
(Quickly) Testing the Tester via Path Coverage

Alex Groce
Laboratory for Reliable Software

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109, USA

Oregon State University
School of Electrical Engineering and

Computer Science

Corvallis, OR 97331 USA

agroce@gmail.com

The research described in this publication was carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under

a contract with the National Aeronautics and Space Administration.

Funding was also provided by NASA ESAS 6G.

ABSTRACT
The configuration complexity and code size of an automated
testing framework may grow to a point that the tester itself
becomes a significant software artifact, prone to poor config-
uration and implementation errors. Unfortunately, testing
the tester by using old versions of the software under test
(SUT) may be impractical or impossible: test framework
changes may have been motivated by interface changes in the
tested system, or fault detection may become too expensive
in terms of computing time to justify running until errors are
detected on older versions of the software. We propose the
use of path coverage measures as a“quick and dirty”method
for detecting many faults in complex test frameworks. We
also note the possibility of using techniques developed to di-
versify state-space searches in model checking to diversify
test focus, and an associated classification of tester changes
into focus-changing and non-focus-changing modifications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Measurement, Verification

Keywords
test frameworks, evaluation of test systems, regression test-
ing

ACM acknowledges that this contribution was authored or co-authored by
a contractor or affiliate of the U.S. Government. As such, theGovernment
retains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
WODA ’09July 20, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-656-4/09/07 ...$5.00.

1. INTRODUCTION
The benefits of effective large-scale automatic test gener-

ation are increasingly accepted in the software engineering
community. Random testing [14, 10, 3, 21], constraint-based
testing [9, 22, 24, 4], and model checking-based methods [23,
15, 11] all provide the ability to automatically generate a
very large number of tests for a software system. Unfortu-
nately, most of these systems rely on the implementation of
a test harness and a set of configuration options that con-
trol the harness and any associated automated testing tool
(e.g., DART [9], Splat [24], SPIN [18]). We refer to the test
harness code plus any configuration options generally as the
“tester” — the test framework plus option choices that gov-
ern its behavior.

The test harness will, in many cases, be occasionally mod-
ified: it must adjust to changes to the interface of the SUT
(software under test). Even if the interface is constant, con-
figuration changes (which may or may not require changes
to the test harness itself) are likely to be frequent. In ran-
dom testing, operational profiles may change, or the pursuit
of errors may lead to adjustments in the probabilities of op-
erations and parameters and the introduction or modifica-
tion of feedback mechanisms. The definition of inputs may
need to be altered to improve the scalability of constraint-
based approaches. Model checking-based approaches will
often present an even wider array of tunable options, given
that they will almost certainly combine user-defined state-
space abstractions with a choice of search strategy.

Complex, frequently modified software systems have bugs.
This is a truth known to all who are likely to use automated
testers. In the case of a tester, the most obvious conse-
quences of faults are (1) false positives and (2) inability to
detect otherwise detectable faults in the SUT. False posi-
tives are relatively harmless: they are a visible symptom,
and in many cases it requires little effort to determine that
they do not relate to actual faults in the SUT. Failure to
detect faults, however, may have grave consequences: an in-
effective automated tester may produce a dangerous false
confidence in the quality of the SUT, and result in a high
rate of faults detected later in the development cycle (with
the related increase in the cost of correction) or in operation
(in which case the consequences may be catastrophic).

These issues are not merely theoretical concerns, in our
case. As part of our ongoing efforts to apply aggressive au-
tomated testing to the file systems for the next JPL Mars

rover mission, the Mars Science Laboratory [1], we have de-
veloped a large test framework, providing model checking
with unsound abstractions and random testing [13]. In the
last four months, we have discovered (after long delays and
painful debugging) configuration and implementation faults
in the tester, introduced during efforts to improve it and
adaptations to changes in the SUT’s interface. We believe
that we have restored our tester to its former effectiveness
(and in some ways improved it), but are greatly disturbed
by our complacence during weeks of tests reporting no er-
rors. In our case, we were fortunate that new changes to the
SUT introduced faults that the developer became aware of
through independent testing, very basic faults that should
certainly have been detected by our tester. Without this
“alarm” we might have continued to proceed with a testing
program that inspired false confidence in the correctness of
the SUT, in the test team, the developer, and users of the
file system modules.

How do we detect the non-detection of errors? What kind
of test oracle can be used to expose this kind of problem?

1.1 Traditional Regression Testing
We can (perhaps) run the tester on older versions of the

SUT, which might expose a fault that prevents detection of
already known bugs. It may (and often will) be the case,
however, that older faults in the SUT will have a higher
probability of detection (known to likely be the case in our
applications [2]), and so a faulty tester may still uncover
known faults. Even if fault detection probabilities remain
roughly constant, they may be low enough to make regres-
sion testing very expensive. If finding an error requires many
hours of testing, checking the ability to detect that fault may
be too time-consuming to be practical.

Additionally, as noted above, in many cases the tester
changes in response to interface changes to the SUT, making
regression maintenance a costly and error-prone process.

A more general concern is that, in searches of large state
spaces, the ability to (quickly) find a given fault or set of
faults is not a very good predictor of the ability to find
other, unknown faults. Dwyer, Person, and Elbaum show
the limitations of finding a given needle in a haystack as a
predictor for the value of model checking heuristics, a case
that strongly resembles our “testing a tester” problem [7].

1.2 Differential Testing
We clearly cannot rely on differential testing [19] to com-

pare testers: the only comparison would be with an equally
powerful (or better) tester. If we had access to a better
tester, we would presumably use it in the first place. An
equally powerful tester will, clearly, require execution time
roughly equal to that of the tested tester. Given that large
scale automated testing runs often, in our experience, re-
quire hours or days to detect faults that are not dense in the
state-space (the faults we are most concerned with), this is
at least as impractical as regression testing. We do expect
independent test efforts to exist in many cases, and for this
to serve (as in our experience) as a kind of “differential test-
ing,” but to operate without any particular automation or
systematization.

1.3 Coverage Metrics
We investigated the feasibility of introducing a regression

test system for our tester, but (thus far) abandoned this

idea in light of the analysis above. We then noted that
our tester already provided the option to capture coverage
information, the most common measure of test effectiveness.
Why not rely on coverage metrics as our proverbial canary
in the coal mine?

We therefore hoped that branch or statement coverage
could be adopted as a first-order defense against tester re-
gression. Such coverage is inexpensive to compute and, when
there are unexpected differences in two testers, the results
are easy to interpret — i.e., “we are not calling this top-
level function anymore” or “the only pathname we’re using
is root” (examples from our own experience). Unfortunately,
as we previously discovered, branch coverage and abstract
state-space coverage for radically different search approaches
did not differ greatly, even after an hour of testing [13]. It
seemed unlikely that most tester faults would induce much
larger differences in coverage than those between random
testing and model checking. In practice, the coverage met-
rics we had been concentrating on were simply too coarse-
grained to provide quick detection of many tester faults.
We therefore turned to a finer grained coverage metric, as
an alternative in the many cases where branch or statement
coverage does not reveal differences in testers.

1.4 Path Coverage
This paper proposes the use of path coverage as a measure

for tester effectiveness. We suggest that path coverage is suf-
ficiently fine-grained that reductions in tester effectiveness
will likely introduce significant decreases in path coverage of
the SUT, even over extremely short testing periods (10 min-
utes, though equivalent to perhaps an hour due to exploita-
tion of parallelism). Path coverage is not a perfect approach
to this problem: it generally acts as a test for regressions,
checking for a decrease in quality of the tester, rather than
a method for exposing faults that have been present in all
versions of a tester. We discuss below the possibility of us-
ing path coverage results to suggest “improvements” to the
tester.

We report our observations of the effectiveness of this
method for a complex JPL test framework, applied to a flight
mission flash file system. Our results confirm that measur-
ing path coverage would have indicated faults in the test
harness or its configuration that otherwise went undetected.
Path coverage results also suggest that configurations that
we have not used in our larger test runs may sometimes
prove effective in increasing path coverage. Path coverage
generally makes trade-offs in tester behavior more visible,
and may indicate a need for configuration diversity as well
as search diversity. Without a quick and fine-grained mea-
sure of configuration effectiveness, however imprecise it may
be, such diversification would probably be too ad hoc to be
effective.

The primary threats to the validity of these preliminary
results are the application to one tester and one SUT, but
we expect to follow these preliminary results with an investi-
gation of other industrial-scale automated testers and other
SUTs. In a sense, this paper simply repeats the common
theme of testing literature, that coverage metrics can be
useful in evaluating test suites. However, we believe that by
re-focusing this notion to the problem of testing a particular
version of a test framework and its configuration, and indi-
cating the utility of full path coverage (generally considered
a somewhat expensive metric to record) for this purpose,

we may increase the effectiveness of large-scale automated
testing.

1.5 Summary: Proposed Test Methodology

1. At a minimum, compute statement and/or branch cov-
erage results for a short run of a new tester version.
Compare this to previous coarse coverage results. If
there are unexpected changes, this serves as a quick
and easy-to-interpret sign of fault in the new tester.

2. If coarser coverage measures do not reveal a problem,
compare total path coverage results. If there is a large
decrease, this is a strong indication of a fault in the
tester. If the change to the tester was intended to
increase test focus (that is, to omit some operations to
concentrate on certain aspects of behavior) proceed to
the next step before assuming a fault is present.

3. Finally, compare path coverage for individual functions
(in our case, top-level operations in the test harness).
If the change to the tester was intended to increase
focus, and the path coverage results show a tradeoff in
coverage (where less coverage of one aspect of behavior
is “paid for” by increased coverage in the areas “in-
focus”), then proceed with testing. Otherwise, a fault
may well be indicated.

2. MEASURING PATH COVERAGE
We use CIL [20] to instrument the SUT in order to record

path coverage information [12]. In some applications of our
approach, path coverage would be a simple end-to-end mea-
sure, for SUTs in which test cases consist of an input value
which produces an execution and output. However, for the
stateful systems that are perhaps most suitable for random
testing and model-driven verification [21, 15], a test sequence
typically consists of a series of function calls. We choose to
measure path coverage at the granularity of top-level func-
tion calls. That is, we maintain a set of paths covered for
each top-level-entry function that is called by the test har-
ness. If our test harness only called the open, close, read

and write functions of a file system, we would maintain
separate sets of paths for each of those four functions. We
record a path as a bit vector, containing every if-then de-
cision made by the execution of the function, from entry
until return to the test harness. This bit vector includes
all decisions made in functions called by the top-level func-
tion, recursively, and therefore records all path information.
We exploit CIL’s reduction of branching/looping constructs
to reduce the path-recording problem to only the if-then

case1.
In general the number we will use to measure tester effec-

tiveness is simply the total number of unique paths through
functions executed during a test run. E.g., for the four func-
tion example above, the path coverage would be the sum
of the number of unique paths through open, unique paths
through close, unique paths through read, and unique paths
through write.

2.1 Overhead: Costs vs. Benefits
1In practice, additional information is required for switch
statements, but our SUT does not use this feature of C.

In previous work, we measured the overhead of adding
path coverage instrumentation to a model checking run at
only around a 12% [12] slowdown. Model checking based
testing with SPIN, in our experience, spends over 90% of
test time hashing and comparing states. Since only the SUT
is instrumented, and not the model checker itself, this keeps
overheads for even very expensive instrumentations reason-
able. If others apply path coverage to test random or sys-
tematic testers with lower computational overhead for the
test method itself, we expect this overhead to increase con-
siderably. Using path coverage to test “concolic” testers [22]
requires no overhead (such tools already compute explored
paths), but is presumably already the primary metric de-
velopers use (other than fault detection) in evaluating such
tools, though perhaps not from quite the same perspective
as in our work. Perhaps most importantly, given that we
observed large differences in path coverage in a ten minute
test run, we suspect that collecting path coverage is likely
to pay off if it prevents overnight runs of faulty testers, even
if the overhead for the brief “tester testing” runs is rela-
tively high. For less effective test approaches that generate
fewer paths per unit of testing time, the differences may be
smaller; however, random testing would appear to be even
more amenable to exploitation of parallelism than our state-
based testing.

We do note that the memory requirements for storing
hundreds of thousands of paths are considerable. Our cur-
rent implementation naively allocates nearly 2GB for path
storage, and makes no attempt to optimize the check for
new paths. In practice, we find even this approach efficient
enough to use in real test runs, though it would be reason-
able to only compute coverage for testing the tester. While
there is a possibility of exponential increase in path lengths,
we found that allowing for up to 40,000 paths through each
top-level function, with up to 13,000 decisions (bits) in each
path sufficed even for overnight runs of the test system (and
more than sufficed for 10 minute tester evaluation runs).
Again, the need to devote perhaps 1 or 2 GB to storing
path information may be problematic in other contexts, but
compared to memory requirements for model checking (or
the need to store all paths already present in most concolic
testing), it is not a concern in our case. It is important to
remark that we expect keeping “whole test” paths (with the
full set of decisions made through the entire test run, an-
notated with which top-level functions were chosen) would
potentially exponentially increase the number of paths to be
stored, and impose an unacceptable overhead. In the case of
tests that must be considered as whole-program paths (i.e.,
a single input resulting in a run to termination), we be-
lieve that storing paths through individual functions should
prevent the exponential explosion from overwhelming test
resources. Godefroid has shown this basic approach to work
well for concolic testing [8].

3. EXPERIMENTAL RESULTS
Our results are from a tester, based on (non-exhaustive)

model checking (model-driven verification of C code [15]) for
file systems to be used on the Mars Science Laboratory mis-
sion. More details of the tester and the applications tested
can be found in our earlier work comparing model checking
and random testing [13]. Briefly, the test harness chooses
POSIX operations and performs them on two file systems,
comparing results. It also introduces hardware faults (bad

Version Paths Comments

+ No bad blocks 349,177 No bad blocks allowed
+ No lseek 265,056 Removed the lseek operation from testing
+ Write/read step increase 241,603 Increased granularity of writes/reads to page size (64)
Standard 240,166 Current standard configuration

+ No close 232,764 Removed the close operation from testing
+ No read 218,961 Removed the read operation from testing
* + No resets 214,666 Without system resets
* Abstraction bug 209,801 Fails to properly distinguish between flash states
* + Broken file descriptor choice 194,289 FD selection fault: results in use of only one file descriptor
+ No unlink 185,946 Removed the unlink operation from testing
+ No initial bad blocks, one bad block fault 190,060 No initial choice, one bad block via fault
- With rename 177,974 Allows rename operations to be performed
- Write/read step decrease 171,496 Decreased granularity of writes/read to 8 bytes
* Alternative random selection 102,424 Randomization method that interacts poorly with swarm search
+ No directories 88,921 Prohibit all directory-creating operations
* Broken path choice 87,693 Path selection code fault, limits pathnames given to operation
* Random testing mode 43,128 Random testing mode
* Only 2 erases allowed 41 Bad commenting in configuration limiting total flash erases
Sequential MC run (12 hours, 4GB memory) 89,976 SPIN without swarm

Table 1: Experimental results

blocks, system resets) that must be properly handled by the
SUT. The test harness is approximately 4K lines of code, in
PROMELA and C, and the SUTs are approximately 14K
lines of C code, in two file systems (NVFS and RAMFS,
a flash and RAM file system respectively). SPIN performs
a backtracking search of the state-space produced by the
test system. The state used is a very coarse abstraction
of the flash file system configuration, augmented with path
information and some knowledge of the test operation just
performed. In general, the model checker is attempting to
generate all states reachable by file system operations and
hardware faults, using unsound abstraction to address the
problem of the state-space explosion [5].

The tester is controlled by 130 configuration options that
control fault behavior, system abstraction, allowed opera-
tions, and other parameters. It may be useful to note that
in our results, we matched on path coverage. That is, we
considered a state new if it resulted from a previously un-
explored path through a function, a heuristic we have previ-
ously found useful in combination with other search strate-
gies [12]. This biases every test run in favor of improved
path coverage. If a test results in even somewhat lower path
coverage here, it is a strong indication that it produces fewer
opportunities to explore new paths, rather than simply ac-
cidentally exploring fewer paths. Assuming that path cover-
age is desirable, which seems to be a reasonable expectation
(i.e., it is a primary justification for DART and similar ap-
proaches [9]), there seems to be little reason to ever run the
tester without path matching, when we are committed to the
memory and time overhead of gathering path information.

Table 1 shows the total path coverage (sum of number
of paths through all functions called by the harness) for a
number of versions of the tester. In each case, the results are
for only 10 minutes of testing by the swarm tool [17], con-
figured to use 16GB of memory and 6 processors. Swarm
“diversifies” a model checking search by launching a large
number of configurations of the search strategy, ideally on a
multicore system. The tester versions include both our cur-

rent standard version, as we began experimentation, some
known-bad versions (the regressions which had failed to find
high-probability faults in the SUT), and a number of new
variations introduced in order to provide comparison. We
mark the “known bad” versions with a * in the table: these
are actual faulty versions of the tester, applied at least once
during our testing efforts. All known bad versions produced
lower path coverage, by at least 5,000 paths. Consider a
concrete example: at one point in testing, we attempted
to increase the effectiveness of the feedback mechanism con-
trolling the generation of pathnames used in operations [13].
Our intention was to increase the bias of the testing in favor
of pathnames that had been used as arguments to a suc-
cessful mkdir or creat operation. However, in coding this
change, we accidentally modified the inner loop of the path
selection code forcing the pathname selection to return only
one of two paths (root and a single path in the root direc-
tory). The bug reduces the path coverage for a 10 minute
test run by over 100,000 paths (240,000 vs. 90,000 paths).

We provide a secondary justification of our assumption
that path coverage will serve as a useful indication of fault-
detection capability. In our experience [17] an hour swarm
run is considerably more effective than an overnight sequen-
tial SPIN search, even taking into account the increased par-
allelism. That is, if we run a non-diversified search for a cer-
tain amount of time, and give a parallelized and diversified
search time divided by the number of processors (or even
less than that), the swarm search is much more effective at
detecting faults in the SUT. This correlates well with the
path coverage for an overnight sequential model checking
run, shown at the bottom of the results table. Sequential
model checking for 12 hours produces as few paths as the
more broken versions of the tester produce in only 10 min-
utes (rough equivalent of 60 minutes, single-threaded) of test
time.

3.1 The Complications of Test Focus
The results not marked with a * suggest a slightly more

complicated picture. For three variations, the path cover-
age improves either slightly or considerably over the default
tester. However, we cannot simply consider these to be
“better” testers: in two of these cases, we can show that
it is impossible to detect certain potential faults of the SUT
with the variation — e.g., the most effective (in terms of
path coverage) tester does not introduce any hardware bad
block faults. We call this kind of modification an increase in
test focus. It seems plausible that, since we cannot explore
the full state-space of the SUT, in some cases limiting the
sub-graph we consider may increase our efficiency in finding
paths through that sub-graph. A further support for this
possibility is found in the results for adding the rename op-
eration to the test mix, which surprisingly decreases total
path coverage.

Even when an increase in focus does not obviously make
certain faults undetectable, we cannot be certain it is a gain:
for example, limiting the possible sizes of reads and writes
to files increases coverage by over 100,000 paths from the
standard configuration, but may reduce our ability to find
boundary condition errors in page-content splitting. Under-
standing the implications of focus-changing alterations is a
challenge (if it were not, designing good testers would be a
science rather than, as at present, something of an art).

3.1.1 A Case for Tester Diversification
Rather than focus on finding a single “optimal” tester con-

figuration and design, we suspect that it might be best, in
some cases, to exploit a diversity of tester configurations.
It is known that search diversity is often critical when we
cannot easily make choices about the optimal method for
searching a state space or performing random walks in ran-
dom testing [17, 16, 6, 2]. That similar situations might arise
in the definition and configuration of the test harness (and
thus the state space) itself seems reasonable. Rather than
implementing a single monolithic tester and attempting to
optimize it, it might be better to define core functionality of
the tester but make the focus of the search easily changeable.
With such a tester, it should be possible to use automated
methods very similar to those employed in the swarm tool
to diversify testing.

In this case, the existence of path coverage as a relatively
inexpensive measure of the effect of a variation might enable
more interesting approaches to diversification, based on a
meta-search that balances path coverage and the ability to
detect a broad class of errors. It might also be useful to
use path coverage to guide search diversification in swarm
or other similar tools — for example, we suspect that path
coverage might be a better basis than error detection for
iterative deepening to choose random test run length [2] (due
to the very low density of some errors). Further investigation
of this topic is clearly in order.

3.1.2 Two Kinds of Tester Modifications
We therefore suggest classing changes to the tester into

two groups: changes that alter focus and changes that do
not alter focus. For changes that alter focus, a decrease in
path coverage does not always indicate a fault in the tester.
It may rather indicate that the tester is now more general,
and less focused, which may enable it to detect certain errors
(but at a cost of decreased efficiency in path exploration).
If a change to the tester results in decreased path coverage,
but is not expected to decrease tester focus (e.g., a modifica-

tion in reaction to a change in SUT interface, or a “bug-fix”
for the tester’s oracle), the path coverage change presum-
ably indicates a fault. Increased path coverage, on the other
hand, may not indicate a pure improvement in the tester,
if focus removes some faults in the SUT from the scope of
testing. As we discuss below, when dealing with changes
expected to alter focus, it is best to consider more detailed
path information.

3.2 Using More Detailed Path Information
The approach above is all well and good, for the most

part, for detecting a regression of our tester. Unfortunately,
our baseline is the coverage for some past version of the
tester. Raw total path coverage numbers will not help us
find flaws in the tester that are present in all past versions
and configurations. We may, by accident or design, improve
the tester, and discover or verify this improvement using
total path coverage. If want to use path coverage to guide
improvement, however, we must consider the full vectors of
coverage numbers, or even the precise details of which paths
have been covered.

3.2.1 An Anecdote: Debugging the Paper Itself
The original version of this paper showed quite different

results in Table 1. In part, this was due to basing results
on 20 minute test runs, but it was, more significantly, due
to an error in the way path coverage was computed. In
some cases, a path would persist after the model checker
backtracked, causing a path to be assigned to the wrong
top-level function, or even to two functions. Fixing this error
resulted in a much less ambiguous story: most changes to
our standard tester decrease path coverage, as expected.

We detected this error (just before receiving notification
that the paper was accepted) by looking at detailed path
information. We observed that the results in some cases re-
ported over 1,000 paths through the unmount function. In-
spection of the code confirmed that at most there were only
64 paths through the function.

3.2.2 Making Focus Visible
Table 2 shows path vectors for a subset of top-level test

operations, for the same versions and test runs as Table 1.
In this table, we have highlighted the best coverage for each
operation in bold. Suddenly, the effects of focus become
clear. While removing all directory operations decreases to-
tal coverage by over 100,000 paths, it dramatically increases
coverage of operations that do not depend on the directory
structure of the system: coverage for write, read, lseek,
and unlink is better (by a factor of close to 2 in most cases)
than for any other version of the tester. The“optimal”tester
(with best total path coverage), on the other hand, decreases
path coverage for all but one of these operations compared to
the standard configuration. This further supports our spec-
ulations concerning focus diversity. The vector results also
show that the truly buggy versions of the tester generally
do worse in almost every category: these versions exhibit a
fault rather than a trade-off. No faulty version improves on
more than one category, over the standard tester. Again,
this should work well for fault detection in focus-altering
changes: if path coverage decreases for operations that are
the intended beneficiaries of focus, we expect that the change
is likely faulty.

3.2.3 Going to the Source

Version mount write read lseek mkdir rmdir creat unlink

+ No bad blocks 31,958 18,222 89 131 19,072 19,353 16,411 2,072
+ No lseek 25,433 19,934 93 0 16,980 12,482 12,319 3,020
+ Write/read step increase 21,394 16,837 92 141 13,418 11,865 10,633 3,252
Standard 21,246 16,203 97 140 13,252 11,615 10,960 2,935
+ No close 21,097 18,545 87 135 13,111 11,087 10,721 2,832
+ No read 21,202 16,324 0 140 11,955 10,038 9,971 2,943
* + No resets 19,200 19,687 74 89 12,132 9,542 10,254 1,655
* Abstraction bug 18,685 16,120 86 142 11,905 10,016 9,427 2,358
* + Broken FD choice 18,880 12,148 64 151 11,942 9,110 9,009 2,617
+ No unlink 18,077 15,288 99 153 10,064 8,618 8,144 0
+ No initial bad blocks, 1 fault 18,689 15,712 82 120 9,858 7,295 8,440 2,347
- With rename 17,169 15,564 78 142 9,506 7,161 7,517 1,726
- Write/read step decrease 15,277 13,771 93 134 9,432 6,729 7,345 1,775
* Alternative random selection 7,738 7,693 91 126 4,577 4,275 4,730 2,743
+ No directories 18,116 59,850 160 206 0 0 3,803 4,707
* Broken path choice 12,903 12,641 23 104 1,243 1 1,266 1
* Random testing mode 11,026 1,741 61 66 2,197 1,599 2,542 1,246
* Only 2 erases allowed 10 2 3 2 2 1 2 1
Sequential model checking run 7,324 823 9 10 9,062 8,749 6,131 91

Table 2: More detailed coverage results

We speculate that it should be possible to use the detailed
path information to guide improvement of the tester, at the
cost of considerable effort. For functions with a small num-
ber of paths, it is reasonable to simply examine the full set
of paths and consider whether any interesting paths are not
included. This seems plausible, in our case, for the read and
lseek operations. In cases where the sheer number of paths
makes this impossible, we speculate that compression of sub-
paths through functions called by the top-level function and
abstraction of loop paths might reduce the number of paths
to a manageable number. This idea of abstraction of paths
introduces a final issue, beyond the scope of this paper: all
paths are not created equal. Ideally, we would know which
paths matter most. However, at present, other than some
intuitions in the direction of compositional coverage (func-
tion paths rather than whole-program paths) and the idea
that loops should be treated differently, there is little em-
pirical or theoretical justification for preferring some paths
to others, in general. There is no substitute, at present, for
knowledge of the problem domain and SUT.

4. CONCLUSIONS AND FUTURE WORK
As noted in the introduction, one core element of this

work may be obvious, or at least widely agreed-upon: path
coverage is a plausible measure of the effectiveness of a test
suite. A tester’s execution produces a test suite, and the
effectiveness of that suite is the best “correctness” specifica-
tion for the tester. Therefore, measuring path coverage is a
good method for testing complex automated testers, when
simpler methods such as branch or statement coverage do
not suffice. We go beyond this (perhaps obvious) conclu-
sion to show that even a 10 minute tester run can expose
faults in the tester, effectively making the question of cov-
erage overhead irrelevant. We also propose a simple scheme
for classifying changes to the tester according to whether
they are expected to alter test focus, and note that even
when focus is altered, total path coverage is somewhat use-

ful, and a vector of coverage for various functions is highly
informative.

One obvious area for further research is the idea of test
focus and tester diversification. If path coverage is a suit-
able low-cost measure of tester effectiveness, we may be able
to write intelligent diversification systems that exploit this
measure, given some ability to trade coverage off with test
generality.

Further experimental results to confirm the utility of path
coverage for our purposes (and the low overhead of measur-
ing it, at least in model checking contexts) are also in order.

Acknowledgements: The author would like to espe-
cially thank Rajeev Joshi for discussions relating to the
topic of this paper, and contributions to the development
and maintenance of the tester and instrumentation systems.
Thanks are also due to Gerard Holzmann and Klaus Havelund
for helpful thoughts.

5. REFERENCES
[1] http://mars.jpl.nasa.gov/msl/.

[2] James H. Andrews, Alex Groce, Melissa Weston, and
Ru-Gang Xu. Random test run length and
effectiveness. In Automated Software Engineering,
pages 19–28, 2008.

[3] James H. Andrews, Susmita Haldar, Yong Lei, and
Chun Hang Felix Li. Tool support for randomized unit
testing. In Proceedings of the First International
Workshop on Randomized Testing, pages 36–45,
Portland, Maine, July 2006.

[4] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David
Dill, and Dawson Engler. EXE: automatically
generating inputs of death. In Conference on
Computer and Communications Security, pages
322–335, 2006.

[5] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 2000.

[6] Matthew B. Dwyer, Sebastian G. Elbaum, Suzette
Person, and Ragul Purandare. Parallel randomized

state-space search. In International Conference on
Software Engineering, pages 3–12, 2007.

[7] Matthew B. Dwyer, Suzette Person, and Sebastian
Elbaum. Controlling factors in evaluating
path-sensitive error detection techniques. In
Foundations of Software Engineering, pages 92–104,
2006.

[8] Patrice Godefroid. Compositional dynamic test
generation. In Principles of Programming Languages,
pages 47–54, 2007.

[9] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In
Programming Language Design and Implementation,
pages 213–223, 2005.

[10] Alex Groce, Gerard Holzmann, and Rajeev Joshi.
Randomized differential testing as a prelude to formal
verification. In International Conference on Software
Engineering, pages 621–631, 2007.

[11] Alex Groce, Gerard Holzmann, Rajeev Joshi, and
Ru-Gang Xu. Putting flight software through the
paces with testing, model checking, and
constraint-solving. In International Workshop on
Constraints in Formal Verification, pages 1–15, 2008.

[12] Alex Groce and Rajeev Joshi. Extending model
checking with dynamic analysis. In International
Conference on Verification, Model Checking, and
Abstract Interpretation, pages 142–156, 2008.

[13] Alex Groce and Rajeev Joshi. Random testing and
model checking: Building a common framework for
nondeterministic exploration. In Workshop on
Dynamic Analysis, pages 22–28, 2008.

[14] Richard Hamlet. Random testing. In Encyclopedia of
Software Engineering, pages 970–978. Wiley, 1994.

[15] Gerard Holzmann and Rajeev Joshi. Model-driven
software verification. In SPIN Workshop on Model
Checking of Software, pages 76–91, 2004.

[16] Gerard Holzmann, Rajeev Joshi, and Alex Groce.
Swarm verification. In Automated Software
Engineering, pages 1–6, 2008.

[17] Gerard Holzmann, Rajeev Joshi, and Alex Groce.
Tackling large verification problems with the swarm
tool. In SPIN Workshop on Model Checking of
Software, pages 134–143, 2008.

[18] Gerard J. Holzmann. The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley
Professional, 2003.

[19] William McKeeman. Differential testing for software.
Digital Technical Journal of Digital Equipment
Corporation, 10(1):100–107, 1998.

[20] George Necula, Scott McPeak, Shree P. Rahul, and
Westley Weimer. CIL: Intermediate language and
tools for analysis and transformation of C programs.
In International Conference on Compiler
Construction, pages 213–228, 2002.

[21] Carlos Pacheco, Shuvendu K. Lahiri, Michael D.
Ernst, and Thomas Ball. Feedback-directed random
test generation. In International Conference on
Software Engineering, pages 75–84, 2007.

[22] Koushik Sen, Darko Marinov, and Gul Agha. CUTE:
a concolic unit testing engine for C. In Foundations of
Software Engineering, pages 262–272, 2005.

[23] Willem Visser, Corina Păsăreanu, and Radek Pelanek.
Test input generation for Java containers using state
matching. In International Symposium on Software
Testing and Analysis, pages 37–48, 2006.

[24] Ru-Gang Xu, Rupak Majumdar, and Patrice
Godefroid. Testing for buffer overflows with length
abstraction. In International Symposium on Software
Testing and Analysis, pages 19–28, 2008.

