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Basis: The basis consists of strictly binary trees of the form ({r}, @, r). The equality clearly D,
holds in this case since a tree of this form has one leaf and no arcs.
Inductive Hypothesis: Assume that every strictly binary tree T generated by n or fewer
applications of the recursive step satisfies 2 [v(T) — 2 = arc(T).
Inductive Step: Let T be a strictly binary tree generated by n 4 1 applications of the recursive 3
step in the definition of the family of strictly binary trees. T is built from a node  and two i
previously constructed strictly binary trees Ty and T, with roots ry and r,, respectively. 4.
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The node r is not a leaf since it has arcs to the roots of T; and T,. Consequently, [v(T) =
[v(Ty) + [v(T,). The arcs of T consist of the arcs of the component trees plus the two arcs 7.
from r. 8.
Since T; and T, are strictly binary trees generated by n or fewer applications of the
recursive step, we may employ the inductive hypothesis to establish the desired equality. 9
By the inductive hypothesis, ;
21v(T)) — 2 =arc(T))
21lv (Ty) — 2 =arc(Ty).
Now, 10.
arc(T) = arc(Ty) + arc(T,) + 2
—20u(T) — 2+ 21n(T) —2+2 1.
=2(lv(Ty) + lv(Ty) — 2 m
=2(v(D) -2, 1
as desired. m]
14.
Exercises
. 158
1. Let X ={1, 2, 3,4} and Y = {0, 2, 4, 6}. Explicitly define the sets described in parts 3
(a) to (e).
a) XUY dY-X 1
b) XNY e) PX) 6.
) X—-Y 17

Exercises

LetX={a, b,cland Y = {1, 2}.

a) List all the subsets of X.

b) List the members of X x Y.

¢) List all total functions from Y to X.

LetX={3"|n>0}and Y = {3n | n > 0}. Prove that X C Y.
LetX={n3+3n2+3n|n>0}and Y ={n® — 1| n > 0}. Prove that X =Y.
Prove DeMorgan’s Laws. Use the definition of set equality to establish the ident
Give functions f : N — N that satisfy the following.

a) f is total and one-to-one but not onto.

b) f is total and onto but not one-to-one.

c) f is total, one-to-one, and onto but not the identity.

d) f is not total but is onto.

Prove that the function f : N — N defined by f(n) = n® + 1is one-to-one but no

Let f : Rt — R be the function defined by f(x) = 1/x, where R denotes the
positive real numbers. Prove that f is one-to-one and onto.

Give an example of a binary relation on N x N that is
a) reflexive and symmetric but not transitive.
b) reflexive and transitive but not symmetric.
¢) symmetric and transitive but not reflexive.

Let = be the binary relation on N defined by n = m if, and only if, n = m. Proy
= is an equivalence relation. Describe the equivalence classes of =.

Let = be the binary relation on N defined by n = m for all n, m € N. Prove th:
an equivalence relation. Describe the equivalence classes of =.

Show that the binary relation LT, less than, is not an equivalence relation.

Let =, be the binary relation on N defined by n = pm if nmod p =m mod
P =2, prove that =, is an equivalence relation. Describe the equivalence clas

o
LetX;, . . ., X, be apartition of a set X. Define an equivalence relation = on X
equivalence classes are precisely the sets X, . . . , X,,.

A binary relation = is defined on ordered pairs of natural numbers as fc

[m, n]= [}, k]if, and only if, m + k = n + j. Prove that = is an equivalence 1
inN x N.

Prove that the set of even natural numbers is denumerable.

Prove that the set of even integers is denumerable.
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Prove that the set of nonnegative rational numbers is denumerable.
Prove that the union of two disjoint countable sets is countable.
Prove that there are an uncountable number of total functions from N to {0, 1}.

A total function f from N to N is said to be repeating if f(n) = f(n + 1) for some
n € N. Otherwise, f is said to be nonrepeating. Prove that there are an uncountable
number of repeating functions. Also prove that there are an uncountable number of
nonrepeating functions.

A total function f from N to N is monotone increasing if f(n) < f(n + 1) foralln
N. Prove that there are an uncountable number of monotone increasing functions.

Prove that there are uncountably many total functions from N to N that have a fixed
point. See Example 1.4.3 for the definition of a fixed point.

A total function f from N to N is nearly identity if f(n) =n — 1, n, orn + 1for every
n. Prove that there are uncountably many nearly identity functions.

Prove that the set of real numbers in the interval [0, 1] is uncountable. Hint: Use the
diagonalization argument on the decimal expansion of real numbers. Be sure that each
number is represented by only one infinite decimal expansion.

Let F be the set of total functions of the form f : {0, 1} — N (functions that map from
{0, 1} to the natural numbers). Is the set of such functions countable or uncountable?
Prove your answer.

Prove that the binary relation on sets defined by X = Y if, and only if, card(X) =
card(Y) is an equivalence relation.

Prove the Schroder-Bernstein Theorem.
Give a recursive definition of the relation is equal to on N x N using the operator s.

Give a recursive definition of the relation greater than on N x N using the successor
operator s.

Give a recursive definition of the set of points [m, n] that lie on the line n = 3m in
N x N. Use s as the operator in the definition.

Give a recursive definition of the set of points [m, n] that lie on or under the line n = 3m
in N x N. Use s as the operator in the definition.

Give a recursive definition of the operation of multiplication of natural numbers using
the operations s and addition.

Give a recursive definition of the predecessor operation

0 ifn=0

PREGS n —1 otherwise

using the operator s.

35. Subtraction on the set of natural numbers is defined by
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n—m ifn>m
0 otherwise.

n—m=

This operation is often called proper subtraction. Give a recursive definitiol
subtraction using the operations s and pred.

Let X be a finite set. Give a recursive definition of the set of subsets of X.
as the operator in the definition.

Give a recursive definition of the set of finite subsets of N. Use union and the
s as the operators in the definition.

Provethat2 +548+-- -+ Bn — D) =nGBn+ 1)/2 foralln > 0.
Provethat 142+ 22+ ... 42" =2"t1 _ {foralln > 0.

Prove 142" < 3" forall n > 2.

Prove that 3 is a factor of n3 — n + 3 for all n > 0.

Let P={A, B} be a set consisting of two proposition letters (Boolean vari:
set E of well-formed conjunctive and disjunctive Boolean expressions over
recursively as follows:

i) Basis: A, B € E.
ii) Recursive step: If 4, v € E, then (u vV v) € E and (1 A v) € E.
iii) Closure: An expression is in E only if it is obtained from the basis
number of iterations of the recursive step.
a) Explicitly give the Boolean expressions in the sets Eg, E;, and E,.

b) Prove by mathematical induction that for every Boolean expression in E, 1
of occurrences of proposition letters is one more than the number of ope

an expression u, let n,(u) denote the number of proposition letters in u
denote the number of operators in u.

¢) Prove by mathematical induction that, for every Boolean expression
number of left parentheses is equal to the number of right parentheses.

Give a recursive definition of all the nodes in a directed graph that can be 1
paths from a given node x. Use the adjacency relation as the operation in the
This definition also defines the set of descendants of a node in a tree.

Give a recursive definition of the set of ancestors of a node x in a tree.

List the members of the relation LEFTOF for the tree in Figure 1.6(a).



46. Using the tree below, give the values of each of the items in parts (a) to (€).

X
I
X X3 X4

\7 >
B X s

| | P
x_s X X2 A3

>

X X5 Y16

a) the depth of the tree
b) the ancestors of xq;
¢) the minimal common ancestor of x4 and xy;, of xy5 and xy;
d) the subtree generated by x;
e) the frontier of the tree
47. Prove that a strictly binary tree with n leaves contains 2n — 1 nodes.

48. A complete binary tree of depth 7 is a strictly binary tree in which every node on levels
1,2,...,n— lis aparent and each node on level n is a leaf. Prove that a complete
binary tree of depth n has 27+1 — 1 nodes.
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Languages

The concept of language includes a variety of seemingly distinct categories
natural languages, computer languages, and mathematical languages. A genera
of language must encompass all of these various types of languages. In this chapt
set-theoretic definition of language is given: A language is a set of strings over a
The alphabet is the set of symbols of the language and a string over the alphab
sequence of symbols from the alphabet.

Although strings are inherently simple structures, their importance in com:
and computation cannot be overemphasized. The sentence “The sun did not shine
of English words. The alphabet of the English language is the set of words and |
symbols that can occur in sentences. The mathematical equation

p=mxrxt)/v

18 a string consisting of variable names, operators, and parentheses. A digital ph
stored as a bit string, a sequence of 0’s and 1’s. In fact, all data stored and man
computers are represented as bit strings. As computer users, we frequently input i
to the computer and receive output in the form of text strings. The source code of
Eomn.mB is a text string made up of the keywords, identifiers, and special sy
Constitute the alphabet of the programming language. Because of the importancc
We begin this chapter by formally defining the notion of string and studying the
of operations on strings.
Languages of interest are not made up of arbitrary strings; not all strings
M\oaw are sentences and not all strings of source code are legitimate compute:
ahguages consist of strings that satisfy certain requirements and restrictions th



