Beyond Classical Search

Chapter 4

(Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!)

Outline

- Hill-climbing
- Simulated annealing
- Genetic algorithms (briefly)
- Local search in continuous spaces (very briefly)
- Searching with non-deterministic actions
- Searching with partial observations
- Online search

Motivation: Types of problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Local Search Algorithms

- So far: our algorithms explore state space methodically
 - Keep one or more paths in memory
- In many optimization problems, path is irrelevant
 - the goal state itself is the solution
 - State space is large/complex → keeping whole frontier in memory is impractical
 - Local = Zen = has no idea where it is, just immediate descendants
- State space = set of "complete" configurations
 - A graph of boards, map locations, whatever
 - Connected by actions
- Goal: find optimal configuration (e.g. Traveling Salesman) or, find configuration satisfying constraints, (e.g., timetable)
- In such cases, can use local search algorithms
 - keep a single "current" state, try to improve it
 - Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Goal: Find shortest path that visits all graph nodes

Plan: Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

(Optimum solution is NP-hard. This is not optimum...but close enough?

Example: *N*-queens Problem

- Start: Put *n* queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Plan: Move a single queen to reduce number of conflicts → generates next board

Almost always solves *n*-queens problems almost instantaneously for very large *n*, e.g., n = 1 million

(Ponder: how long does N-Queens take with DFS?)

Hill-climbing Search

Plan: From current state, always move to adjacent state with highest value

- "Value" of state: provided by objective function
 - Essentially identical to goal heuristic h(n) from Ch.3
- Always have just one state in memory!

"Like climbing Everest ... in thick fog ... with amnesia"

```
function Hill-Climbing( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node
current ← Make-Node(Initial-State[problem])
loop do
neighbor ← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current ← neighbor
end
```

Hill-climbing: challenges

Useful to consider state space landscape

"Greedy" nature \rightarrow can get stuck in:

- Local maxima
- Ridges: ascending series but with downhill steps in between
- Plateau: shoulder or flat area.

Hill climbing: Getting unstuck

Pure hill climbing search on 8-queens: gets stuck 86% of time! 14% success

Overall Observation: "greediness" insists on always uphill moves

Overall Plan for all variants: Build in ways to allow *some* non-optimal moves \rightarrow get out of local maximum and onward to global maximum

Hill climbing modifications and variants:

- Allow sideways moves hoping plateau is shoulder, will find uphill gradient
 but limit the number of them! (allow 100: 8-queens= 94% success!)
- Stochastic hill-climbing Choose randomly between uphill successors
 choice weighted by steepness of uphill move
- First-choice: randomly generate successors until find an uphill one
 not necessarily the most uphill one → so essentially stochastic too.
- Random restart: do successive hill-climbing searches
 - start at random start state each time
 - guaranteed to find a goal eventually
 - the most you do, the more chance of optimizing goal

Simulated annealing

Based metaphorically on metalic annealing

Idea:

 $\checkmark\,$ escape local maxima by allowing some random "bad" moves

✓ but gradually decrease the degree and frequency

 \checkmark \rightarrow jiggle hard at beginning, then less and less to find global maxima

```
function Simulated-Annealing( problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling prob. of downward steps

current \leftarrow Make-Node(Initial-State[problem])

for t \leftarrow 1 to \approx do

T \leftarrow schedule[t]

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow Value[next] - Value[current]

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{rac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways
- Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Observation: we do have *some* memory. Why not use it?

Plan: keep *k* states instead of 1

- choose top *k* of *all their* successors
- Not the same as *k* searches run in parallel!
- Searches that find good states place more successors in top k
 → "recruit" other searches to join them

Problem: quite often, all *k* states end up on same local maximum

Solution: add stochastic element

- choose *k* successors randomly, biased towards good ones
- note: a fairly close analogy to natural selection (survival of fittest)

Genetic algorithms

Metaphor: "breed a better solution"

• Take the best characteristics of two parents \rightarrow generate offspring

Effectively: stochastic local beam search + generate successors from pairs of states

Steps:

- 1. Rank current population (of states) by fitness function
- 2. Select states to cross. Random plus weighted by fitness (more fit=more likely)
- 3. Randomly select "crossover point"
- 4. Swap out whole parts of states to generate "offspring"
- 5. Throw in mutation step (randomness!)

Genetic Algorithm: N-Queens example

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Genetic algorithms: analysis

Pro: Can jump search around the search space...

- In larger jumps. Successors not just one move away from parents
- In "directed randomness". Hopefully directed towards "best traits"
- In theory: find goals (or optimum solutions) faster, more likely.

Concerns: Only really works in "certain" situations...

- States must be encodable as strings (to allow swapping pieces)
- Only really works if substrings somehow related functionally meaningful pieces.
 → counter-example:

Overall: Genetic algorithms are a cool, but quite specialized technique

- Depend heavily on careful engineering of state representation
- Much work being done to characterize promising conditions for use.

Searching in continuous state spaces (briefly...)

Observation: so far, states have been discrete "moves" apart

- Each "move" corresponds to an "atomic action" (can't do a half-action! 1/16 action
- But the real world is generally a continuous space!
- What if we want to plan in real world space, rather than logical space?

Searching Continuous spaces

Example: Suppose we want to site three airports in Romania:

- 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3)$ = sum of squared distances from each city to nearest airport (six dimensional search space)

Approaches:

Discretization methods turn continuous space into discrete space

- e.g., empirical gradient search considers $\pm \delta$ change in each coordinate
- If you make δ small enough, you get needed accuracy

Gradient methods actually *compute* a gradient vector as a continuous fn.

$$\nabla f = \left| \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3'} \right|$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

Summary: interesting area, highly complex

Searching with Non-deterministic actions

- So far: fully-observable, deterministic worlds.
 - Agent knows exact state. All actions *always* produce *one* outcome.
 - Unrealistic?
- Real world = partially observable, non-deterministic
 - Percepts become useful: can tell agent *which* action occurred
 - Goal: not a simple action sequence, but contingency plan
- Example: Vacuum world, v2.0
 - Suck(p1, dirty)= (p1,clean) and *sometimes* (p2, clean)
 - Suck(p1, clean)= sometimes (p1,dirty)
 - If start state=1, solution=
 [Suck, if(state=5) then [right,suck]]

AND-OR trees to represent non-determinism

- Need a different kind of search tree
 - When search agent chooses an action: OR node
 - Agent can specifically choose one action *or* another to include in plan.
 - In Ch3 : trees with only OR nodes.
 - Non-deterministic action= there may be *several* possible outcomes
 - Plan being developed must cover all possible outcomes
 - AND node: because must plan down all branches too.
- Search space is an AND-OR tree
 - Alternating OR and AND layers
 - Find solution= search this tree using same methods from Ch3.
- Solution in a non-deterministic search space
 - Not simple action sequence
 - Solution= subtree within search tree with:
 - Goal node at each leaf (plan covers all contingencies)
 - One action at each OR node
 - A branch at AND nodes, representing all possible outcomes
- Execution of a solution = essentially "action, case-stmt, action, case-sttmt".

Non-deterministic search trees

- Start state = 1
- One solution:
 - 1. Suck,
 - 2. if(state=5) then [right,suck]]

- What about the "loop" leaves?
 - Dead end?
 - Discarded?

Non-determinism: Actions that fail

- Action *failure* is often a non-deterministic outcome
 - Creates a cycle in the search tree
- If no successful solution (plan) without a cycle:
 - May return a solution that *contains* a cycle
 - Represents *retrying* the action
- Infinite loop in plan execution?
 - Depends on environment
 - Action guaranteed to succeed eventually?
 - In practice: can limit loops
 - Plan no longer complete (could fail)

Searching with Partial Observations

- Previously: Percept gives full picture of state
 - eg. Whole chess board, whole boggle board, entire robot maze
- Partial Observation: incomplete glimpse of current state
 - Agent's percept: zero <= percept < full state</p>
 - Consequence: we don't always know exactly what state we're in.
- Concept of *believe state*
 - set of *all possible* states agent *could* be in.
- Find a solution (action sequence) that the leads to goal
 - Actions applied to a believe state → new believe state based on *union* of that action applied to all real states within believe state

Conformant (sensorless) search

- Worst possible case: percept= null. Blind!
 - Actually quite useful: finds plan that works regardless of sensor failure
- Plan:
 - Build a belief state space based on the real state space
 - Search that state space using the usual search techniques!
- Belief state space:
 - Believe states: Power-set(real states).
 - Huge! All possible combinations! N physical states = 2^N believe states!
 - Usually: only small subset actually reachable!
 - Initial State: All states in world
 - No sensor input = no idea what state I'm really in.
 - So I "believe" I might be in any of them.

Conformant (sensorless) search

- Belief state space (cont.):
 - Actions: basically same actions as in physical space.
 - For simplicity: Assume that illegal actions have no effect
 - Example: Move(left, p1) = p1 if p1 is the left edge of the board.
 - Can adapt for contexts in which illegal actions are fatal (more complex).
 - Transitions (applying actions):
 - Essentially take Union of action applied to all physical states in belief state
 - Example: b={s1,s2,s3), then action(b) = Union(action(s1), action(s2), action(s3))
 - If non-deterministic actions: just Union *the set of states* that each action produces.
 - Goal Test: Plan must work regardless!
 - Believe state is goal *iff* all physical states it contains are goals!
 - Path cost: tricky
 - What if a given action has different costs of different physical states?
 - Assume for now: all actions = same cost in all physical states.
- With this framework:
 - can *automatically* construct belief space from any physical space
 - Now simply search belief space using standard algos.

Conformant (sensorless) search: Example space

- Observations:
 - Only 12 reachable states. Versus $2^8 = 256$ possible belief states
 - − State space still gets huge very fast! \rightarrow seldom feasible in practice
 - We need sensors! \rightarrow Reduce state space greatly!

Searching with Observations (percepts)

- Obviously: must state what percepts are available
 - Specify what part of "state" is observable at each percept
 - Ex: Vacuum knows position in room, plus if local square dirty
 - But no info about rest of squares/space.
 - In state 1, Percept = [A, dirty]
 - If sensing non-deterministic → could return a set of possible percepts → multiple possible belief states
- So now transitions are:
 - Predict: apply *action* to each physical states in belief state to get new belief state
 - Like sensorless
 - Observe: gather percept
 - Or percepts, if non-det.
 - Update: filter belief state based on percepts

Example: partial percepts

- Initial percept = [A, dirty]
- Partial observation = partial certainty
 - Percept could have been produced by *several* states (1...or 3)
 - Predict: Apply Action \rightarrow new belief state
 - Observe: Consider possible percepts in new b-state
 - Update: New percepts then *prune* belief space
 - Percepts (may) rule out some physical states in the belief state.
 - Generates successor options in tree
 - Look! Updated belief states no larger than parents!!
 - Observations can only help reduce uncertainty → much better than sensorless state space explosion!

Searching/acting in partially observable worlds

- Searching for goal = find viable plan
 - Use same standard search techniques
 - Nodes, actions, successors
 - Dynamically generate AND-OR tree
 - Goal = subtree where all leaves are goal states
 - Just like sensorless...but pruned by percepts!

- Execute the conditional plan that was produced
 - Branches at each place where multiple percepts possible.
 - Agent tests its *actual* percept at branch points \rightarrow follows branch
 - Maintains its current belief state as it goes

Online Search

- So far: Considered "offline" search problem
 - Works "offline" \rightarrow searches to compute a whole plan...*before ever acting*
 - Even with percepts \rightarrow gets HUGE fast in real world
 - Lots of possible actions, lots of possible percepts...plus non-det.
- Online search
 - Idea: Search as you go. Interleave search + action
 - Pro: *actual* percepts prune huge subtrees of search space @ each move
 - Con: plan ahead less \rightarrow don't foresee problems
 - Best case = wasted effort. Reverse actions and re-plan
 - Worst case: not reversible actions. Stuck!
- Online search only possible method in some worlds
 - Agent doesn't know what states exist (exploration problem)
 - Agent doesn't know what effect actions have (discovery learning)
 - Possibly: do online search for awhile
 - until learn enough to do more predictive search

The nature of active online search

- Executing online search = algorithm for planning/acting
 - *Very different* than offline search algos!
 - Offline: search virtually for a plan in constructed search space...
 - Can use any search algorithm, e.g., A* with strong h(n)
 - A* can expand any node it wants on the frontier (jump around)
 - Online agent: Agent literally *is in some place*!
 - Agent *is at* one node (state) on frontier of search tree
 - Can't just jump around to other states...must plan from current state.
 - (Modified) Depth first algorithms are ideal candidates!
 - Heuristic functions remain critical!
 - H(n) tells depth first *which* of the successors to explore!
 - Admissibility remains relevant too: want to explore *likely* optimal paths first
 - Real agent = real results. At some point I find the goal
 - Can compare actual path cost to that predicted at each state by H(n)
 - **Competitive Ratio:** Actual path cost/predicted cost. Lower is better.
 - Could also be basis for developing (learning!) improved H(n) over time.

Online Local Search for Agents

- What if search space is very bushy?
 - Even IDS version of depth-first are too costly
 - Tight time constraints could also limit search time
- Can use our other tool for local search!
 - Hill-climbing (and variants)
- Problem: agents in *in the physical world, operating*
 - Random restart methods for avoiding local minima are problematic
 - Can't just move robot back to start all the time!
 - Random Walk approaches (highly stochastic hill-climbing) can work
 - Will eventually wander across the goal place/state.
- Random walk + *memory* can be helpful
 - Chooses random moves but...
 - remembers where it's been, and updates costs along the way
 - Effect: can "rock" its way out of local minima to continue search

Online Local Search for Agents

• Result: Learning Real-time A* (LRTA*)

- Idea: memory = *update* the h(n) for nodes you've visited
 - When stuck use: $h(n) = cost(n \rightarrow best neighbor) + h(neighbor)$
 - Update the h(n) to reflect this. If you ever go back there, h(n) is higher
 - You "fill in" the local minimum as you cycle a few times. Then escape...
- LRTA* \rightarrow many variants; vary in selecting next action and updating rules

Chapter 4: Summary

- Search techniques from Ch.3
 - still form basic foundation for possible search variants
 - Are not well-suited *directly* to many real-world problems
 - Pure size and bushiness of search spaces
 - Non-determinism. In Action outcomes. In Sensor reliability.
 - Partial observability. Can see *all* features of current state.
- Classic search must be adapted and modified for the real world
 - Hill-climbing: can be seen as DFS + h(n) ... with depth limit of **one.**
 - Beam search: can be seen as Best First...with Frontier queue limit = k.
 - Stochastic techniques (incl. simulated annealing) = seen as Best-first with weighted randomized Q selection.
 - Belief State Search = identical to normal search...only searching belief space
 - Online Search: Applied DFS or local searching
 - With high cost of backtracking and becoming stuck
 - Pruning by moving before complete plans made.

