
Beyond Classical Search

C h a p t e r 4

1	

(Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!)

2	

Outline	

•  Hill-climbing

•  Simulated annealing

•  Genetic algorithms (briefly)

•  Local search in continuous spaces (very briefly)

•  Searching with non-deterministic actions

•  Searching with partial observations

•  Online search

Motivation:		Types	of	problems	

4	

Local	Search	Algorithms	

•  So far: our algorithms explore state space methodically
•  Keep one or more paths in memory

•  In many optimization problems, path is irrelevant
•  the goal state itself is the solution
•  State space is large/complex à keeping whole frontier in memory is

impractical

•  Local = Zen = has no idea where it is, just immediate descendants

•  State space = set of “complete” configurations
•  A graph of boards, map locations, whatever
•  Connected by actions

•  Goal: find optimal configuration (e.g. Traveling Salesman)
 or, find configuration satisfying constraints, (e.g., timetable)

•  In such cases, can use local search algorithms
•  keep a single “current” state, try to improve it
•  Constant space, suitable for online as well as offline search

Example:		Travelling	Salesperson	Problem	

Goal: Find shortest path that visits all graph nodes

Plan: Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with
thousands of cities

(Optimum solution is NP-hard. This is not optimum...but close enough?

5	

Example: 	N-queens	Problem

Start: Put n queens on an n × n board with no two queens on the same row,
column, or diagonal

Plan: Move a single queen to reduce number of conflicts à generates next
board

h = 0

6	

h = 5 h = 2

Almost always solves n-queens problems almost instantaneously for very
large n, e.g., n = 1 million

(Ponder: how long does N-Queens take with DFS?)

7	

Hill-climbing	Search	

“Like climbing Everest ... in thick fog ... with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current ← Make-Node(Initial-State[problem])
loop do

neighbor ← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current ← neighbor

end

Plan: From current state, always move to adjacent state with highest
value

•  “Value” of state: provided by objective function
•  Essentially identical to goal heuristic h(n) from Ch.3

•  Always have just one state in memory!

Hill-climbing:	challenges			

Useful to consider state space landscape

current
state

objective function

state space

global maximum

shoulder

local maximum
"flat" local maximum

8	

“Greedy” nature à can get stuck in:

•  Local maxima

•  Ridges: ascending series but with downhill steps in between

•  Plateau: shoulder or flat area.

Hill	climbing:		Getting	unstuck	

Pure hill climbing search on 8-queens: gets stuck 86% of time! 14%
success

Hill climbing modifications and variants:

•  Allow sideways moves hoping plateau is shoulder, will find uphill gradient
 - but limit the number of them! (allow 100: 8-queens= 94% success!)

•  Stochastic hill-climbing Choose randomly between uphill successors
 - choice weighted by steepness of uphill move

•  First-choice: randomly generate successors until find an uphill one
 - not necessarily the most uphill one à so essentially stochastic too.

•  Random restart: do successive hill-climbing searches
 - start at random start state each time
 - guaranteed to find a goal eventually
 - the most you do, the more chance of optimizing goal

Overall Observation: “greediness” insists on always uphill moves

Overall Plan for all variants: Build in ways to allow *some* non-optimal moves

 à get out of local maximum and onward to global maximum

10	

Simulated	annealing	
Based metaphorically on metalic annealing

Idea:
ü  escape local maxima by allowing some random “bad” moves
ü  but gradually decrease the degree and frequency
ü  à jiggle hard at beginning, then less and less to find global maxima

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do

T ← schedule[t]
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← Value[next] – Value[current]
if ∆E > 0 then current ← next
else current ← next only with probability e∆	E/T

Properties	of	Simulated		Annealing	

•  Widely used in VLSI layout, airline scheduling, etc.

11	

12	

Local	beam	search	

Observation: we do have some memory. Why not use it?

Plan: keep k states instead of 1
•  choose top k of all their successors
•  Not the same as k searches run in parallel!
•  Searches that find good states place more successors in top k

à “recruit" other searches to join them

Problem: quite often, all k states end up on same local maximum

Solution: add stochastic element
•  choose k successors randomly, biased towards good ones
•  note: a fairly close analogy to natural selection (survival of fittest)

Genetic	algorithms	

Effectively: stochastic local beam search + generate successors from pairs of states

13	

Metaphor: “breed a better solution”
•  Take the best characteristics of two parents à generate offspring

Steps:
1.  Rank current population (of states) by fitness function
2.  Select states to cross. Random plus weighted by fitness (more fit=more likely)
3.  Randomly select “crossover point”
4.  Swap out whole parts of states to generate “offspring”
5.  Throw in mutation step (randomness!)

Genetic	Algorithm:		N-Queens	example	

Genetic	algorithms:	analysis	

15	

Pro: Can jump search around the search space...
•  In larger jumps. Successors not just one move away from parents
•  In “directed randomness”. Hopefully directed towards “best traits”
•  In theory: find goals (or optimum solutions) faster, more likely.

Concerns: Only really works in “certain” situations...
•  States must be encodable as strings (to allow swapping pieces)
•  Only really works if substrings somehow related functionally meaningful pieces.

à counter-example:

+ = !!!

Overall: Genetic algorithms are a cool, but quite specialized technique
•  Depend heavily on careful engineering of state representation
•  Much work being done to characterize promising conditions for use.

Searching	in	continuous	state	 spaces	(brieFly...)	

16	

Observation: so far, states have been discrete “moves” apart
•  Each “move” corresponds to an “atomic action” (can’t do a half-action! 1/16 action
•  But the real world is generally a continuous space!
•  What if we want to plan in real world space, rather than logical space?

From researchGate.net

Katieluethgeospatial.blogspot.com

Searching	Continuous	spaces	

 Example: Suppose we want to site three airports in Romania:
•  6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
•  objective function f (x1, y2, x2, y2, x3, y3) = sum of squared distances from each city

to nearest airport (six dimensional search space)

Approaches:
Discretization methods turn continuous space into discrete space
•  e.g., empirical gradient search considers ±δ change in each coordinate
•  If you make δ small enough, you get needed accuracy

Gradient methods actually compute a gradient vector as a continuous fn.

∇ f = ⎜
⎜

∂ f ∂ f ∂ f
, , , , ,

⎛ ∂ f ∂ f ∂ f ⎞ ⎟
⎟

⎝ ∂x1 ∂y1 ∂x2 ∂y2 ∂x3 ∂y3
⎠

to increase/reduce f , e.g., by x ← x + α∇ f (x)

Summary: interesting area, highly complex

Searching with Non-deterministic actions

•  So far: fully-observable, deterministic worlds.
–  Agent knows exact state. All actions always produce one outcome.
–  Unrealistic?

•  Real world = partially observable, non-deterministic
–  Percepts become useful: can tell agent which action occurred

–  Goal: not a simple action sequence, but contingency plan

•  Example: Vacuum world, v2.0
–  Suck(p1, dirty)= (p1,clean)

and sometimes (p2, clean)
–  Suck(p1, clean)= sometimes (p1,dirty)

–  If start state=1, solution=
[Suck, if(state=5) then [right,suck]]

AND-OR trees to represent non-determinism

•  Need a different kind of search tree
–  When search agent chooses an action: OR node

•  Agent can specifically choose one action or another to include in plan.
•  In Ch3 : trees with only OR nodes.

–  Non-deterministic action= there may be several possible outcomes
•  Plan being developed must cover all possible outcomes
•  AND node: because must plan down all branches too.

•  Search space is an AND-OR tree
–  Alternating OR and AND layers
–  Find solution= search this tree using same methods from Ch3.

•  Solution in a non-deterministic search space
–  Not simple action sequence
–  Solution= subtree within search tree with:

•  Goal node at each leaf (plan covers all contingencies)
•  One action at each OR node
•  A branch at AND nodes, representing all possible outcomes

•  Execution of a solution = essentially “action, case-stmt, action, case-sttmt”.

Non-deterministic search trees

•  Start state = 1

•  One solution:
1.  Suck,

2.  if(state=5) then
[right,suck]]

•  What about the “loop”

leaves?
–  Dead end?

–  Discarded?

Non-determinism: Actions that fail

•  Action failure is often a non-deterministic
outcome
–  Creates a cycle in the search tree

•  If no successful solution (plan) without a
cycle:
–  May return a solution that contains a

cycle

–  Represents retrying the action

•  Infinite loop in plan execution?
–  Depends on environment

•  Action guaranteed to succeed
eventually?

–  In practice: can limit loops
•  Plan no longer complete (could fail)

Searching with Partial Observations

•  Previously: Percept gives full picture of state
–  eg. Whole chess board, whole boggle board, entire robot maze

•  Partial Observation: incomplete glimpse of current state
–  Agent’s percept: zero <= percept < full state
–  Consequence: we don’t always know exactly what state we’re in.

•  Concept of believe state
–  set of all possible states agent could be in.

•  Find a solution (action sequence) that the leads to goal
–  Actions applied to a believe state à new believe state based on union of that

action applied to all real states within believe state

Conformant (sensorless) search

•  Worst possible case: percept= null. Blind!
–  Actually quite useful: finds plan that works regardless of sensor failure

•  Plan:
–  Build a belief state space based on the real state space
–  Search that state space using the usual search techniques!

•  Belief state space:
–  Believe states: Power-set(real states).

•  Huge! All possible combinations! N physical states = 2N believe states!
•  Usually: only small subset actually reachable!

–  Initial State: All states in world
•  No sensor input = no idea what state I’m really in.
•  So I “believe” I might be in any of them.

Conformant (sensorless) search

•  Belief state space (cont.):
–  Actions: basically same actions as in physical space.

•  For simplicity: Assume that illegal actions have no effect
•  Example: Move(left, p1) = p1 if p1 is the left edge of the board.
•  Can adapt for contexts in which illegal actions are fatal (more complex).

–  Transitions (applying actions):
•  Essentially take Union of action applied to all physical states in belief state
•  Example: b={s1,s2,s3), then action(b) = Union(action(s1), action(s2),action(s3))
•  If non-deterministic actions: just Union the set of states that each action produces.

–  Goal Test: Plan must work regardless!
•  Believe state is goal iff all physical states it contains are goals!

–  Path cost: tricky
•  What if a given action has different costs of different physical states?
•  Assume for now: all actions = same cost in all physical states.

•  With this framework:
–  can *automatically* construct belief space from any physical space
–  Now simply search belief space using standard algos.

Conformant (sensorless) search: Example space

•  Belief state space for the super simple vacuum world
•  Observations:

–  Only 12 reachable states. Versus 28= 256 possible belief states
–  State space still gets huge very fast! à seldom feasible in practice
–  We need sensors! à Reduce state space greatly!

Start!	

Goal	states	

Searching with Observations (percepts)

•  Obviously: must state what percepts are available

–  Specify what part of “state” is observable at each percept

–  Ex: Vacuum knows position in room, plus if local square dirty
•  But no info about rest of squares/space.
•  In state 1, Percept = [A, dirty]
•  If sensing non-deterministic à could return a set of possible percepts à

multiple possible belief states

•  So now transitions are:
–  Predict: apply action to each physical

states in belief state to get new belief
state

•  Like sensorless
–  Observe: gather percept

•  Or percepts, if non-det.
–  Update: filter belief state based on

percepts

Example: partial percepts

•  Initial percept = [A, dirty]
•  Partial observation = partial certainty

–  Percept could have been produced by several states (1...or 3)
–  Predict: Apply Action à new belief state
–  Observe: Consider possible percepts in new b-state
–  Update: New percepts then prune belief space

•  Percepts (may) rule out some physical states in the belief state.
•  Generates successor options in tree

–  Look! Updated belief states no larger than parents!!
•  Observations can only help reduce uncertainty à much better than sensorless state

space explosion!

Searching/acting in partially observable worlds

•  Action! An agent to execute the plan you find
–  Execute the conditional plan that was produced

•  Branches at each place where multiple percepts possible.
•  Agent tests its actual percept at branch points à follows branch
•  Maintains its current belief state as it goes

•  Searching for goal = find viable plan
–  Use same standard search techniques

•  Nodes, actions, successors
•  Dynamically generate AND-OR tree
•  Goal = subtree where all leaves are goal states

–  Just like sensorless...but pruned by percepts!

Online Search

•  So far: Considered “offline” search problem
–  Works “offline” à searches to compute a whole plan...before ever acting
–  Even with percepts à gets HUGE fast in real world

•  Lots of possible actions, lots of possible percepts...plus non-det.

•  Online search
–  Idea: Search as you go. Interleave search + action

–  Pro: actual percepts prune huge subtrees of search space @ each move
–  Con: plan ahead less à don’t foresee problems

•  Best case = wasted effort. Reverse actions and re-plan
•  Worst case: not reversible actions. Stuck!

•  Online search only possible method in some worlds
–  Agent doesn’t know what states exist (exploration problem)

–  Agent doesn’t know what effect actions have (discovery learning)
–  Possibly: do online search for awhile

•  until learn enough to do more predictive search

The nature of active online search

•  Executing online search = algorithm for planning/acting
–  Very different than offline search algos!
–  Offline: search virtually for a plan in constructed search space...

•  Can use any search algorithm, e.g., A* with strong h(n)
•  A* can expand any node it wants on the frontier (jump around)

–  Online agent: Agent literally is in some place!
•  Agent is at one node (state) on frontier of search tree
•  Can’t just jump around to other states...must plan from current state.
•  (Modified) Depth first algorithms are ideal candidates!

–  Heuristic functions remain critical!
•  H(n) tells depth first which of the successors to explore!
•  Admissibility remains relevant too: want to explore likely optimal paths first
•  Real agent = real results. At some point I find the goal

–  Can compare actual path cost to that predicted at each state by H(n)
–  Competitive Ratio: Actual path cost/predicted cost. Lower is better.
–  Could also be basis for developing (learning!) improved H(n) over time.

Online Local Search for Agents

•  What if search space is very bushy?
–  Even IDS version of depth-first are too costly
–  Tight time constraints could also limit search time

•  Can use our other tool for local search!
–  Hill-climbing (and variants)

•  Problem: agents in in the physical world, operating
–  Random restart methods for avoiding local minima are problematic

•  Can’t just move robot back to start all the time!

–  Random Walk approaches (highly stochastic hill-climbing) can work

–  Will eventually wander across the goal place/state.

•  Random walk + memory can be helpful
–  Chooses random moves but…

–  remembers where it’s been, and updates costs along the way
–  Effect: can “rock” its way out of local minima to continue search

Online Local Search for Agents

•  Result: Learning Real-time A* (LRTA*)

•  Idea: memory = update the h(n) for nodes you’ve visited
–  When stuck use: h(n) = cost(n à best neighbor) + h(neighbor)
–  Update the h(n) to reflect this. If you ever go back there, h(n) is higher
–  You “fill in” the local minimum as you cycle a few times. Then escape...

•  LRTA* à many variants; vary in selecting next action and updating rules

Chapter 4: Summary

•  Search techniques from Ch.3
–  still form basic foundation for possible search variants
–  Are not well-suited directly to many real-world problems

•  Pure size and bushiness of search spaces
•  Non-determinism. In Action outcomes. In Sensor reliability.
•  Partial observability. Can see all features of current state.

•  Classic search must be adapted and modified for the real world
–  Hill-climbing: can be seen as DFS + h(n) ... with depth limit of one.
–  Beam search: can be seen as Best First...with Frontier queue limit = k.

–  Stochastic techniques (incl. simulated annealing) = seen as Best-first with
weighted randomized Q selection.

–  Belief State Search = identical to normal search...only searching belief space
–  Online Search: Applied DFS or local searching

•  With high cost of backtracking and becoming stuck
•  Pruning by moving before complete plans made.

