actions are fatal (more complex). 

–  Transitions (applying actions): 
•  Essentially take Union of action applied to all physical states in belief state 
•  Example:  b={s1,s2,s3), then action(b) = Union(  action(s1), action(s2),action(s3) ) 
•  If non-deterministic actions:  just Union the set of states that each action produces. 

–  Goal Test:   Plan must work regardless! 
•  Believe state is goal iff all physical states it contains are goals!  

–  Path cost:  tricky 
•  What if a given action has different costs of different physical states? 
•  Assume for now:  all actions = same cost in all physical states. 

•  With this framework:  
–  can *automatically* construct belief space from any physical space 
–  Now simply search belief space using standard algos. 



Conformant (sensorless) search:  Example space 

•  Belief state space for the super simple vacuum world 
•  Observations: 

–  Only 12 reachable states.  Versus 28= 256 possible belief states 
–  State space still gets huge very fast!  à seldom feasible in practice 
–  We need sensors!  à Reduce state space greatly!   

Start!	

Goal	states	



Searching with Observations (percepts) 

•  Obviously: must state what percepts are available 

–  Specify what part of “state” is observable at each percept 

–  Ex:  Vacuum knows position in room, plus if local square dirty 
•  But no info about rest of squares/space.   
•  In state 1,  Percept = [A, dirty] 
•  If sensing non-deterministic à could return a set of possible percepts à 

multiple possible belief states 

•  So now transitions are: 
–  Predict: apply action to each physical 

states in belief state to get new belief 
state 

•  Like sensorless 
–  Observe:  gather percept 

•  Or percepts, if non-det. 
–  Update:  filter belief state based on 

percepts 



Example: partial percepts 

•  Initial percept = [A, dirty] 
•  Partial observation = partial certainty 

–  Percept could have been produced by several states  (1...or 3) 
–  Predict:  Apply Action à new belief state   
–  Observe:  Consider possible percepts in new b-state 
–  Update:  New percepts then prune belief space 

•  Percepts (may) rule out some physical states in the belief state. 
•  Generates successor options in tree 

–  Look! Updated belief states no larger than parents!! 
•  Observations can only help reduce uncertainty à much better than sensorless state 

space explosion!  



Searching/acting in partially observable worlds 

•  Action!  An agent to execute the plan you find 
–  Execute the conditional plan that was produced 

•  Branches at each place where multiple percepts possible. 
•  Agent tests its actual percept at branch points à follows branch 
•  Maintains its current belief state as it goes 

•  Searching for goal = find viable plan 
–  Use same standard search techniques 

•  Nodes, actions, successors 
•  Dynamically generate AND-OR tree 
•  Goal = subtree where all leaves are goal states 

–  Just like sensorless...but pruned by percepts!  



Online Search 

•  So far:   Considered “offline” search problem 
–  Works “offline” à searches to compute a whole plan...before ever acting 
–  Even with percepts à gets HUGE fast in real world 

•  Lots of possible actions, lots of possible percepts...plus non-det. 

•  Online search 
–  Idea:  Search as you go.  Interleave search + action 

–  Pro:  actual percepts prune huge subtrees of search space @ each move 
–  Con:  plan ahead less à don’t foresee problems 

•  Best case = wasted effort.  Reverse actions and re-plan 
•  Worst case: not reversible actions.  Stuck!  

•  Online search only possible method in some worlds 
–  Agent doesn’t know what states exist (exploration problem) 

–  Agent doesn’t know what effect actions have (discovery learning) 
–  Possibly:  do online search for awhile  

•  until learn enough to do more predictive search 

 



The nature of active online search 

•  Executing online search = algorithm for planning/acting 
–  Very different than offline search algos!  
–  Offline:  search virtually for a plan in constructed search space... 

•  Can use any search algorithm, e.g.,  A* with strong h(n) 
•  A*  can expand any node it wants on the frontier (jump around) 

–  Online agent:  Agent literally is in some place! 
•  Agent is at one node (state) on frontier of search tree 
•  Can’t just jump around to other states...must plan from current state. 
•  (Modified) Depth first algorithms are ideal candidates!  

–  Heuristic functions remain critical!  
•  H(n) tells depth first which of the successors to explore! 
•  Admissibility remains relevant too: want to explore likely optimal paths first 
•  Real agent = real results.   At some point I find the goal 

–  Can compare actual path cost to that predicted at each state by H(n) 
–  Competitive Ratio: Actual path cost/predicted cost.  Lower is better. 
–  Could also be basis for developing (learning!) improved H(n) over time.  



Online Local Search for Agents 

•  What if search space is very bushy?  
–  Even IDS version of depth-first are too costly 
–  Tight time constraints could also limit search time 

•  Can use our other tool for local search! 
–  Hill-climbing (and variants) 

•  Problem:  agents in in the physical world, operating 
–  Random restart methods for avoiding local minima are problematic 

•  Can’t just move robot back to start all the time!  

–  Random Walk approaches (highly stochastic hill-climbing) can work 

–  Will eventually wander across the goal place/state. 

•  Random walk + memory can be helpful 
–  Chooses random moves but… 

–  remembers where it’s been, and updates costs along the way 
–  Effect: can “rock” its way out of local minima to continue search 



Online Local Search for Agents 

•  Result:  Learning Real-time A*  (LRTA*) 

•  Idea:  memory = update the h(n) for nodes you’ve visited 
–  When stuck use:  h(n) = cost(n à best neighbor) + h(neighbor) 
–  Update the h(n) to reflect this.  If you ever go back there, h(n) is higher 
–  You “fill in” the local minimum as you cycle a few times. Then escape... 

•  LRTA* à many variants; vary in selecting next action and updating rules 



Chapter 4: Summary 

•  Search techniques from Ch.3  
–  still form basic foundation for possible search variants 
–  Are not well-suited directly to many real-world problems 

•  Pure size and bushiness of search spaces 
•  Non-determinism.  In Action outcomes.  In Sensor reliability. 
•  Partial observability.  Can see all features of current state. 

•  Classic search must be adapted and modified for the real world 
–  Hill-climbing: can be seen as DFS + h(n) ... with depth limit of one. 
–  Beam search:  can be seen as Best First...with Frontier queue limit = k. 

–  Stochastic techniques (incl. simulated annealing) = seen as Best-first with 
weighted randomized Q selection. 

–  Belief State Search = identical to normal search...only searching belief space 
–  Online Search:  Applied DFS or local searching 

•  With high cost of backtracking and becoming stuck 
•  Pruning by moving before complete plans made. 




