Beyond Classical Search

Chapter 4

(Adapted from Stuart Russel, Dan Klein, and others. Thanks guys!)
Outline

• Hill-climbing
• Simulated annealing
• Genetic algorithms (briefly)
• Local search in continuous spaces (very briefly)
• Searching with non-deterministic actions
• Searching with partial observations
• Online search
Motivation: Types of problems

- **Planning problems:**
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations

- **Identification problems:**
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - *Iterative improvement algorithms*
Local Search Algorithms

- So far: our algorithms explore state space methodically
 - Keep one or more paths in memory

- In many optimization problems, path is irrelevant
 - the goal state itself is the solution
 - State space is large/complex → keeping whole frontier in memory is impractical
 - Local = Zen = has no idea where it is, just immediate descendants

- State space = set of “complete” configurations
 - A graph of boards, map locations, whatever
 - Connected by actions

- Goal: find optimal configuration (e.g. Traveling Salesman)
 or, find configuration satisfying constraints, (e.g., timetable)

- In such cases, can use local search algorithms
 - keep a single “current” state, try to improve it
 - Constant space, suitable for online as well as offline search
Example: Travelling Salesperson Problem

Goal: Find shortest path that visits all graph nodes

Plan: Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

(Optimum solution is NP-hard. This is not optimum...but close enough?)
Example: \textit{N}-queens Problem

Start: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal.

Plan: Move a single queen to reduce number of conflicts \(\rightarrow \) generates next board.

Almost always solves \(n \)-queens problems almost instantaneously for very large \(n \), e.g., \(n = 1 \text{ million} \).

(Ponder: how long does N-Queens take with DFS?)
Hill-climbing Search

Plan: From current state, always move to adjacent state with highest value

- “Value” of state: provided by objective function
 - Essentially identical to goal heuristic \(h(n) \) from Ch.3

- Always have just one state in memory!

“Like climbing Everest ... in thick fog ... with amnesia”

```
function Hill-Climbing( problem) returns a state that is a local maximum
  inputs: problem, a problem
  local variables: current, a node
                 neighbor, a node

  current ← Make-Node(Initial-State[problem])
  loop do
    neighbor ← a highest-valued successor of current
    if Value[neighbor] ≤ Value[current] then return State[current]
    current ← neighbor
  end
```
Hill-climbing: challenges

Useful to consider state space landscape

“Greedy” nature \(\rightarrow\) can get stuck in:

- Local maxima
- Ridges: ascending series but with downhill steps in between
- Plateau: shoulder or flat area.
Hill climbing: Getting unstuck

Pure hill climbing search on 8-queens: gets stuck 86% of time! 14% success

Overall Observation: “greediness” insists on always uphill moves

Overall Plan for all variants: Build in ways to allow *some* non-optimal moves → get out of local maximum and onward to global maximum

Hill climbing modifications and variants:

• Allow sideways moves hoping plateau is shoulder, will find uphill gradient - but limit the number of them! (allow 100: 8-queens= 94% success!)

• Stochastic hill-climbing Choose randomly between uphill successors - choice weighted by steepness of uphill move

• First-choice: randomly generate successors until find an uphill one - not necessarily the most uphill one → so essentially stochastic too.

• Random restart: do successive hill-climbing searches - start at random start state each time - guaranteed to find a goal eventually - the most you do, the more chance of optimizing goal
Simulated annealing

Based metaphorically on metallic annealing

Idea:
- escape local maxima by allowing some random “bad” moves
- but gradually decrease the degree and frequency
- → jiggle hard at beginning, then less and less to find global maxima

```plaintext
function Simulated-Annealing( problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to “temperature”
    local variables: current, a node
                    next, a node
                    T, a “temperature” controlling prob. of downward steps
    current ← Make-Node(Initial-State[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
        next ← a randomly selected successor of current
        ∆E ← Value[next] – Value[current]
        if ∆E > 0 then current ← next
        else current ← next only with probability e^ΔE/T
```
Properties of Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

- Widely used in VLSI layout, airline scheduling, etc.
Local beam search

Observation: we do have some memory. Why not use it?

Plan: keep k states instead of 1

- choose top k of all their successors
- Not the same as k searches run in parallel!
- Searches that find good states place more successors in top k
 \rightarrow “recruit” other searches to join them

Problem: quite often, all k states end up on same local maximum

Solution: add stochastic element

- choose k successors randomly, biased towards good ones
- note: a fairly close analogy to natural selection (survival of fittest)
Genetic algorithms

Metaphor: “breed a better solution”
• Take the best characteristics of two parents → generate offspring

Effectively: stochastic local beam search + generate successors from pairs of states

Steps:
1. Rank current population (of states) by fitness function
2. Select states to cross. Random plus weighted by fitness (more fit=more likely)
3. Randomly select “crossover point”
4. Swap out whole parts of states to generate “offspring”
5. Throw in mutation step (randomness!)
Genetic Algorithm: N-Queens example

Why does crossover make sense here?
When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?
Genetic algorithms: analysis

Pro: Can jump search around the search space...
- In larger jumps. Successors not just one move away from parents
- In “directed randomness”. Hopefully directed towards “best traits”
- In theory: find goals (or optimum solutions) faster, more likely.

Concerns: Only really works in “certain” situations...
- States must be encodable as strings (to allow swapping pieces)
- Only really works if substrings somehow related functionally meaningful pieces.
 → counter-example:

Overall: Genetic algorithms are a cool, but quite specialized technique
- Depend heavily on careful engineering of state representation
- Much work being done to characterize promising conditions for use.
Observation: so far, states have been discrete “moves” apart
• Each “move” corresponds to an “atomic action” (can’t do a half-action! 1/16 action
• But the real world is generally a continuous space!
• What if we want to plan in real world space, rather than logical space?
Searching Continuous spaces

Example: Suppose we want to site three airports in Romania:

- 6-D state space defined by \((x_1, y_1), (x_2, y_2), (x_3, y_3)\)
- objective function \(f(x_1, y_1, x_2, y_2, x_3, y_3) = \) sum of squared distances from each city to nearest airport (six dimensional search space)

Approaches:

Discretization methods turn continuous space into discrete space
- e.g., empirical gradient search considers \(\pm \delta\) change in each coordinate
- If you make \(\delta\) small enough, you get needed accuracy

Gradient methods actually compute a gradient vector as a continuous fn.

\[
\nabla f = \begin{bmatrix}
\frac{\partial f}{\partial x_1}, & \frac{\partial f}{\partial y_1}, & \frac{\partial f}{\partial x_2}, & \frac{\partial f}{\partial y_2}, & \frac{\partial f}{\partial x_3}, & \frac{\partial f}{\partial y_3}
\end{bmatrix}
\]

to increase/reduce \(f\), e.g., by \(x \leftarrow x + \alpha \nabla f(x)\)

Summary: interesting area, highly complex
Searching with Non-deterministic actions

- So far: fully-observable, deterministic worlds.
 - Agent knows exact state. All actions always produce one outcome.
 - Unrealistic?

- Real world = partially observable, non-deterministic
 - Percepts become useful: can tell agent which action occurred
 - Goal: not a simple action sequence, but contingency plan

- Example: Vacuum world, v2.0
 - Suck(p1, dirty) = (p1,clean) and sometimes (p2, clean)
 - Suck(p1, clean) = sometimes (p1,dirty)
 - If start state=1, solution = [Suck, if(state=5) then [right,suck]]
AND-OR trees to represent non-determinism

- Need a different kind of search tree
 - When search agent chooses an action: OR node
 - Agent can specifically choose one action or another to include in plan.
 - In Ch3: trees with only OR nodes.
 - Non-deterministic action= there may be several possible outcomes
 - Plan being developed must cover all possible outcomes
 - AND node: because must plan down all branches too.

- Search space is an AND-OR tree
 - Alternating OR and AND layers
 - Find solution= search this tree using same methods from Ch3.

- Solution in a non-deterministic search space
 - Not simple action sequence
 - Solution= subtree within search tree with:
 - Goal node at each leaf (plan covers all contingencies)
 - One action at each OR node
 - A branch at AND nodes, representing all possible outcomes

- Execution of a solution = essentially “action, case-stmt, action, case-sttmt”.
Non-deterministic search trees

- Start state = 1

- One solution:
 1. Suck,
 2. if(state=5) then [right, suck]

- What about the “loop” leaves?
 - Dead end?
 - Discarded?
Non-determinism: Actions that fail

- Action failure is often a non-deterministic outcome
 - Creates a cycle in the search tree

- If no successful solution (plan) without a cycle:
 - May return a solution that contains a cycle
 - Represents retrying the action

- Infinite loop in plan execution?
 - Depends on environment
 - Action guaranteed to succeed eventually?
 - In practice: can limit loops
 - Plan no longer complete (could fail)
Searching with Partial Observations

• Previously: Percept gives full picture of state
 – eg. Whole chess board, whole boggle board, entire robot maze

• Partial Observation: incomplete glimpse of current state
 – Agent’s percept: zero <= percept < full state
 – Consequence: we don’t always know exactly what state we’re in.

• Concept of believe state
 – set of all possible states agent could be in.

• Find a solution (action sequence) that leads to goal
 – Actions applied to a believe state → new believe state based on union of that action applied to all real states within believe state
Conformant (sensorless) search

• Worst possible case: percept= null. Blind!
 – Actually quite useful: finds plan that works regardless of sensor failure

• Plan:
 – Build a belief state space based on the real state space
 – Search that state space using the usual search techniques!

• Belief state space:
 – Believe states: Power-set(real states).
 • Huge! All possible combinations! N physical states = \(2^N\) believe states!
 • Usually: only small subset actually reachable!

 – Initial State: All states in world
 • No sensor input = no idea what state I’m really in.
 • So I “believe” I might be in any of them.
Conformant (sensorless) search

• Belief state space (cont.):
 – Actions: basically same actions as in physical space.
 • For simplicity: Assume that illegal actions have no effect
 • Example: Move(left, p1) = p1 if p1 is the left edge of the board.
 • Can adapt for contexts in which illegal actions are fatal (more complex).
 – Transitions (applying actions):
 • Essentially take Union of action applied to all physical states in belief state
 • Example: b={s1,s2,s3}, then action(b) = Union(action(s1), action(s2),action(s3))
 • If non-deterministic actions: just Union the set of states that each action produces.
 – Goal Test: Plan must work regardless!
 • Believe state is goal iff all physical states it contains are goals!
 – Path cost: tricky
 • What if a given action has different costs of different physical states?
 • Assume for now: all actions = same cost in all physical states.

• With this framework:
 – can *automatically* construct belief space from any physical space
 – Now simply search belief space using standard algos.
Conformant (sensorless) search: Example space

- Belief state space for the super simple vacuum world
- Observations:
 - Only 12 reachable states. Versus $2^8 = 256$ possible belief states
 - State space still gets huge very fast! \(\rightarrow\) seldom feasible in practice
 - We need sensors! \(\rightarrow\) Reduce state space greatly!
Searching with Observations (percepts)

- Obviously: must state what percepts are available
 - Specify what part of “state” is observable at each percept
 - Ex: Vacuum knows position in room, plus if local square dirty
 - But no info about rest of squares/space.
 - In state 1, Percept = [A, dirty]
 - If sensing non-deterministic → could return a set of possible percepts → multiple possible belief states

- So now transitions are:
 - Predict: apply action to each physical states in belief state to get new belief state
 - Like sensorless
 - Observe: gather percept
 - Or percepts, if non-det.
 - Update: filter belief state based on percepts
Example: partial percepts

- Initial percept = [A, dirty]
- Partial observation = partial certainty
 - Percept could have been produced by several states (1...or 3)
 - Predict: Apply Action ® new belief state
 - Observe: Consider possible percepts in new b-state
 - Update: New percepts then prune belief space
 - Percepts (may) rule out some physical states in the belief state.
 - Generates successor options in tree
 - Look! Updated belief states no larger than parents!!
 - Observations can only help reduce uncertainty ® much better than sensorless state space explosion!
Searching/acting in partially observable worlds

• Searching for goal = find viable plan
 - Use same standard search techniques
 • Nodes, actions, successors
 • Dynamically generate AND-OR tree
 • Goal = subtree where all leaves are goal states
 - Just like sensorless...but pruned by percepts!

• Action! An agent to execute the plan you find
 - Execute the conditional plan that was produced
 • Branches at each place where multiple percepts possible.
 • Agent tests its actual percept at branch points → follows branch
 • Maintains its current belief state as it goes
Online Search

• So far: Considered “offline” search problem
 – Works “offline” → searches to compute a whole plan...before ever acting
 – Even with percepts → gets HUGE fast in real world
 • Lots of possible actions, lots of possible percepts...plus non-det.

• Online search
 – Idea: Search as you go. Interleave search + action
 – Pro: actual percepts prune huge subtrees of search space @ each move
 – Con: plan ahead less → don’t foresee problems
 • Best case = wasted effort. Reverse actions and re-plan
 • Worst case: not reversible actions. Stuck!

• Online search only possible method in some worlds
 – Agent doesn’t know what states exist (exploration problem)
 – Agent doesn’t know what effect actions have (discovery learning)
 – Possibly: do online search for awhile
 • until learn enough to do more predictive search
The nature of active online search

- Executing online search = algorithm for planning/acting
 - *Very different* than offline search algos!
 - Offline: search virtually for a plan in constructed search space...
 - Can use any search algorithm, e.g., A* with strong h(n)
 - A* can expand any node it wants on the frontier (jump around)

- Online agent: Agent literally *is in some place!*
 - Agent *is at* one node (state) on frontier of search tree
 - Can’t just jump around to other states...must plan from current state.
 - (Modified) Depth first algorithms are ideal candidates!

- Heuristic functions remain critical!
 - H(n) tells depth first *which* of the successors to explore!
 - Admissibility remains relevant too: want to explore *likely* optimal paths first
 - Real agent = real results. At some point I find the goal
 - Can compare actual path cost to that predicted at each state by H(n)
 - **Competitive Ratio**: Actual path cost/predicted cost. Lower is better.
 - Could also be basis for developing (learning!) improved H(n) over time.
Online *Local* Search for Agents

• What if search space is very bushy?
 – Even IDS version of depth-first are too costly
 – Tight time constraints could also limit search time

• Can use our other tool for local search!
 – Hill-climbing (and variants)

• Problem: agents in *in the physical world, operating*
 – Random restart methods for avoiding local minima are problematic
 • Can’t just move robot back to start all the time!
 – Random Walk approaches (highly stochastic hill-climbing) can work
 – Will *eventually* wander across the goal place/state.

• Random walk + *memory* can be helpful
 – Chooses random moves but…
 – remembers where it’s been, and updates costs along the way
 – Effect: can “rock” its way out of local minima to continue search
Online *Local* Search for Agents

- Result: Learning Real-time A* (LRTA*)

- Idea: memory = *update* the h(n) for nodes you’ve visited
 - When stuck use: \(h(n) = \text{cost}(n \rightarrow \text{best neighbor}) + h(\text{neighbor}) \)
 - Update the h(n) to reflect this. If you ever go back there, h(n) is higher
 - You “fill in” the local minimum as you cycle a few times. Then escape...

- LRTA* → many variants; vary in selecting next action and updating rules
Chapter 4: Summary

• Search techniques from Ch.3
 – still form basic foundation for possible search variants
 – Are not well-suited directly to many real-world problems
 • Pure size and bushiness of search spaces
 • Non-determinism. In Action outcomes. In Sensor reliability.
 • Partial observability. Can see all features of current state.

• Classic search must be adapted and modified for the real world
 – Hill-climbing: can be seen as DFS + h(n) ... with depth limit of one.
 – Beam search: can be seen as Best First...with Frontier queue limit = k.
 – Stochastic techniques (incl. simulated annealing) = seen as Best-first with weighted randomized Q selection.
 – Belief State Search = identical to normal search...only searching belief space
 – Online Search: Applied DFS or local searching
 • With high cost of backtracking and becoming stuck
 • Pruning by moving before complete plans made.