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ABSTRACT
Invariants are powerful tools for program analysis and rea-
soning. Several tools and techniques have been developed to
infer invariants of a program. Given a test suite for a pro-
gram, an invariant detection tool (IDT) extracts (potential)
invariants from the program execution on test cases of the
test suite. The resultant invariants contain relations only
over variables and constants that are visible to the IDT.
IDTs are usually unable to extract invariants about execu-
tion features like taken branches, since programs usually do
not have state variables for such features. Thus, the IDT
has no information about such features in order to infer re-
lations between them. We speculate that invariants about
execution features are useful for understanding test suites;
we call these invariants, extended invariants.

In this paper, we discuss potential applications of ex-
tended invariants in understanding of test suites, and fault
localization. We illustrate the usefulness of extended invari-
ants with some small examples that use basic block count
as the execution feature in extended invariants. We believe
extended invariants provide useful information about execu-
tion of programs that can be utilized in program analysis
and testing.

1. INTRODUCTION
Invariants are powerful tools for understanding and anal-

ysis of programs. Invariants state existing relations between
variables of a program in different stages of the program
execution. Such relations can be used to reason about prop-
erties of the program. In other words, they try to reflect
the effects of different parts of the program on the program
state, while abstracting away concrete computation steps
of the program. For example, a loop invariant abstracts
statements in a loop by relations between data values in an
iteration to data values in the next iteration. Having such
invariants can greatly reduce the efforts needed to reason
about programs.

Inferring invariants from programs is hard. In fact, all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$10.00.

efforts in verification of a program p are spent to infer the
invariant “given an input, p produces correct output”. Sev-
eral techniques have been devised to infer invariants. These
techniques are broadly classified in two categories: static
techniques, and dynamic techniques.

Static invariant extraction techniques attempt to infer in-
variants from the source code. Since such inferences usually
involve conservative approximations of program behavior,
they do not scale to large code, but if such techniques finds
an invariant it is guaranteed to hold. These techniques often
use common static analysis frameworks like abstract inter-
pretation and constraint analysis to extract invariant. For
example, Cousot and Halbwachs uses abstract interpreta-
tion to find linear restraints between program variables [5],
or Kovacs and Voronkov use theorem provers to infer loop
invariants [14].

Dynamic invariant extraction techniques summarize com-
mon properties that are held true in multiple program runs.
These invariants are often called dynamic invariants or po-
tential invariants. Approximating behaviors of programs as
finite-state automata [2,7,21], and extracting potential con-
tracts [6, 9] are some of techniques that exploit information
of executions.

Invariants facilitate analyzing a program by abstracting
the program execution, but many tasks in software testing
and dynamic analysis need to know what the program ex-
ecutes. For example, in software testing, we want to make
sure that every part of a program is sufficiently exercised.

Unfortunately, an IDT cannot identify possible invariants
on what a program executes, because related data is not
visible to them. To address this, we suggest making in-
formation about the program execution available inside the
program execution. To this end, first, some features that can
characterize the execution are selected. Then, the program
is modified such that it computes those features alongside
its own computations. Now the IDT is able to observe the
characteristics of an execution during execution of the pro-
gram. Thus, it is able to summarize such characteristics.
New invariants in the modified program characterize the ex-
ecution by relating execution features of different parts of
the program to each other. We call the new invariants in
the modified program extended invariants. In the rest of
this paper, we use basic block counts as a feature of a pro-
gram execution to illustrate the idea.

Extended invariants can serve as powerful tools for un-
derstanding test suites and programs. They can be used
to compare two executions of a program by comparing the
characteristic invariants of them. Figure 1 shows a buggy



#define SIZE 64
int s = 0 ;
int s tack [ SIZE ] ;
int top (){

return s tack [ s ] ;
}

void push ( int i ){
s tack [ i ++];

}
void pop (){

i f ( s > 0)
s−−;

}

Figure 1: Stack source code.

Test Case 1 Test Case 2

----------- -----------

push(3); push(3);

top(); pop();

pop(); top();

push();

Figure 2: test cases for the stack implementation in

Figure 1.

implementation of a stack. This stack has two bugs: func-
tion top does not check if the stack empty, and push does
not check if the stack is full before adding a new element to
it. Consider test cases in Figure 2 for the stack. Test case 1
and test case 2 have similar blocks and branch coverage. It
can observed that the number of push operations in test case
2 exceeds the number of pop operations in the test cases 1.
Comparing branch and block coverage does not reveal this
difference. However, if we transform the program to include
the basic block count, as in Figure 3, invariants derived by
dynamic IDTs reflect these difference. Dynamic invariants
for test case 1 include extended invariant btop = bpush =

b1pop = b2pop, and for test case 2 includes extended in-
variants btop = b1pop = b2pop, and bpush - p2pop = 1.
Comparing the extended invariants of different test cases
helps to understand how a test case contributes in examin-
ing different aspects of a program. These invariants provide
more information than coverage data. Moreover, they can
be used to guide testing efforts.

In the rest of this paper, in Section 2, we present a simple
transformation to add computation of basic block counts of
a program into the program. This transformation includes
the required information for extended invariant to the pro-
gram. In Section 3, we present some possible applications
of extended invariants in software testing. In Section 4, we
describe possible application of extended invariants as a new
type of spectra for fault localization. Finally, Section 5 con-
cludes the paper.

2. PROGRAM TRANSFORMATIONS FOR
EXTENDED INVARIANTS

In this section, we outline transformation to include com-
putation of basic block count in a program. Basic block
count shows how many times a basic block has been ex-
ecuted in a program run. The proposed transformation in
this section can be easily adapted for other execution aspects
like branch coverage/count.

Algorithm 1 outlines steps for transformation of a pro-
gram P to include computation of basic blocks counts in
the program. The algorithm first identifies set BB of basic

#define SIZE 64
int s = 0 ;
int s tack [ SIZE ] ;
int btop , bpush , b1pop , b2pop ;
int top (){

btop ++; // b lock count ca l cu l a t i on
return s tack [ s ] ;
}

void push ( int i ){
bpush ++;// b lock count ca l cu l a t i on
s tack [ i ++];

}
void pop (){

b1pop ++;// b lock count ca l cu l a t i on
i f ( s > 0){

b2pop ++;// b lock count ca l cu l a t i on
s−−;
}

}

Figure 3: Transformed Stack source code which includes

block count information.

block s in P . For each basic block bi,1 ≤ i ≤ n a variable
gbi is defined and added to global variables of the program.
This variable captures total number of executions of bi in
the entire execution of program. Moreover, there might be
some relations within basic blocks of a function f internal
to individual executions of f . Thus, the algorithm adds new
variables local to the function to capture the number of times
a basic block is executed in a single invocation of f . Since
IDTs usually infer invariants at before entry point and after
exit point of functions, the algorithm adds the correspond-
ing variables to arguments of function, thus it makes IDTs
to process them. Suppose f has k basic blocks; to capture
their relations, the algorithm adds k new variables lbj to ar-
guments of f . Statement lbj = lbj +1 is added to each basic
block j, 1 ≤ j ≤ k to compute number of times block j is
executed in a single invocation of f . Algorithm 1 changes
each call-site to f to invoke f with new fresh values of lbi

by reference.

Algorithm 1 Transformation to compute basic block count.

Input: Program P, and BB = b1, ..., bn set of basic blocks
in P

1: for all basic block bi do
2: add an integer variable gbi to global variables.
3: add statement gbi = gbi + 1 to bi

4: end for
5: for all function f(a1, ..., am) except main in P do
6: LBB =Set {b′

1, ..., b
′
k} ⊂ BB of basic blocks in f

7: change the f(a1, ..., am) signature to
f(a1, ..., am, lb1, ..., lbk).

8: for all basic block b′
i do

9: add statement lbi = lbi + 1 to b′
i

10: end for
11: for all call sites of f in P do
12: extend the f function call to include a fresh integer

for each lbi.
13: end for
14: end for

Figure 4 shows the result of transformation of an imple-
mentation of Quick-Sort. g_bb_count array stores the basic
block counters during an execution of a program. Similarly,
l_bb_count array stores the function specific basic block
counters.



3. EXTENDED INVARIANTS AND TESTING
In this section, we discuss possible applications of ex-

tended invariants in testing. First we look at extended in-
variants to understand test suites and the diversity of be-
haviors that they explore. Then, we discuss potential use of
extended invariants in random testing.

3.1 Extended Invariants to Measure Test Di-
versity

Software testing techniques attempt to explore as diverse
as possible a range of program behaviors. They usually rely
on code coverage criteria to measure the diversity of pro-
gram behaviors explored by a test case/suite. Traditional
code coverage criteria such as statement or branch coverage
look at coverage of individual textual components of code,
but they ignore possible associations between coverage of
different areas of a program. Extended invariants seem to
be useful to relate the coverage of different parts of a pro-
gram.

Figure 4 depicts an implementation of quick sort that was
transformed to include basic block count variables. Now,
assume the following three inputs to the quicksort program:

int[] arrSorted = {1,2,3,4,5,6,7,8,9};

int[] arrReverseSorted = {9,8,7,6,5,4,3,2,1};

int[] arrShuffled= {3,2,3,4,2,6,7,1,9};

The corresponding extended behaviors follows.

l_bb_count[] one of {[1, 0, 0],[1, 0, 1]}

l_bb_count[] one of {[1, 0, 0],[1, 0, 1],[1, 1, 0]}

l_bb_count[] one of {[1, 0, 0],[1, 0, 1],[1, 1, 1]}

arrShuffled and arrReverseSorted have similar block cov-
erage. It can be observed that each of the extended invari-
ants represent different coverage behavior on inputs even
though the tests have the same coverage. Thus, it can be
justified that all three test cases are needed to provide a
diverse test suite.

Test case selection techniques based on operational ab-
straction [12] or residual branch coverage [18] cannot distin-
guish these differences and may discard any of above test
cases from the test suite. Pavlopoulou and Young propose
residual branch coverage for test case selection [18]. In resid-
ual branch coverage, a test case is added to a test suite if it
covers a new branch that is not covered by any of the already
selected test cases. Harder et al. propose selection of test
cases that either violate an operational abstraction of pro-
gram (i.e. potential invariant) or add branch coverage [12].
It seems that extended invariants subsumes this idea. More-
over, extended invariants include patterns of coverage which
seem to have been ignored in most efforts.

We believe extended invariants can serve as a metric to
measure diversity in test suites. We also stipulate using

pub l i c c l a s s qs{
stat ic int [ ] g bb count = new int [ 9 ] ;
stat ic int pa r t i t i o n ( int ar r [ ] , int l e f t , int r ight , int l bb count [ ] ) {

g bb count [ 0 ] ++; l bb count [ 0 ] ++;
int i = l e f t , j = r i gh t ;
int tmp ;
int pivot = arr [ l e f t ] ;
while ( i <= j ){

g bb count [ 1 ] ++; l bb count [ 1 ] ++;
while ( a r r [ i ] <= j ){

g bb count [ 2 ] ++; l bb count [ 2 ] ++;
i++;

}
while ( a r r [ j ] > pivot ){

g bb count [ 3 ] ++; l bb count [ 3 ] ++;
j−−;

}
i f ( i <= j ){

g bb count [ 4 ] ++; l bb count [ 4 ] ++;
tmp = arr [ i ] ;
a r r [ i ] = ar r [ j ] ;
a r r [ j ] = tmp ;
i++;
j−−;

}
}
g bb count [ 5 ] ++; l bb count [ 5 ] ++;
return i ;

}
stat ic void quikSort ( int ar r [ ] , int l e f t , int r ight , int [ ] l bb count ){

int index = pa r t i t i o n ( arr , l e f t , r i ght , new int [ 6 ] ) ;
g bb count [ 6 ] ++; l bb count [ 0 ] ++;
i f ( l e f t < index −1){

g bb count [ 7 ] ++; l bb count [ 1 ] ++;
qu ickSort ( arr , l e f t , index − 1 , new int [ 3 ] ) ;
}

i f ( index < r i gh t ){
g bb count [ 8 ] ++; l bb count [ 2 ] ++;
qu ickSort ( arr , index , r ight , new int [ 3 ] ) ;

}
}

}

Figure 4: Result of transformation of an implementation of quick sort.



for ( i = 0 ; i < SIZE ; i++){
int op = random ( 3 ) ;
switch ( op ){
case 0 : top ( )

break ;
case 1 : pop ( ) ;

break ;
case 2 : push ( ) ;

break ;
}

}

Figure 5: Random test generator for stack.

extended invariants for test case selection may work bet-
ter than traditional approaches based on coverage or opera-
tional abstraction.

3.2 Extended Invariants in Random Testing
Systematic test techniques exploit some information about

the program under test (SUT) to divide the input space
into partitions, and then they pick samples from the parti-
tions to test the program. Essentially partitions are regions
with different failure rates [3]. Thus, success of system-
atic test techniques relies on (1) appropriate partitioning
of data which represents situations that software will face
in real world, and (2) choosing good samples from equiva-
lence classes to represent partitions and reveal more diverse
behavior of software. Both of these factors require precise
information about the SUT. In other words, if the partition-
ing is based on imprecise information, the effectiveness of
systematic testing to reveal errors decreases substantially.

On the other hand, random testing techniques pick inputs
randomly. They have shown to be effective to reveal bugs in
important complex programs [8,17]. Random testing is well-
suited when there is a lack of information about the input
space. The effectiveness of random testing highly depends
on the configuration of random inputs. Thus, it is important
to monitor the random testing process and identify when its
continuation does not benefit testing anymore. At such a
point, it can be effective to switch to more expensive test
techniques such as (dynamic) symbolic execution, or change
the configuration of the random tester.

Recall stack example in Section 1 (Figure 3). If maximum
size of the array is 64, at least 65 consecutive push opera-
tions are required to manifest a failure. Figure 5 shows a
random tester for the stack data structure. This random
tester generates tests of length SIZE which fails to detect
the error. Suppose we change the for loop to for(i = 0;

i < SIZE + 1; i++). Now the bug might be revealed with
probability of 1

365 ! If the bug was not found after a while,
extended invariants over test cases could be used to summa-
rize the properties of coverage in the program. They reveal
that bpush - b1pop() < SIZE. Knowing this fact about test
cases, a tester can remove pop from the configuration to in-
crease the likelihood of stack overflow.

We think that extended invariants can be used to guide
random testing. Traditional test case selection techniques
(discussed in Section 3.1) can be used to decide when to
stop random testing, but as discussed they are not as pre-
cise as extended invariants, moreover, they do not provide
clues about the test suite to guide the random testing. Groce
et. al propose a different approach in random testing [10].
Instead of using a single configuration that includes all test
features, they propose to create several different configura-

tions which each include a random subset of features. Their
approach also does not suggest a condition to stop random
testing, or to guide it.

4. EXTENDED INVARIANTS AND FAULT
LOCALIZATION

Fault localization is a part of software debugging that fo-
cuses on finding the location of faults in the program. Sev-
eral techniques have been proposed for fault localizations.
Spectrum-based fault localization techniques contrast code
coverage (e.g. statement coverage [13], block coverage [20])
in failing runs and passing runs to find suspicious state-
ments. Liblit et. al propose cooperative bug isolation [15,16]
which uses a statistical framework to find suspicious predi-
cates in programs that tend to appear (be held true) more in
failing executions than passing executions. Some techniques
compare dynamic slices of failing executions and passing ex-
ecution to find the fault, e.g. [1, 11]. Cleve and Zeller have
used cause transitions to isolate suspicious statements in the
program [4].

Pytlik et al. attempted to use invariants for fault local-
ization [19]. They contrast dynamic invariants in failing
traces with passing traces. They applied their technique to
the Tcas and print tokens Siemens subject programs and
failed to find meaningful results. However, when we used
extended invariants instead of traditional invariants on a
version of Tcas, we were been able to spot a difference be-
tween extended invariants of passing executions and failing
executions that corresponds to the location of fault. There-
fore, it seems that extended invariants can be useful for fault
localization.

5. CONCLUSION
In this paper we introduced the notion of extended invari-

ants. They state relationships between coverage of different
parts of programs together or between execution and pro-
gram variables. We speculated about the potential use of ex-
tended invariants in software testing and fault localization.
The idea needs to be examined thoroughly for effectiveness.

Exploiting extended invariants suffers from common draw-
backs of dynamic invariant detection techniques: perfor-
mance and irrelevant predicates. The current invariant de-
tectors are slow for large programs due to heavy profiling of
the program execution, and exhaustive search for identifying
relationships between all variables. Moreover, they return a
lot of uninteresting invariants.

We believe extended invariants can help in understanding
test suites and they deserve more investigation. Therefore,
in the future, we would like to explore capabilities of ex-
tended invariants in test suite minimization and fault local-
ization.
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